code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase = logging.getLogger()
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "all_results.json" )
if os.path.exists(lowerCAmelCase__ ):
with open(lowerCAmelCase__ , "r" ) as f:
UpperCAmelCase_ = json.load(lowerCAmelCase__ )
else:
raise ValueError(f"""can't find {path}""" )
return results
lowerCamelCase = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
import xla_spawn
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
./examples/pytorch/text-classification/run_glue.py
--num_cores=8
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--debug tpu_metrics_debug
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
UpperCAmelCase_ = time()
xla_spawn.main()
UpperCAmelCase_ = time()
UpperCAmelCase_ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 500 )
def lowercase__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
import xla_spawn
UpperCAmelCase_ = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
xla_spawn.main()
| 14 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = x
UpperCAmelCase_ = y
for step in range(lowerCAmelCase__ ): # noqa: B007
UpperCAmelCase_ = a * a - b * b + x
UpperCAmelCase_ = 2 * a * b + y
UpperCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) )
def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(lowerCAmelCase__ ):
for image_y in range(lowerCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase_ = figure_width / image_width * image_height
UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ )
else:
UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = len(lowerCAmelCase__ )
print("The following activities are selected:" )
# The first activity is always selected
UpperCAmelCase_ = 0
print(lowerCAmelCase__ , end="," )
# Consider rest of the activities
for j in range(lowerCAmelCase__ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(lowerCAmelCase__ , end="," )
UpperCAmelCase_ = j
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase = [1, 3, 0, 5, 8, 5]
lowerCamelCase = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Swinv2ForImageClassification""",
"""Swinv2ForMaskedImageModeling""",
"""Swinv2Model""",
"""Swinv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def a__ ( lowerCAmelCase__="" ):
UpperCAmelCase_ = tempfile.mkdtemp()
return os.path.join(lowerCAmelCase__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = torch.rand(12 , dtype=torch.floataa ) - 0.5
UpperCAmelCase_ = AgentAudio(_UpperCAmelCase )
UpperCAmelCase_ = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1e-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
# Ensure that the file contains the same value as the original tensor
UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_UpperCAmelCase )
self.assertTrue(torch.allclose(_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , atol=1e-4 ) )
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = torch.rand(12 , dtype=torch.floataa ) - 0.5
UpperCAmelCase_ = get_new_path(suffix=".wav" )
sf.write(_UpperCAmelCase , _UpperCAmelCase , 16000 )
UpperCAmelCase_ = AgentAudio(_UpperCAmelCase )
self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1e-4 ) )
self.assertEqual(agent_type.to_string() , _UpperCAmelCase )
@require_vision
@require_torch
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = torch.randint(0 , 256 , (64, 64, 3) )
UpperCAmelCase_ = AgentImage(_UpperCAmelCase )
UpperCAmelCase_ = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type._tensor , atol=1e-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png"
UpperCAmelCase_ = Image.open(_UpperCAmelCase )
UpperCAmelCase_ = AgentImage(_UpperCAmelCase )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png"
UpperCAmelCase_ = Image.open(_UpperCAmelCase )
UpperCAmelCase_ = AgentImage(_UpperCAmelCase )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_UpperCAmelCase ) )
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = "Hey!"
UpperCAmelCase_ = AgentText(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , agent_type.to_string() )
self.assertEqual(_UpperCAmelCase , agent_type.to_raw() )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
| 14 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase_ = []
for num in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase_ = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def a__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = [int(lowerCAmelCase__ ) for i in ip_va_address.split("." ) if i.isdigit()]
return len(lowerCAmelCase__ ) == 4 and all(0 <= int(lowerCAmelCase__ ) <= 254 for octet in octets )
if __name__ == "__main__":
lowerCamelCase = input().strip()
lowerCamelCase = """valid""" if is_ip_va_address_valid(ip) else """invalid"""
print(F"{ip} is a {valid_or_invalid} IP v4 address.")
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''convbert'''
def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = head_ratio
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = num_groups
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 14 | 1 |
"""simple docstring"""
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = CLIPConfig
UpperCamelCase = ['''CLIPEncoderLayer''']
def __init__( self : int , _UpperCAmelCase : CLIPConfig ) -> int:
'''simple docstring'''
super().__init__(_UpperCAmelCase )
UpperCAmelCase_ = CLIPVisionModelWithProjection(config.vision_config )
UpperCAmelCase_ = nn.Linear(config.vision_config.projection_dim , 1 )
UpperCAmelCase_ = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def lowercase__ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0.5 , _UpperCAmelCase : Any=0.5 ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.vision_model(_UpperCAmelCase )[0]
UpperCAmelCase_ = self.p_head(_UpperCAmelCase )
UpperCAmelCase_ = nsfw_detected.flatten()
UpperCAmelCase_ = nsfw_detected > p_threshold
UpperCAmelCase_ = nsfw_detected.tolist()
if any(_UpperCAmelCase ):
logger.warning(
"Potential NSFW content was detected in one or more images. A black image will be returned instead."
" Try again with a different prompt and/or seed." )
for idx, nsfw_detected_ in enumerate(_UpperCAmelCase ):
if nsfw_detected_:
UpperCAmelCase_ = np.zeros(images[idx].shape )
UpperCAmelCase_ = self.w_head(_UpperCAmelCase )
UpperCAmelCase_ = watermark_detected.flatten()
UpperCAmelCase_ = watermark_detected > w_threshold
UpperCAmelCase_ = watermark_detected.tolist()
if any(_UpperCAmelCase ):
logger.warning(
"Potential watermarked content was detected in one or more images. A black image will be returned instead."
" Try again with a different prompt and/or seed." )
for idx, watermark_detected_ in enumerate(_UpperCAmelCase ):
if watermark_detected_:
UpperCAmelCase_ = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = 384
UpperCAmelCase_ = 7
if "tiny" in model_name:
UpperCAmelCase_ = 96
UpperCAmelCase_ = (2, 2, 6, 2)
UpperCAmelCase_ = (3, 6, 12, 24)
elif "small" in model_name:
UpperCAmelCase_ = 96
UpperCAmelCase_ = (2, 2, 18, 2)
UpperCAmelCase_ = (3, 6, 12, 24)
elif "base" in model_name:
UpperCAmelCase_ = 128
UpperCAmelCase_ = (2, 2, 18, 2)
UpperCAmelCase_ = (4, 8, 16, 32)
UpperCAmelCase_ = 12
UpperCAmelCase_ = 512
elif "large" in model_name:
UpperCAmelCase_ = 192
UpperCAmelCase_ = (2, 2, 18, 2)
UpperCAmelCase_ = (6, 12, 24, 48)
UpperCAmelCase_ = 12
UpperCAmelCase_ = 768
# set label information
UpperCAmelCase_ = 150
UpperCAmelCase_ = "huggingface/label-files"
UpperCAmelCase_ = "ade20k-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ = SwinConfig(
embed_dim=lowerCAmelCase__ , depths=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , window_size=lowerCAmelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] , )
UpperCAmelCase_ = UperNetConfig(
backbone_config=lowerCAmelCase__ , auxiliary_in_channels=lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , )
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# fmt: off
# stem
rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ , UpperCAmelCase_ = x.shape
UpperCAmelCase_ = x.reshape(lowerCAmelCase__ , 4 , in_channel // 4 )
UpperCAmelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
return x
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ , UpperCAmelCase_ = x.shape
UpperCAmelCase_ = x.reshape(lowerCAmelCase__ , in_channel // 4 , 4 )
UpperCAmelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
return x
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = x.shape[0]
UpperCAmelCase_ = x.reshape(4 , in_channel // 4 )
UpperCAmelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCAmelCase__ )
return x
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = x.shape[0]
UpperCAmelCase_ = x.reshape(in_channel // 4 , 4 )
UpperCAmelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCAmelCase__ )
return x
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = {
"upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth",
"upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth",
"upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth",
"upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth",
}
UpperCAmelCase_ = model_name_to_url[model_name]
UpperCAmelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="cpu" , file_name=lowerCAmelCase__ )[
"state_dict"
]
for name, param in state_dict.items():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ = get_upernet_config(lowerCAmelCase__ )
UpperCAmelCase_ = UperNetForSemanticSegmentation(lowerCAmelCase__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ )
if "bn" in key:
UpperCAmelCase_ = key.replace("bn" , "batch_norm" )
UpperCAmelCase_ = val
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
UpperCAmelCase_ = reverse_correct_unfold_reduction_order(lowerCAmelCase__ )
if "norm" in key:
UpperCAmelCase_ = reverse_correct_unfold_norm_order(lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
# verify on image
UpperCAmelCase_ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
UpperCAmelCase_ = SegformerImageProcessor()
UpperCAmelCase_ = processor(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
with torch.no_grad():
UpperCAmelCase_ = model(lowerCAmelCase__ )
UpperCAmelCase_ = outputs.logits
print(logits.shape )
print("First values of logits:" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
UpperCAmelCase_ = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
UpperCAmelCase_ = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
UpperCAmelCase_ = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
UpperCAmelCase_ = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCAmelCase__ )
print(f"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print(f"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(f"""openmmlab/{model_name}""" )
processor.push_to_hub(f"""openmmlab/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[F"upernet-swin-{size}" for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 | 1 |
"""simple docstring"""
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {}
lowerCamelCase = {}
lowerCamelCase = {}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ):
UpperCAmelCase_ = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" )
UpperCAmelCase_ = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" )
UpperCAmelCase_ = format_type
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ):
UpperCAmelCase_ = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
UpperCAmelCase_ = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["""python"""])
_register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""])
_register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""])
_register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""])
_register_formatter(CustomFormatter, """custom""")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""])
else:
lowerCamelCase = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""")
_register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""])
else:
lowerCamelCase = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""")
_register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, """jax""", aliases=[])
else:
lowerCamelCase = ValueError("""JAX needs to be installed to be able to return JAX arrays.""")
_register_unavailable_formatter(_jax_error, """jax""", aliases=[])
def a__ ( lowerCAmelCase__ ):
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def a__ ( lowerCAmelCase__ , **lowerCAmelCase__ ):
UpperCAmelCase_ = get_format_type_from_alias(lowerCAmelCase__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**lowerCAmelCase__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return []
UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ )
UpperCAmelCase_ = int(max_value - min_value ) + 1
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for i in my_list:
buckets[int(i - min_value )].append(lowerCAmelCase__ )
return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 14 | 1 |
"""simple docstring"""
import datasets
lowerCamelCase = """\
@InProceedings{conneau2018xnli,
author = \"Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin\",
title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",
booktitle = \"Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing\",
year = \"2018\",
publisher = \"Association for Computational Linguistics\",
location = \"Brussels, Belgium\",
}
"""
lowerCamelCase = """\
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
"""
lowerCamelCase = """
Computes XNLI score which is just simple accuracy.
Args:
predictions: Predicted labels.
references: Ground truth labels.
Returns:
'accuracy': accuracy
Examples:
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> xnli_metric = datasets.load_metric(\"xnli\")
>>> results = xnli_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
"""
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
} ) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def lowercase__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[Any]:
'''simple docstring'''
return {"accuracy": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )}
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
lowerCamelCase = {
"""n_samples""": 64,
"""horizon""": 32,
"""num_inference_steps""": 20,
"""n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network
"""scale_grad_by_std""": True,
"""scale""": 0.1,
"""eta""": 0.0,
"""t_grad_cutoff""": 2,
"""device""": """cpu""",
}
if __name__ == "__main__":
lowerCamelCase = """hopper-medium-v2"""
lowerCamelCase = gym.make(env_name)
lowerCamelCase = ValueGuidedRLPipeline.from_pretrained(
"""bglick13/hopper-medium-v2-value-function-hor32""",
env=env,
)
env.seed(0)
lowerCamelCase = env.reset()
lowerCamelCase = 0
lowerCamelCase = 0
lowerCamelCase = 1_000
lowerCamelCase = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
lowerCamelCase = pipeline(obs, planning_horizon=32)
# execute action in environment
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = env.step(denorm_actions)
lowerCamelCase = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
lowerCamelCase = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 14 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowerCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = create_model(
"HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = r".*sequential.(\d+).*"
UpperCAmelCase_ = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase_ = 1 if projecton_layer == 0 else 2
UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase_ = value
UpperCAmelCase_ = mixed_qkv.size(0 ) // 3
UpperCAmelCase_ = mixed_qkv[:qkv_dim]
UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase_ = query_layer
UpperCAmelCase_ = key_layer
UpperCAmelCase_ = value_layer
else:
UpperCAmelCase_ = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase_ = clap_model.state_dict()
UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = ClapConfig()
UpperCAmelCase_ = enable_fusion
UpperCAmelCase_ = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowerCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 14 | 1 |
"""simple docstring"""
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCamelCase = get_tests_dir("""fixtures""")
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = mock.Mock()
UpperCAmelCase_ = 500
UpperCAmelCase_ = {}
UpperCAmelCase_ = HTTPError
UpperCAmelCase_ = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=_UpperCAmelCase ) as mock_head:
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowercase__ ( cls : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = TOKEN
HfFolder.save_token(_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : int ) -> Union[str, Any]:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def lowercase__ ( self : Any ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_UpperCAmelCase , repo_id="test-feature-extractor" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token )
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
_UpperCAmelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token )
UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
def lowercase__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
UpperCAmelCase_ = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(
F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 14 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 | 1 |
"""simple docstring"""
lowerCamelCase = """0.21.0"""
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 14 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 | 1 |
"""simple docstring"""
from manim import *
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase_ = [mem.copy() for i in range(6 )]
UpperCAmelCase_ = [mem.copy() for i in range(6 )]
UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
UpperCAmelCase_ = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
UpperCAmelCase_ = Text("CPU" , font_size=24 )
UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
UpperCAmelCase_ = [mem.copy() for i in range(4 )]
UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
UpperCAmelCase_ = Text("GPU" , font_size=24 )
UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
UpperCAmelCase_ = [mem.copy() for i in range(6 )]
UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
UpperCAmelCase_ = Text("Model" , font_size=24 )
UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
UpperCAmelCase_ = []
for i, rect in enumerate(_UpperCAmelCase ):
rect.set_stroke(_UpperCAmelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCAmelCase_ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_UpperCAmelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=_UpperCAmelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=_UpperCAmelCase , buff=0.0 )
self.add(_UpperCAmelCase )
cpu_targs.append(_UpperCAmelCase )
UpperCAmelCase_ = [mem.copy() for i in range(6 )]
UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
UpperCAmelCase_ = Text("Loaded Checkpoint" , font_size=24 )
UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , aligned_edge=_UpperCAmelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCAmelCase_ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase_ = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCAmelCase_ = MarkupText(
F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) , Write(_UpperCAmelCase ) )
self.play(Write(_UpperCAmelCase , run_time=1 ) , Create(_UpperCAmelCase , run_time=1 ) )
UpperCAmelCase_ = []
UpperCAmelCase_ = []
for i, rect in enumerate(_UpperCAmelCase ):
UpperCAmelCase_ = fill.copy().set_fill(_UpperCAmelCase , opacity=0.7 )
target.move_to(_UpperCAmelCase )
first_animations.append(GrowFromCenter(_UpperCAmelCase , run_time=1 ) )
UpperCAmelCase_ = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(_UpperCAmelCase , run_time=1.5 ) )
self.play(*_UpperCAmelCase )
self.play(*_UpperCAmelCase )
self.wait()
| 14 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
UpperCamelCase = Features({'''image''': Image()} )
UpperCamelCase = Features({'''labels''': ClassLabel} )
UpperCamelCase = "image"
UpperCamelCase = "labels"
def lowercase__ ( self : int , _UpperCAmelCase : Tuple ) -> Optional[Any]:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , _UpperCAmelCase ):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" )
UpperCAmelCase_ = copy.deepcopy(self )
UpperCAmelCase_ = self.label_schema.copy()
UpperCAmelCase_ = features[self.label_column]
UpperCAmelCase_ = label_schema
return task_template
@property
def lowercase__ ( self : Tuple ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 14 |
"""simple docstring"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_text_model'''
def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_vision_model'''
def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = return_dict
UpperCAmelCase_ = 1.0
@classmethod
def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = text_config
UpperCAmelCase_ = vision_config
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-4
def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return 14
| 14 | 1 |
"""simple docstring"""
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
lowerCamelCase = (
"""https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"""
)
lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
def a__ ( ):
UpperCAmelCase_ = "https://pypi.org/pypi/diffusers/json"
UpperCAmelCase_ = json.loads(request.urlopen(lowerCAmelCase__ ).read() )["releases"].keys()
return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : version.Version(lowerCAmelCase__ ) )
def a__ ( ):
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = Path(lowerCAmelCase__ ) / "__init__.py"
if not init_path.exists():
init_path.touch()
def a__ ( lowerCAmelCase__ ):
init_hf_modules()
UpperCAmelCase_ = Path(lowerCAmelCase__ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
def a__ ( lowerCAmelCase__ ):
with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as f:
UpperCAmelCase_ = f.read()
# Imports of the form `import .xxx`
UpperCAmelCase_ = re.findall("^\s*import\s+\.(\S+)\s*$" , lowerCAmelCase__ , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , lowerCAmelCase__ , flags=re.MULTILINE )
# Unique-ify
return list(set(lowerCAmelCase__ ) )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = False
UpperCAmelCase_ = [module_file]
UpperCAmelCase_ = []
# Let's recurse through all relative imports
while not no_change:
UpperCAmelCase_ = []
for f in files_to_check:
new_imports.extend(get_relative_imports(lowerCAmelCase__ ) )
UpperCAmelCase_ = Path(lowerCAmelCase__ ).parent
UpperCAmelCase_ = [str(module_path / m ) for m in new_imports]
UpperCAmelCase_ = [f for f in new_import_files if f not in all_relative_imports]
UpperCAmelCase_ = [f"""{f}.py""" for f in new_import_files]
UpperCAmelCase_ = len(lowerCAmelCase__ ) == 0
all_relative_imports.extend(lowerCAmelCase__ )
return all_relative_imports
def a__ ( lowerCAmelCase__ ):
with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as f:
UpperCAmelCase_ = f.read()
# Imports of the form `import xxx`
UpperCAmelCase_ = re.findall("^\s*import\s+(\S+)\s*$" , lowerCAmelCase__ , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("^\s*from\s+(\S+)\s+import" , lowerCAmelCase__ , flags=re.MULTILINE )
# Only keep the top-level module
UpperCAmelCase_ = [imp.split("." )[0] for imp in imports if not imp.startswith("." )]
# Unique-ify and test we got them all
UpperCAmelCase_ = list(set(lowerCAmelCase__ ) )
UpperCAmelCase_ = []
for imp in imports:
try:
importlib.import_module(lowerCAmelCase__ )
except ImportError:
missing_packages.append(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
f"""{', '.join(lowerCAmelCase__ )}. Run `pip install {' '.join(lowerCAmelCase__ )}`""" )
return get_relative_imports(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = module_path.replace(os.path.sep , "." )
UpperCAmelCase_ = importlib.import_module(lowerCAmelCase__ )
if class_name is None:
return find_pipeline_class(lowerCAmelCase__ )
return getattr(lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
from ..pipelines import DiffusionPipeline
UpperCAmelCase_ = dict(inspect.getmembers(lowerCAmelCase__ , inspect.isclass ) )
UpperCAmelCase_ = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , lowerCAmelCase__ )
and cls.__module__.split("." )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"""
f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"""
f""" {loaded_module}.""" )
UpperCAmelCase_ = cls
return pipeline_class
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ):
UpperCAmelCase_ = str(lowerCAmelCase__ )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ):
UpperCAmelCase_ = module_file_or_url
UpperCAmelCase_ = "local"
elif pretrained_model_name_or_path.count("/" ) == 0:
UpperCAmelCase_ = get_diffusers_versions()
# cut ".dev0"
UpperCAmelCase_ = "v" + ".".join(__version__.split("." )[:3] )
# retrieve github version that matches
if revision is None:
UpperCAmelCase_ = latest_version if latest_version[1:] in available_versions else "main"
logger.info(f"""Defaulting to latest_version: {revision}.""" )
elif revision in available_versions:
UpperCAmelCase_ = f"""v{revision}"""
elif revision == "main":
UpperCAmelCase_ = revision
else:
raise ValueError(
f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of"""
f""" {', '.join(available_versions + ['main'] )}.""" )
# community pipeline on GitHub
UpperCAmelCase_ = COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase__ , pipeline=lowerCAmelCase__ )
try:
UpperCAmelCase_ = cached_download(
lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , )
UpperCAmelCase_ = "git"
UpperCAmelCase_ = pretrained_model_name_or_path + ".py"
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
else:
try:
# Load from URL or cache if already cached
UpperCAmelCase_ = hf_hub_download(
lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , )
UpperCAmelCase_ = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) )
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
# Check we have all the requirements in our environment
UpperCAmelCase_ = check_imports(lowerCAmelCase__ )
# Now we move the module inside our cached dynamic modules.
UpperCAmelCase_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(lowerCAmelCase__ )
UpperCAmelCase_ = Path(lowerCAmelCase__ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(lowerCAmelCase__ , submodule_path / module_file )
for module_needed in modules_needed:
UpperCAmelCase_ = f"""{module_needed}.py"""
shutil.copy(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = use_auth_token
elif use_auth_token is True:
UpperCAmelCase_ = HfFolder.get_token()
else:
UpperCAmelCase_ = None
UpperCAmelCase_ = model_info(lowerCAmelCase__ , revision=lowerCAmelCase__ , token=lowerCAmelCase__ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
UpperCAmelCase_ = submodule_path / commit_hash
UpperCAmelCase_ = full_submodule + os.path.sep + commit_hash
create_dynamic_module(lowerCAmelCase__ )
if not (submodule_path / module_file).exists():
shutil.copy(lowerCAmelCase__ , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
lowerCAmelCase__ , f"""{module_needed}.py""" , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , )
return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , **lowerCAmelCase__ , ):
UpperCAmelCase_ = get_cached_module_file(
lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , )
return get_class_in_module(lowerCAmelCase__ , final_module.replace(".py" , "" ) )
| 14 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = XLMProphetNetTokenizer
UpperCamelCase = False
UpperCamelCase = True
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "[PAD]"
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "[PAD]" )
self.assertEqual(vocab_keys[1] , "[CLS]" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(_UpperCAmelCase ) , 1012 )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"[UNK]",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"[UNK]",
".",
] , )
@cached_property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" )
@slow
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = [35389, 6672, 49, 2]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
| 14 | 1 |
"""simple docstring"""
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class lowercase__ :
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
UpperCAmelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
UpperCAmelCase_ = UNetaDConditionModel(
sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
UpperCAmelCase_ = DDPMScheduler(
num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
UpperCAmelCase_ = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
UpperCAmelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
UpperCAmelCase_ = UNetaDConditionModel(
sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , )
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
UpperCAmelCase_ = DDPMScheduler(
num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , )
torch.manual_seed(0 )
UpperCAmelCase_ = DDPMScheduler(
num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , )
torch.manual_seed(0 )
UpperCAmelCase_ = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = self.get_dummy_components()
UpperCAmelCase_ = self.pipeline_class(**_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCAmelCase_ = inputs["prompt"]
UpperCAmelCase_ = inputs["generator"]
UpperCAmelCase_ = inputs["num_inference_steps"]
UpperCAmelCase_ = inputs["output_type"]
if "image" in inputs:
UpperCAmelCase_ = inputs["image"]
else:
UpperCAmelCase_ = None
if "mask_image" in inputs:
UpperCAmelCase_ = inputs["mask_image"]
else:
UpperCAmelCase_ = None
if "original_image" in inputs:
UpperCAmelCase_ = inputs["original_image"]
else:
UpperCAmelCase_ = None
UpperCAmelCase_ , UpperCAmelCase_ = pipe.encode_prompt(_UpperCAmelCase )
# inputs with prompt converted to embeddings
UpperCAmelCase_ = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
UpperCAmelCase_ = image
if mask_image is not None:
UpperCAmelCase_ = mask_image
if original_image is not None:
UpperCAmelCase_ = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = pipe(**_UpperCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = self.pipeline_class.from_pretrained(_UpperCAmelCase )
pipe_loaded.to(_UpperCAmelCase )
pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , )
UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCAmelCase_ = inputs["generator"]
UpperCAmelCase_ = inputs["num_inference_steps"]
UpperCAmelCase_ = inputs["output_type"]
# inputs with prompt converted to embeddings
UpperCAmelCase_ = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
UpperCAmelCase_ = image
if mask_image is not None:
UpperCAmelCase_ = mask_image
if original_image is not None:
UpperCAmelCase_ = original_image
UpperCAmelCase_ = pipe_loaded(**_UpperCAmelCase )[0]
UpperCAmelCase_ = np.abs(to_np(_UpperCAmelCase ) - to_np(_UpperCAmelCase ) ).max()
self.assertLess(_UpperCAmelCase , 1e-4 )
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.get_dummy_components()
UpperCAmelCase_ = self.pipeline_class(**_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCAmelCase_ = pipe(**_UpperCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = self.pipeline_class.from_pretrained(_UpperCAmelCase )
pipe_loaded.to(_UpperCAmelCase )
pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCAmelCase_ = pipe_loaded(**_UpperCAmelCase )[0]
UpperCAmelCase_ = np.abs(to_np(_UpperCAmelCase ) - to_np(_UpperCAmelCase ) ).max()
self.assertLess(_UpperCAmelCase , 1e-4 )
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
UpperCAmelCase_ = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ = int(shortest_edge / crop_pct )
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''xlnet'''
UpperCamelCase = ['''mems''']
UpperCamelCase = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : str , _UpperCAmelCase : str=32000 , _UpperCAmelCase : str=1024 , _UpperCAmelCase : Tuple=24 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : List[Any]=4096 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any="bi" , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : List[Any]=1e-12 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=-1 , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : str="last" , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]="tanh" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : List[str]=2 , **_UpperCAmelCase : Optional[Any] , ) -> str:
'''simple docstring'''
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = d_model
UpperCAmelCase_ = n_layer
UpperCAmelCase_ = n_head
if d_model % n_head != 0:
raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
UpperCAmelCase_ = d_model // n_head
UpperCAmelCase_ = ff_activation
UpperCAmelCase_ = d_inner
UpperCAmelCase_ = untie_r
UpperCAmelCase_ = attn_type
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = dropout
UpperCAmelCase_ = mem_len
UpperCAmelCase_ = reuse_len
UpperCAmelCase_ = bi_data
UpperCAmelCase_ = clamp_len
UpperCAmelCase_ = same_length
UpperCAmelCase_ = summary_type
UpperCAmelCase_ = summary_use_proj
UpperCAmelCase_ = summary_activation
UpperCAmelCase_ = summary_last_dropout
UpperCAmelCase_ = start_n_top
UpperCAmelCase_ = end_n_top
UpperCAmelCase_ = bos_token_id
UpperCAmelCase_ = pad_token_id
UpperCAmelCase_ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , _UpperCAmelCase , )
UpperCAmelCase_ = kwargs["use_cache"]
UpperCAmelCase_ = use_mems_eval
UpperCAmelCase_ = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any] ) -> Optional[Any]:
'''simple docstring'''
raise NotImplementedError(
F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 14 |
"""simple docstring"""
import string
def a__ ( lowerCAmelCase__ ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase_ = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ )
UpperCAmelCase_ = num - key
if num < 0:
UpperCAmelCase_ = num + len(string.ascii_uppercase )
UpperCAmelCase_ = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def a__ ( ):
UpperCAmelCase_ = input("Encrypted message: " )
UpperCAmelCase_ = message.upper()
decrypt(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = StableDiffusionInpaintPipeline
UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCamelCase = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCamelCase = frozenset([] )
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , )
UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
torch.manual_seed(0 )
UpperCAmelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , )
UpperCAmelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase_ = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def lowercase__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any]=0 ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) )
UpperCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) )
if str(_UpperCAmelCase ).startswith("mps" ):
UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCAmelCase_ = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ = self.get_dummy_components()
UpperCAmelCase_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase )
UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCAmelCase_ = sd_pipe(**_UpperCAmelCase ).images
UpperCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
UpperCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench.npy" )
UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting"
UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench"
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , )
UpperCAmelCase_ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
UpperCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy" )
UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting"
UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench"
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , )
UpperCAmelCase_ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting"
UpperCAmelCase_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder="scheduler" )
UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench"
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 14 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) )
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 )
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = output_stride
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
UpperCAmelCase_ = width_multiplier
UpperCAmelCase_ = ffn_dropout
UpperCAmelCase_ = attn_dropout
def lowercase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModelTester(self )
UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCAmelCase_ = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits
# verify the logits
UpperCAmelCase_ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits.detach().cpu()
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
UpperCAmelCase_ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import os
from math import logaa
def a__ ( lowerCAmelCase__ = "base_exp.txt" ):
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ):
UpperCAmelCase_ , UpperCAmelCase_ = list(map(lowerCAmelCase__ , line.split("," ) ) )
if x * logaa(lowerCAmelCase__ ) > largest:
UpperCAmelCase_ = x * logaa(lowerCAmelCase__ )
UpperCAmelCase_ = i + 1
return result
if __name__ == "__main__":
print(solution())
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ = result + left + right
return input_list
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) <= 1:
return input_list
UpperCAmelCase_ = list(lowerCAmelCase__ )
# iteration for two-way merging
UpperCAmelCase_ = 2
while p <= len(lowerCAmelCase__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = i + p - 1
UpperCAmelCase_ = (low + high + 1) // 2
UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# final merge of last two parts
if p * 2 >= len(lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase = []
else:
lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase_ = []
for num in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase_ = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def a__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 14 |
"""simple docstring"""
lowerCamelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355_818,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase_ = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""",
datefmt="""%Y-%m-%d %H:%M:%S""",
level=os.environ.get("""LOGLEVEL""", """INFO""").upper(),
stream=sys.stdout,
)
lowerCamelCase = logging.getLogger(__name__)
lowerCamelCase = {"""facebook/bart-base""": BartForConditionalGeneration}
lowerCamelCase = {"""facebook/bart-base""": BartTokenizer}
def a__ ( ):
UpperCAmelCase_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=lowerCAmelCase__ , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=lowerCAmelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCAmelCase__ , )
parser.add_argument(
"--config_name" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=lowerCAmelCase__ , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="Where to store the final ONNX file." )
UpperCAmelCase_ = parser.parse_args()
return args
def a__ ( lowerCAmelCase__ , lowerCAmelCase__="cpu" ):
UpperCAmelCase_ = model_dict[model_name].from_pretrained(lowerCAmelCase__ ).to(lowerCAmelCase__ )
UpperCAmelCase_ = tokenizer_dict[model_name].from_pretrained(lowerCAmelCase__ )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase_ = 0
UpperCAmelCase_ = None
UpperCAmelCase_ = 0
return huggingface_model, tokenizer
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
model.eval()
UpperCAmelCase_ = None
UpperCAmelCase_ = torch.jit.script(BARTBeamSearchGenerator(lowerCAmelCase__ ) )
with torch.no_grad():
UpperCAmelCase_ = "My friends are cool but they eat too many carbs."
UpperCAmelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
UpperCAmelCase_ = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowerCAmelCase__ , max_length=lowerCAmelCase__ , early_stopping=lowerCAmelCase__ , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
lowerCAmelCase__ , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , lowerCAmelCase__ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=lowerCAmelCase__ , )
logger.info("Model exported to {}".format(lowerCAmelCase__ ) )
UpperCAmelCase_ = remove_dup_initializers(os.path.abspath(lowerCAmelCase__ ) )
logger.info("Deduplicated and optimized model written to {}".format(lowerCAmelCase__ ) )
UpperCAmelCase_ = onnxruntime.InferenceSession(lowerCAmelCase__ )
UpperCAmelCase_ = ort_sess.run(
lowerCAmelCase__ , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(lowerCAmelCase__ ),
"max_length": np.array(lowerCAmelCase__ ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def a__ ( ):
UpperCAmelCase_ = parse_args()
UpperCAmelCase_ = 5
UpperCAmelCase_ = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase_ = torch.device(args.device )
UpperCAmelCase_ , UpperCAmelCase_ = load_model_tokenizer(args.model_name_or_path , lowerCAmelCase__ )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(lowerCAmelCase__ )
if args.max_length:
UpperCAmelCase_ = args.max_length
if args.num_beams:
UpperCAmelCase_ = args.num_beams
if args.output_file_path:
UpperCAmelCase_ = args.output_file_path
else:
UpperCAmelCase_ = "BART.onnx"
logger.info("Exporting model to ONNX" )
export_and_validate_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase_ = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ = make_batched(_UpperCAmelCase )
UpperCAmelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase_ = {"pixel_values": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import pytest
import datasets
# Import fixture modules as plugins
lowerCamelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit")
for item in items:
if any(marker in item.keywords for marker in ["integration", "unit"] ):
continue
item.add_marker(pytest.mark.unit )
def a__ ( lowerCAmelCase__ ):
config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" )
@pytest.fixture(autouse=lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work?
UpperCAmelCase_ = tmp_path_factory.getbasetemp() / "cache"
UpperCAmelCase_ = test_hf_cache_home / "datasets"
UpperCAmelCase_ = test_hf_cache_home / "metrics"
UpperCAmelCase_ = test_hf_cache_home / "modules"
monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(lowerCAmelCase__ ) )
monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(lowerCAmelCase__ ) )
monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(lowerCAmelCase__ ) )
UpperCAmelCase_ = test_hf_datasets_cache / "downloads"
monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(lowerCAmelCase__ ) )
UpperCAmelCase_ = test_hf_datasets_cache / "downloads" / "extracted"
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase__ ) )
@pytest.fixture(autouse=lowerCAmelCase__ , scope="session" )
def a__ ( ):
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
# don't take tests into account when counting downloads
monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , lowerCAmelCase__ )
@pytest.fixture
def a__ ( lowerCAmelCase__ ):
# Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0
# To be removed once SQLAlchemy 2.0 supported
monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , lowerCAmelCase__ )
| 14 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
UpperCAmelCase_ = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]]
UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0]
UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
UpperCAmelCase_ = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
UpperCAmelCase_ = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
UpperCAmelCase_ = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
UpperCAmelCase_ = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ = 10**9 ):
UpperCAmelCase_ = 1
UpperCAmelCase_ = 2
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
UpperCAmelCase_ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F"{solution() = }")
| 14 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
UpperCAmelCase_ , UpperCAmelCase_ = grid.shape
UpperCAmelCase_ = [-1, 1, 0, 0]
UpperCAmelCase_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set()
UpperCAmelCase_ = np.full((rows, cols) , np.inf )
UpperCAmelCase_ = 0
UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = None
while queue:
((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase_ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase_ = dist + 1
UpperCAmelCase_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = 11
UpperCAmelCase_ = int("1" + "0" * digit_len )
for num in range(lowerCAmelCase__ , lowerCAmelCase__ ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowerCAmelCase__ , lowerCAmelCase__ ):
solutions.append(f"""{num}/{den}""" )
den += 1
num += 1
UpperCAmelCase_ = 10
return solutions
def a__ ( lowerCAmelCase__ = 2 ):
UpperCAmelCase_ = 1.0
for fraction in fraction_list(lowerCAmelCase__ ):
UpperCAmelCase_ = Fraction(lowerCAmelCase__ )
result *= frac.denominator / frac.numerator
return int(lowerCAmelCase__ )
if __name__ == "__main__":
print(solution())
| 14 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = x
UpperCAmelCase_ = y
for step in range(lowerCAmelCase__ ): # noqa: B007
UpperCAmelCase_ = a * a - b * b + x
UpperCAmelCase_ = 2 * a * b + y
UpperCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) )
def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(lowerCAmelCase__ ):
for image_y in range(lowerCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase_ = figure_width / image_width * image_height
UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ )
else:
UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = 1
UpperCAmelCase_ = 3
UpperCAmelCase_ = (32, 32)
UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase )
return image
@property
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def lowercase__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , )
return CLIPTextModel(_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ = self.dummy_cond_unet_upscale
UpperCAmelCase_ = DDPMScheduler()
UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" )
UpperCAmelCase_ = self.dummy_vae
UpperCAmelCase_ = self.dummy_text_encoder
UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ = StableDiffusionUpscalePipeline(
unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , )
UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = "A painting of a squirrel eating a burger"
UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
UpperCAmelCase_ = sd_pipe(
[prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase_ = output.images
UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
UpperCAmelCase_ = sd_pipe(
[prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=_UpperCAmelCase , )[0]
UpperCAmelCase_ = image[0, -3:, -3:, -1]
UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
UpperCAmelCase_ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
UpperCAmelCase_ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ = self.dummy_cond_unet_upscale
UpperCAmelCase_ = DDPMScheduler()
UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" )
UpperCAmelCase_ = self.dummy_vae
UpperCAmelCase_ = self.dummy_text_encoder
UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ = StableDiffusionUpscalePipeline(
unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , )
UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = "A painting of a squirrel eating a burger"
UpperCAmelCase_ = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase_ = output.images
assert image.shape[0] == 2
UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
UpperCAmelCase_ = sd_pipe(
[prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase_ = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.dummy_cond_unet_upscale
UpperCAmelCase_ = DDPMScheduler()
UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" )
UpperCAmelCase_ = self.dummy_vae
UpperCAmelCase_ = self.dummy_text_encoder
UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
UpperCAmelCase_ = unet.half()
UpperCAmelCase_ = text_encoder.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ = StableDiffusionUpscalePipeline(
unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , )
UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = "A painting of a squirrel eating a burger"
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = sd_pipe(
[prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , ).images
UpperCAmelCase_ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png" )
UpperCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat.npy" )
UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler"
UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase_ = "a cat sitting on a park bench"
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , )
UpperCAmelCase_ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-3
def lowercase__ ( self : Tuple ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png" )
UpperCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat_fp16.npy" )
UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler"
UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(
_UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase_ = "a cat sitting on a park bench"
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , )
UpperCAmelCase_ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png" )
UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler"
UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(
_UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
UpperCAmelCase_ = "a cat sitting on a park bench"
UpperCAmelCase_ = torch.manual_seed(0 )
UpperCAmelCase_ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , output_type="np" , )
UpperCAmelCase_ = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Swinv2ForImageClassification""",
"""Swinv2ForMaskedImageModeling""",
"""Swinv2Model""",
"""Swinv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class lowercase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = scheduler
UpperCAmelCase_ = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
UpperCAmelCase_ = split_batches
UpperCAmelCase_ = step_with_optimizer
UpperCAmelCase_ = GradientState()
def lowercase__ ( self : int , *_UpperCAmelCase : str , **_UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
UpperCAmelCase_ = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , "total_steps" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
return self.scheduler.get_last_lr()
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
return self.scheduler.state_dict()
def lowercase__ ( self : str , _UpperCAmelCase : str ) -> Optional[Any]:
'''simple docstring'''
self.scheduler.load_state_dict(_UpperCAmelCase )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
return self.scheduler.get_lr()
def lowercase__ ( self : Optional[Any] , *_UpperCAmelCase : Any , **_UpperCAmelCase : Any ) -> Optional[int]:
'''simple docstring'''
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 14 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase_ = []
for num in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase_ = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def a__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
lowerCamelCase = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
class lowercase__ :
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : dict[str, list[str]] , _UpperCAmelCase : str ) -> None:
'''simple docstring'''
UpperCAmelCase_ = graph
# mapping node to its parent in resulting breadth first tree
UpperCAmelCase_ = {}
UpperCAmelCase_ = source_vertex
def lowercase__ ( self : List[Any] ) -> None:
'''simple docstring'''
UpperCAmelCase_ = {self.source_vertex}
UpperCAmelCase_ = None
UpperCAmelCase_ = [self.source_vertex] # first in first out queue
while queue:
UpperCAmelCase_ = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(_UpperCAmelCase )
UpperCAmelCase_ = vertex
queue.append(_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : str ) -> str:
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
UpperCAmelCase_ = self.parent.get(_UpperCAmelCase )
if target_vertex_parent is None:
UpperCAmelCase_ = (
F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}"""
)
raise ValueError(_UpperCAmelCase )
return self.shortest_path(_UpperCAmelCase ) + F"""->{target_vertex}"""
if __name__ == "__main__":
lowerCamelCase = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''convbert'''
def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = head_ratio
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = num_groups
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 14 | 1 |
"""simple docstring"""
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowerCamelCase = input("""Enter image url: """).strip()
print(F"Downloading image from {url} ...")
lowerCamelCase = BeautifulSoup(requests.get(url).content, """html.parser""")
# The image URL is in the content field of the first meta tag with property og:image
lowerCamelCase = soup.find("""meta""", {"""property""": """og:image"""})["""content"""]
lowerCamelCase = requests.get(image_url).content
lowerCamelCase = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"
with open(file_name, """wb""") as fp:
fp.write(image_data)
print(F"Done. Image saved to disk as {file_name}.")
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 | 1 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 | 1 |
"""simple docstring"""
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = data
UpperCAmelCase_ = previous
UpperCAmelCase_ = next_node
def __str__( self : str ) -> str:
'''simple docstring'''
return F"""{self.data}"""
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
return self.data
def lowercase__ ( self : Dict ) -> str:
'''simple docstring'''
return self.next
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
return self.previous
class lowercase__ :
'''simple docstring'''
def __init__( self : List[str] , _UpperCAmelCase : Union[str, Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = head
def __iter__( self : List[Any] ) -> Dict:
'''simple docstring'''
return self
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
UpperCAmelCase_ = self.current.get_data()
UpperCAmelCase_ = self.current.get_next()
return value
class lowercase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = None # First node in list
UpperCAmelCase_ = None # Last node in list
def __str__( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.head
UpperCAmelCase_ = []
while current is not None:
nodes.append(current.get_data() )
UpperCAmelCase_ = current.get_next()
return " ".join(str(_UpperCAmelCase ) for node in nodes )
def __contains__( self : str , _UpperCAmelCase : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.head
while current:
if current.get_data() == value:
return True
UpperCAmelCase_ = current.get_next()
return False
def __iter__( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return LinkedListIterator(self.head )
def lowercase__ ( self : str ) -> str:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Node ) -> None:
'''simple docstring'''
if self.head is None:
UpperCAmelCase_ = node
UpperCAmelCase_ = node
else:
self.insert_before_node(self.head , _UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : Node ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(_UpperCAmelCase )
else:
self.insert_after_node(self.tail , _UpperCAmelCase )
def lowercase__ ( self : str , _UpperCAmelCase : int ) -> None:
'''simple docstring'''
UpperCAmelCase_ = Node(_UpperCAmelCase )
if self.head is None:
self.set_head(_UpperCAmelCase )
else:
self.set_tail(_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : Node , _UpperCAmelCase : Node ) -> None:
'''simple docstring'''
UpperCAmelCase_ = node
UpperCAmelCase_ = node.previous
if node.get_previous() is None:
UpperCAmelCase_ = node_to_insert
else:
UpperCAmelCase_ = node_to_insert
UpperCAmelCase_ = node_to_insert
def lowercase__ ( self : Tuple , _UpperCAmelCase : Node , _UpperCAmelCase : Node ) -> None:
'''simple docstring'''
UpperCAmelCase_ = node
UpperCAmelCase_ = node.next
if node.get_next() is None:
UpperCAmelCase_ = node_to_insert
else:
UpperCAmelCase_ = node_to_insert
UpperCAmelCase_ = node_to_insert
def lowercase__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None:
'''simple docstring'''
UpperCAmelCase_ = 1
UpperCAmelCase_ = Node(_UpperCAmelCase )
UpperCAmelCase_ = self.head
while node:
if current_position == position:
self.insert_before_node(_UpperCAmelCase , _UpperCAmelCase )
return
current_position += 1
UpperCAmelCase_ = node.next
self.insert_after_node(self.tail , _UpperCAmelCase )
def lowercase__ ( self : Tuple , _UpperCAmelCase : int ) -> Node:
'''simple docstring'''
UpperCAmelCase_ = self.head
while node:
if node.get_data() == item:
return node
UpperCAmelCase_ = node.get_next()
raise Exception("Node not found" )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> int:
'''simple docstring'''
if (node := self.get_node(_UpperCAmelCase )) is not None:
if node == self.head:
UpperCAmelCase_ = self.head.get_next()
if node == self.tail:
UpperCAmelCase_ = self.tail.get_previous()
self.remove_node_pointers(_UpperCAmelCase )
@staticmethod
def lowercase__ ( _UpperCAmelCase : Node ) -> None:
'''simple docstring'''
if node.get_next():
UpperCAmelCase_ = node.previous
if node.get_previous():
UpperCAmelCase_ = node.next
UpperCAmelCase_ = None
UpperCAmelCase_ = None
def lowercase__ ( self : int ) -> Tuple:
'''simple docstring'''
return self.head is None
def a__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return []
UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ )
UpperCAmelCase_ = int(max_value - min_value ) + 1
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for i in my_list:
buckets[int(i - min_value )].append(lowerCAmelCase__ )
return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 14 | 1 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCamelCase = logging.getLogger(__name__)
lowerCamelCase = 50 # max width of layer names
lowerCamelCase = 70 # max width of quantizer names
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = parser.add_argument_group("quant_trainer arguments" )
group.add_argument("--wprec" , type=lowerCAmelCase__ , default=8 , help="weight precision" )
group.add_argument("--aprec" , type=lowerCAmelCase__ , default=8 , help="activation precision" )
group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" )
group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" )
group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" )
group.add_argument("--quant-disable-keyword" , type=lowerCAmelCase__ , nargs="+" , help="disable quantizers by keyword" )
group.add_argument("--quant-disable-layer-module" , type=lowerCAmelCase__ , help="disable quantizers by keyword under layer." )
group.add_argument("--quant-enable-layer-module" , type=lowerCAmelCase__ , help="enable quantizers by keyword under layer" )
group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" )
group.add_argument("--percentile" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="percentile for PercentileCalibrator" )
group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" )
group.add_argument("--clip-gelu" , metavar="N" , type=lowerCAmelCase__ , help="clip gelu output maximum value to N" )
group.add_argument(
"--recalibrate-weights" , action="store_true" , help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
) , )
def a__ ( lowerCAmelCase__ ):
if args.calibrator == "max":
UpperCAmelCase_ = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator" )
UpperCAmelCase_ = "histogram"
elif args.calibrator == "mse":
UpperCAmelCase_ = "histogram"
else:
raise ValueError(f"""Invalid calibrator {args.calibrator}""" )
UpperCAmelCase_ = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase__ )
UpperCAmelCase_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase__ )
quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False ):
logger.info("Configuring Model for Quantization" )
logger.info(f"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(lowerCAmelCase__ , ["embeddings"] , which="weight" , _disabled=lowerCAmelCase__ )
if args.quant_disable:
set_quantizer_by_name(lowerCAmelCase__ , [""] , _disabled=lowerCAmelCase__ )
if args.quant_disable_keyword:
set_quantizer_by_name(lowerCAmelCase__ , args.quant_disable_keyword , _disabled=lowerCAmelCase__ )
if args.quant_disable_layer_module:
set_quantizer_by_name(lowerCAmelCase__ , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=lowerCAmelCase__ )
if args.quant_enable_layer_module:
set_quantizer_by_name(lowerCAmelCase__ , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=lowerCAmelCase__ )
if args.recalibrate_weights:
recalibrate_weights(lowerCAmelCase__ )
if args.fuse_qkv:
fuse_qkv(lowerCAmelCase__ , lowerCAmelCase__ )
if args.clip_gelu:
clip_gelu(lowerCAmelCase__ , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
logger.info("Enabling Calibration" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"""{name:80}: {module}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info("Loading calibrated amax" )
for name, module in model.named_modules():
if name.endswith("_quantizer" ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax("percentile" , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
def fusea(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for mod in [qq, qk, qv]:
if not hasattr(lowerCAmelCase__ , "_amax" ):
print(" WARNING: NO AMAX BUFFER" )
return
UpperCAmelCase_ = qq._amax.detach().item()
UpperCAmelCase_ = qk._amax.detach().item()
UpperCAmelCase_ = qv._amax.detach().item()
UpperCAmelCase_ = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
qq._amax.fill_(lowerCAmelCase__ )
qk._amax.fill_(lowerCAmelCase__ )
qv._amax.fill_(lowerCAmelCase__ )
logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith(".attention.self" ):
logger.info(f"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
for name, mod in model.named_modules():
if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ):
UpperCAmelCase_ = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase__ )
UpperCAmelCase_ = mod._input_quantizer._amax.data.detach().item()
logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def a__ ( lowerCAmelCase__ ):
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase__ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase_ = mod.weight.shape[0]
UpperCAmelCase_ = mod._weight_quantizer._amax.detach()
UpperCAmelCase_ = torch.ones(lowerCAmelCase__ , dtype=amax.dtype , device=amax.device ) * amax
print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def a__ ( lowerCAmelCase__ ):
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase__ , "_weight_quantizer" ):
if not hasattr(mod.weight_quantizer , "_amax" ):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase_ = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase__ , keepdims=lowerCAmelCase__ ).detach()
logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
UpperCAmelCase_ = amax
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=25 , lowerCAmelCase__=180 , lowerCAmelCase__=None ):
if ignore is None:
UpperCAmelCase_ = []
elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [ignore]
UpperCAmelCase_ = 0
for name, mod in model.named_modules():
if not hasattr(lowerCAmelCase__ , "weight" ):
continue
UpperCAmelCase_ = max(lowerCAmelCase__ , len(lowerCAmelCase__ ) )
for name, mod in model.named_modules():
UpperCAmelCase_ = getattr(lowerCAmelCase__ , "_input_quantizer" , lowerCAmelCase__ )
UpperCAmelCase_ = getattr(lowerCAmelCase__ , "_weight_quantizer" , lowerCAmelCase__ )
if not hasattr(lowerCAmelCase__ , "weight" ):
continue
if type(lowerCAmelCase__ ) in ignore:
continue
if [True for s in ignore if type(lowerCAmelCase__ ) is str and s in name]:
continue
UpperCAmelCase_ = f"""Act:{input_q.extra_repr()}"""
UpperCAmelCase_ = f"""Wgt:{weight_q.extra_repr()}"""
UpperCAmelCase_ = f"""{name:{name_width}} {act_str} {wgt_str}"""
if len(lowerCAmelCase__ ) <= line_width:
logger.info(lowerCAmelCase__ )
else:
logger.info(f"""{name:{name_width}} {act_str}""" )
logger.info(f"""{' ':{name_width}} {wgt_str}""" )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = 0
for name, mod in model.named_modules():
if isinstance(lowerCAmelCase__ , pytorch_quantization.nn.TensorQuantizer ):
print(f"""{name:80} {mod}""" )
count += 1
print(f"""{count} TensorQuantizers found in model""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if quantizer_mod is not None:
assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ )
setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
else:
logger.warning(f"""{name} has no {quantizer}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="both" , **lowerCAmelCase__ ):
UpperCAmelCase_ = f"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(lowerCAmelCase__ , lowerCAmelCase__ , "_input_quantizer" , lowerCAmelCase__ , lowerCAmelCase__ )
if which in ["weight", "both"]:
set_quantizer(lowerCAmelCase__ , lowerCAmelCase__ , "_weight_quantizer" , lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ):
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase__ , "_input_quantizer" ) or hasattr(lowerCAmelCase__ , "_weight_quantizer" ):
for n in names:
if re.search(lowerCAmelCase__ , lowerCAmelCase__ ):
set_quantizers(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
elif name.endswith("_quantizer" ):
for n in names:
if re.search(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = f"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
logger.info(lowerCAmelCase__ )
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase__ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=224 , _UpperCAmelCase : List[Any]=1000 , _UpperCAmelCase : Union[str, Any]=[3, 3, 6, 4] , _UpperCAmelCase : Optional[Any]=[48, 56, 112, 220] , ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = layer_depths
UpperCAmelCase_ = embed_dims
def lowercase__ ( self : int ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_UpperCAmelCase , layer_scale_init_value=1e-5 , )
def lowercase__ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = SwiftFormerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = SwiftFormerForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
UpperCAmelCase_ = SwiftFormerForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs()
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = SwiftFormerModelTester(self )
UpperCAmelCase_ = ConfigTester(
self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="SwiftFormer does not use inputs_embeds" )
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
pass
def lowercase__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def lowercase__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = SwiftFormerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skip(reason="SwiftFormer does not output attentions" )
def lowercase__ ( self : str ) -> str:
'''simple docstring'''
pass
def lowercase__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 8
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(_UpperCAmelCase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
def _config_zero_init(_UpperCAmelCase : List[Any] ):
UpperCAmelCase_ = copy.deepcopy(_UpperCAmelCase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(_UpperCAmelCase , _UpperCAmelCase , 1e-10 )
if isinstance(getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ):
UpperCAmelCase_ = _config_zero_init(getattr(_UpperCAmelCase , _UpperCAmelCase ) )
setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return configs_no_init
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : int ) -> Tuple:
'''simple docstring'''
pass
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None
@slow
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 14 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowerCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = create_model(
"HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = r".*sequential.(\d+).*"
UpperCAmelCase_ = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase_ = 1 if projecton_layer == 0 else 2
UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase_ = value
UpperCAmelCase_ = mixed_qkv.size(0 ) // 3
UpperCAmelCase_ = mixed_qkv[:qkv_dim]
UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase_ = query_layer
UpperCAmelCase_ = key_layer
UpperCAmelCase_ = value_layer
else:
UpperCAmelCase_ = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase_ = clap_model.state_dict()
UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = ClapConfig()
UpperCAmelCase_ = enable_fusion
UpperCAmelCase_ = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowerCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 14 | 1 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
lowerCamelCase = """
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
"""
lowerCamelCase = """
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{'spearmanr': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results['spearmanr'])
-0.7
>>> print(round(results['spearmanr_pvalue'], 2))
0.19
"""
lowerCamelCase = r"""\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def lowercase__ ( self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]=False ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 14 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 | 1 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def a__ ( ):
print("Making key files..." )
make_key_files("rsa" , 1024 )
print("Key files generation successful." )
def a__ ( lowerCAmelCase__ ):
print("Generating prime p..." )
UpperCAmelCase_ = rabinMiller.generate_large_prime(lowerCAmelCase__ )
print("Generating prime q..." )
UpperCAmelCase_ = rabinMiller.generate_large_prime(lowerCAmelCase__ )
UpperCAmelCase_ = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)..." )
while True:
UpperCAmelCase_ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(lowerCAmelCase__ , (p - 1) * (q - 1) ) == 1:
break
print("Calculating d that is mod inverse of e..." )
UpperCAmelCase_ = cryptoMath.find_mod_inverse(lowerCAmelCase__ , (p - 1) * (q - 1) )
UpperCAmelCase_ = (n, e)
UpperCAmelCase_ = (n, d)
return (public_key, private_key)
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ):
print("\nWARNING:" )
print(
f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
"Use a different name or delete these files and re-run this program." )
sys.exit()
UpperCAmelCase_ , UpperCAmelCase_ = generate_key(lowerCAmelCase__ )
print(f"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(f"""{name}_pubkey.txt""" , "w" ) as out_file:
out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" )
print(f"""Writing private key to file {name}_privkey.txt...""" )
with open(f"""{name}_privkey.txt""" , "w" ) as out_file:
out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
UpperCAmelCase_ = flax_key_tuple[:-1] + ("weight",)
UpperCAmelCase_ = torch.permute(lowerCAmelCase__ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase__ ):
# linear layer
UpperCAmelCase_ = flax_key_tuple[:-1] + ("weight",)
UpperCAmelCase_ = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
UpperCAmelCase_ = flax_key_tuple[:-1] + ("weight",)
return flax_key_tuple, flax_tensor
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if "metadata" in layer:
UpperCAmelCase_ = layer.split("metadata" )
UpperCAmelCase_ = "".join(split_layer[0] )[:-1]
UpperCAmelCase_ = [tuple(("metadata" + split_layer[1]).split("/" ) )]
elif "kvstore" in layer:
UpperCAmelCase_ = layer.split("kvstore" )
UpperCAmelCase_ = "".join(split_layer[0] )[:-1]
UpperCAmelCase_ = [tuple(("kvstore" + split_layer[1]).split("/" ) )]
else:
UpperCAmelCase_ = layer.split("/" )
UpperCAmelCase_ = "/".join(split_layer[:-1] )
UpperCAmelCase_ = (split_layer[-1],)
if "kvstore/path" in layer:
UpperCAmelCase_ = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}"""
elif "kvstore/driver" in layer:
UpperCAmelCase_ = "file"
else:
UpperCAmelCase_ = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = rename_keys(lowerCAmelCase__ )
UpperCAmelCase_ = {}
for k, v in current_block.items():
UpperCAmelCase_ = v
UpperCAmelCase_ = new_current_block
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = WEIGHTS_NAME ):
UpperCAmelCase_ = convert_file_size_to_int(lowerCAmelCase__ )
UpperCAmelCase_ = []
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp:
UpperCAmelCase_ = serialization.msgpack_restore(fp.read() )["optimizer"]["target"]
UpperCAmelCase_ = flatten_dict(lowerCAmelCase__ , sep="/" )
UpperCAmelCase_ = {}
for layer in checkpoint_info.keys():
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = get_key_and_tensorstore_dict(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if curr_real_layer_name in all_layers:
UpperCAmelCase_ = content
else:
UpperCAmelCase_ = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
UpperCAmelCase_ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
UpperCAmelCase_ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
UpperCAmelCase_ , UpperCAmelCase_ = rename_base_flax_keys(tuple(key.split("/" ) ) , lowerCAmelCase__ )
UpperCAmelCase_ = "/".join(lowerCAmelCase__ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
UpperCAmelCase_ = os.path.join(
lowerCAmelCase__ , weights_name.replace(".bin" , f"""-{len(lowerCAmelCase__ )+1:05d}-of-???.bin""" ) )
rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__ )
sharded_state_dicts.append(current_block.keys() )
del current_block
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
UpperCAmelCase_ = raw_weights.to(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , weights_name.replace(".bin" , f"""-{len(lowerCAmelCase__ )+1:05d}-of-???.bin""" ) )
rename_and_save_block(lowerCAmelCase__ , lowerCAmelCase__ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(lowerCAmelCase__ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
UpperCAmelCase_ = {}
UpperCAmelCase_ = {}
for idx, shard in enumerate(lowerCAmelCase__ ):
UpperCAmelCase_ = weights_name.replace(
".bin" , f"""-{idx+1:05d}-of-{len(lowerCAmelCase__ ):05d}.bin""" ) # len(sharded_state_dicts):05d}
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase_ = shard
for key in shard:
UpperCAmelCase_ = shard_file
# Add the metadata
UpperCAmelCase_ = {"total_size": total_size}
UpperCAmelCase_ = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , "w" , encoding="utf-8" ) as f:
UpperCAmelCase_ = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + "\n"
f.write(lowerCAmelCase__ )
return metadata, index
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--switch_t5x_checkpoint_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""")
parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
lowerCamelCase = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def a__ ( ):
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
UpperCAmelCase_ = SwitchTransformersConfig.from_pretrained("google/switch-base-8" )
config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" )
UpperCAmelCase_ = SwitchTransformersForConditionalGeneration.from_pretrained(
"/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" )
UpperCAmelCase_ = TaTokenizer.from_pretrained("t5-small" )
UpperCAmelCase_ = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."
UpperCAmelCase_ = tokenizer(lowerCAmelCase__ , return_tensors="pt" ).input_ids
UpperCAmelCase_ = model.generate(lowerCAmelCase__ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 14 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_clipseg""": [
"""CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""CLIPSegConfig""",
"""CLIPSegTextConfig""",
"""CLIPSegVisionConfig""",
],
"""processing_clipseg""": ["""CLIPSegProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CLIPSegModel""",
"""CLIPSegPreTrainedModel""",
"""CLIPSegTextModel""",
"""CLIPSegVisionModel""",
"""CLIPSegForImageSegmentation""",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_text_model'''
def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_vision_model'''
def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = return_dict
UpperCAmelCase_ = 1.0
@classmethod
def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = text_config
UpperCAmelCase_ = vision_config
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-4
def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return 14
| 14 | 1 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {"""vocab_file""": """spiece.model"""}
lowerCamelCase = {
"""vocab_file""": {
"""TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""",
}
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=False , _UpperCAmelCase : Tuple="<s>" , _UpperCAmelCase : Tuple="</s>" , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : List[str]="<sep>" , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : int="<mask>" , _UpperCAmelCase : Any=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Dict , ) -> None:
'''simple docstring'''
UpperCAmelCase_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase_ = 3
UpperCAmelCase_ = do_lower_case
UpperCAmelCase_ = remove_space
UpperCAmelCase_ = keep_accents
UpperCAmelCase_ = vocab_file
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
UpperCAmelCase_ = jieba
UpperCAmelCase_ = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def lowercase__ ( self : Optional[int] ) -> str:
'''simple docstring'''
return len(self.sp_model )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.__dict__.copy()
UpperCAmelCase_ = None
return state
def __setstate__( self : str , _UpperCAmelCase : Optional[int] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : Any , _UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
if self.remove_space:
UpperCAmelCase_ = " ".join(inputs.strip().split() )
else:
UpperCAmelCase_ = inputs
UpperCAmelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
UpperCAmelCase_ = unicodedata.normalize("NFKD" , _UpperCAmelCase )
UpperCAmelCase_ = "".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase_ = outputs.lower()
return outputs
def lowercase__ ( self : Dict , _UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase_ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase_ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase_ = cur_pieces[1:]
else:
UpperCAmelCase_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.sp_model.PieceToId(_UpperCAmelCase )
def lowercase__ ( self : str , _UpperCAmelCase : Any ) -> List[Any]:
'''simple docstring'''
return self.sp_model.IdToPiece(_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : Dict ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase , " " ).strip()
return out_string
def lowercase__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def lowercase__ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , "wb" ) as fi:
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def lowercase__ ( self : Union[str, Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 14 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = XLMProphetNetTokenizer
UpperCamelCase = False
UpperCamelCase = True
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "[PAD]"
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "[PAD]" )
self.assertEqual(vocab_keys[1] , "[CLS]" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(_UpperCAmelCase ) , 1012 )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"[UNK]",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"[UNK]",
".",
] , )
@cached_property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" )
@slow
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = [35389, 6672, 49, 2]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
| 14 | 1 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
lowerCamelCase = 8
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=BITS ):
UpperCAmelCase_ = x.device
UpperCAmelCase_ = (x * 255).int().clamp(0 , 255 )
UpperCAmelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase__ )
UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "d -> d 1 1" )
UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "b c h w -> b c 1 h w" )
UpperCAmelCase_ = ((x & mask) != 0).float()
UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "b c d h w -> b (c d) h w" )
UpperCAmelCase_ = bits * 2 - 1
return bits
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=BITS ):
UpperCAmelCase_ = x.device
UpperCAmelCase_ = (x > 0).int()
UpperCAmelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase__ , dtype=torch.intaa )
UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "d -> d 1 1" )
UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "b (c d) h w -> b c d h w" , d=8 )
UpperCAmelCase_ = reduce(x * mask , "b c d h w -> b c h w" , "sum" )
return (dec / 255).clamp(0.0 , 1.0 )
def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = True , lowerCAmelCase__=None , lowerCAmelCase__ = True , ):
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
UpperCAmelCase_ = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
UpperCAmelCase_ = self.alphas_cumprod[timestep]
UpperCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
UpperCAmelCase_ = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
UpperCAmelCase_ = self.bit_scale
if self.config.clip_sample:
UpperCAmelCase_ = torch.clamp(lowerCAmelCase__ , -scale , lowerCAmelCase__ )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
UpperCAmelCase_ = self._get_variance(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
UpperCAmelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCAmelCase_ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
UpperCAmelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
UpperCAmelCase_ = model_output.device if torch.is_tensor(lowerCAmelCase__ ) else "cpu"
UpperCAmelCase_ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ ).to(lowerCAmelCase__ )
UpperCAmelCase_ = self._get_variance(lowerCAmelCase__ , lowerCAmelCase__ ) ** 0.5 * eta * noise
UpperCAmelCase_ = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ )
def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="epsilon" , lowerCAmelCase__=None , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
UpperCAmelCase_ , UpperCAmelCase_ = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 )
else:
UpperCAmelCase_ = None
# 1. compute alphas, betas
UpperCAmelCase_ = self.alphas_cumprod[t]
UpperCAmelCase_ = self.alphas_cumprod[t - 1] if t > 0 else self.one
UpperCAmelCase_ = 1 - alpha_prod_t
UpperCAmelCase_ = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
UpperCAmelCase_ = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
UpperCAmelCase_ = self.bit_scale
if self.config.clip_sample:
UpperCAmelCase_ = torch.clamp(lowerCAmelCase__ , -scale , lowerCAmelCase__ )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase_ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
UpperCAmelCase_ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
UpperCAmelCase_ = 0
if t > 0:
UpperCAmelCase_ = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCAmelCase__ ).to(model_output.device )
UpperCAmelCase_ = (self._get_variance(lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ ) ** 0.5) * noise
UpperCAmelCase_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCAmelCase : Optional[float] = 1.0 , ) -> str:
'''simple docstring'''
super().__init__()
UpperCAmelCase_ = bit_scale
UpperCAmelCase_ = (
ddim_bit_scheduler_step if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Dict , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 50 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
UpperCAmelCase_ = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=_UpperCAmelCase , )
UpperCAmelCase_ = decimal_to_bits(_UpperCAmelCase ) * self.bit_scale
UpperCAmelCase_ = latents.to(self.device )
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
UpperCAmelCase_ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
UpperCAmelCase_ = bits_to_decimal(_UpperCAmelCase )
if output_type == "pil":
UpperCAmelCase_ = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
UpperCAmelCase_ = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ = int(shortest_edge / crop_pct )
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
lowerCamelCase = """
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = \"A Call for Clarity in Reporting {BLEU} Scores\",
author = \"Post, Matt\",
booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",
month = oct,
year = \"2018\",
address = \"Belgium, Brussels\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W18-6319\",
pages = \"186--191\",
}
"""
lowerCamelCase = """\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
"""
lowerCamelCase = """
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=[\"About 95 species are currently accepted .\"]
>>> predictions=[\"About 95 you now get in .\"]
>>> references=[[\"About 95 species are currently known .\"]]
>>> wiki_split = datasets.load_metric(\"wiki_split\")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}
"""
def a__ ( lowerCAmelCase__ ):
def remove_articles(lowerCAmelCase__ ):
UpperCAmelCase_ = re.compile(r"\b(a|an|the)\b" , re.UNICODE )
return re.sub(lowerCAmelCase__ , " " , lowerCAmelCase__ )
def white_space_fix(lowerCAmelCase__ ):
return " ".join(text.split() )
def remove_punc(lowerCAmelCase__ ):
UpperCAmelCase_ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowerCAmelCase__ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase__ ) ) ) )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
return int(normalize_answer(lowerCAmelCase__ ) == normalize_answer(lowerCAmelCase__ ) )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [any(compute_exact(lowerCAmelCase__ , lowerCAmelCase__ ) for ref in refs ) for pred, refs in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
return (sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ )) * 100
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [rgram for rgrams in rgramslist for rgram in rgrams]
UpperCAmelCase_ = Counter(lowerCAmelCase__ )
UpperCAmelCase_ = Counter(lowerCAmelCase__ )
UpperCAmelCase_ = Counter()
for sgram, scount in sgramcounter.items():
UpperCAmelCase_ = scount * numref
UpperCAmelCase_ = Counter(lowerCAmelCase__ )
UpperCAmelCase_ = Counter()
for cgram, ccount in cgramcounter.items():
UpperCAmelCase_ = ccount * numref
# KEEP
UpperCAmelCase_ = sgramcounter_rep & cgramcounter_rep
UpperCAmelCase_ = keepgramcounter_rep & rgramcounter
UpperCAmelCase_ = sgramcounter_rep & rgramcounter
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ = 1
UpperCAmelCase_ = 1
if len(lowerCAmelCase__ ) > 0:
UpperCAmelCase_ = keeptmpscorea / len(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
UpperCAmelCase_ = keeptmpscorea / sum(keepgramcounterall_rep.values() )
UpperCAmelCase_ = 0
if keepscore_precision > 0 or keepscore_recall > 0:
UpperCAmelCase_ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
UpperCAmelCase_ = sgramcounter_rep - cgramcounter_rep
UpperCAmelCase_ = delgramcounter_rep - rgramcounter
UpperCAmelCase_ = sgramcounter_rep - rgramcounter
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ = 1
if len(lowerCAmelCase__ ) > 0:
UpperCAmelCase_ = deltmpscorea / len(lowerCAmelCase__ )
# ADDITION
UpperCAmelCase_ = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ )
UpperCAmelCase_ = set(lowerCAmelCase__ ) & set(lowerCAmelCase__ )
UpperCAmelCase_ = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ )
UpperCAmelCase_ = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
UpperCAmelCase_ = 1
UpperCAmelCase_ = 1
if len(lowerCAmelCase__ ) > 0:
UpperCAmelCase_ = addtmpscore / len(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
UpperCAmelCase_ = addtmpscore / len(lowerCAmelCase__ )
UpperCAmelCase_ = 0
if addscore_precision > 0 or addscore_recall > 0:
UpperCAmelCase_ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = len(lowerCAmelCase__ )
UpperCAmelCase_ = ssent.split(" " )
UpperCAmelCase_ = csent.split(" " )
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
for rsent in rsents:
UpperCAmelCase_ = rsent.split(" " )
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = []
ragramslist.append(lowerCAmelCase__ )
for i in range(0 , len(lowerCAmelCase__ ) - 1 ):
if i < len(lowerCAmelCase__ ) - 1:
UpperCAmelCase_ = ragrams[i] + " " + ragrams[i + 1]
ragrams.append(lowerCAmelCase__ )
if i < len(lowerCAmelCase__ ) - 2:
UpperCAmelCase_ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2]
ragrams.append(lowerCAmelCase__ )
if i < len(lowerCAmelCase__ ) - 3:
UpperCAmelCase_ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3]
ragrams.append(lowerCAmelCase__ )
ragramslist.append(lowerCAmelCase__ )
ragramslist.append(lowerCAmelCase__ )
ragramslist.append(lowerCAmelCase__ )
for i in range(0 , len(lowerCAmelCase__ ) - 1 ):
if i < len(lowerCAmelCase__ ) - 1:
UpperCAmelCase_ = sagrams[i] + " " + sagrams[i + 1]
sagrams.append(lowerCAmelCase__ )
if i < len(lowerCAmelCase__ ) - 2:
UpperCAmelCase_ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2]
sagrams.append(lowerCAmelCase__ )
if i < len(lowerCAmelCase__ ) - 3:
UpperCAmelCase_ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3]
sagrams.append(lowerCAmelCase__ )
for i in range(0 , len(lowerCAmelCase__ ) - 1 ):
if i < len(lowerCAmelCase__ ) - 1:
UpperCAmelCase_ = cagrams[i] + " " + cagrams[i + 1]
cagrams.append(lowerCAmelCase__ )
if i < len(lowerCAmelCase__ ) - 2:
UpperCAmelCase_ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2]
cagrams.append(lowerCAmelCase__ )
if i < len(lowerCAmelCase__ ) - 3:
UpperCAmelCase_ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3]
cagrams.append(lowerCAmelCase__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
UpperCAmelCase_ = sum([delascore, delascore, delascore, delascore] ) / 4
UpperCAmelCase_ = sum([addascore, addascore, addascore, addascore] ) / 4
UpperCAmelCase_ = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = "13a" , lowerCAmelCase__ = True ):
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
UpperCAmelCase_ = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
UpperCAmelCase_ = sacrebleu.metrics.bleu._get_tokenizer(lowerCAmelCase__ )()(lowerCAmelCase__ )
else:
UpperCAmelCase_ = sacrebleu.TOKENIZERS[tokenizer]()(lowerCAmelCase__ )
elif tokenizer == "moses":
UpperCAmelCase_ = sacremoses.MosesTokenizer().tokenize(lowerCAmelCase__ , return_str=lowerCAmelCase__ , escape=lowerCAmelCase__ )
elif tokenizer == "penn":
UpperCAmelCase_ = sacremoses.MosesTokenizer().penn_tokenize(lowerCAmelCase__ , return_str=lowerCAmelCase__ )
else:
UpperCAmelCase_ = sentence
if not return_str:
UpperCAmelCase_ = normalized_sent.split()
return normalized_sent
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if not (len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) == len(lowerCAmelCase__ )):
raise ValueError("Sources length must match predictions and references lengths." )
UpperCAmelCase_ = 0
for src, pred, refs in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
sari_score += SARIsent(normalize(lowerCAmelCase__ ) , normalize(lowerCAmelCase__ ) , [normalize(lowerCAmelCase__ ) for sent in refs] )
UpperCAmelCase_ = sari_score / len(lowerCAmelCase__ )
return 100 * sari_score
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="exp" , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , ):
UpperCAmelCase_ = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
UpperCAmelCase_ = sacrebleu.corpus_bleu(
lowerCAmelCase__ , lowerCAmelCase__ , smooth_method=lowerCAmelCase__ , smooth_value=lowerCAmelCase__ , force=lowerCAmelCase__ , lowercase=lowerCAmelCase__ , use_effective_order=lowerCAmelCase__ , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=[
"https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py",
"https://github.com/cocoxu/simplification/blob/master/SARI.py",
"https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py",
"https://github.com/mjpost/sacreBLEU",
] , reference_urls=[
"https://www.aclweb.org/anthology/Q16-1029.pdf",
"https://github.com/mjpost/sacreBLEU",
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = {}
result.update({"sari": compute_sari(sources=_UpperCAmelCase , predictions=_UpperCAmelCase , references=_UpperCAmelCase )} )
result.update({"sacrebleu": compute_sacrebleu(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} )
result.update({"exact": compute_em(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} )
return result
| 14 |
"""simple docstring"""
import string
def a__ ( lowerCAmelCase__ ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase_ = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ )
UpperCAmelCase_ = num - key
if num < 0:
UpperCAmelCase_ = num + len(string.ascii_uppercase )
UpperCAmelCase_ = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def a__ ( ):
UpperCAmelCase_ = input("Encrypted message: " )
UpperCAmelCase_ = message.upper()
decrypt(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) < k or k < 0:
raise ValueError("Invalid Input" )
UpperCAmelCase_ = UpperCAmelCase_ = sum(array[:k] )
for i in range(len(lowerCAmelCase__ ) - k ):
UpperCAmelCase_ = current_sum - array[i] + array[i + k]
UpperCAmelCase_ = max(lowerCAmelCase__ , lowerCAmelCase__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowerCamelCase = [randint(-1_000, 1_000) for i in range(100)]
lowerCamelCase = randint(0, 110)
print(F"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
| 14 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) )
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 )
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = output_stride
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
UpperCAmelCase_ = width_multiplier
UpperCAmelCase_ = ffn_dropout
UpperCAmelCase_ = attn_dropout
def lowercase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModelTester(self )
UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCAmelCase_ = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits
# verify the logits
UpperCAmelCase_ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits.detach().cpu()
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
UpperCAmelCase_ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
UpperCAmelCase_ = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]]
UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0]
UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
UpperCAmelCase_ = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
UpperCAmelCase_ = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
UpperCAmelCase_ = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
UpperCAmelCase_ = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ = result + left + right
return input_list
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) <= 1:
return input_list
UpperCAmelCase_ = list(lowerCAmelCase__ )
# iteration for two-way merging
UpperCAmelCase_ = 2
while p <= len(lowerCAmelCase__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = i + p - 1
UpperCAmelCase_ = (low + high + 1) // 2
UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# final merge of last two parts
if p * 2 >= len(lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase = []
else:
lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 14 | 1 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
lowerCamelCase = """src/transformers"""
# Matches is_xxx_available()
lowerCamelCase = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
lowerCamelCase = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
lowerCamelCase = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
lowerCamelCase = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
lowerCamelCase = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
lowerCamelCase = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
lowerCamelCase = re.compile(r"""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
lowerCamelCase = re.compile(r"""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
lowerCamelCase = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
lowerCamelCase = re.compile(r"""^\s*try:""")
# Catches a line with else:
lowerCamelCase = re.compile(r"""^\s*else:""")
def a__ ( lowerCAmelCase__ ):
if _re_test_backend.search(lowerCAmelCase__ ) is None:
return None
UpperCAmelCase_ = [b[0] for b in _re_backend.findall(lowerCAmelCase__ )]
backends.sort()
return "_and_".join(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
with open(lowerCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f:
UpperCAmelCase_ = f.readlines()
UpperCAmelCase_ = 0
while line_index < len(lowerCAmelCase__ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowerCAmelCase__ ):
return None
# First grab the objects without a specific backend in _import_structure
UpperCAmelCase_ = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
UpperCAmelCase_ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowerCAmelCase__ ):
UpperCAmelCase_ = _re_one_line_import_struct.search(lowerCAmelCase__ ).groups()[0]
UpperCAmelCase_ = re.findall(r"\[([^\]]+)\]" , lowerCAmelCase__ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
UpperCAmelCase_ = _re_import_struct_key_value.search(lowerCAmelCase__ )
if single_line_import_search is not None:
UpperCAmelCase_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowerCAmelCase__ ) > 0]
objects.extend(lowerCAmelCase__ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
UpperCAmelCase_ = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
UpperCAmelCase_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
UpperCAmelCase_ = lines[line_index]
if _re_import_struct_add_one.search(lowerCAmelCase__ ) is not None:
objects.append(_re_import_struct_add_one.search(lowerCAmelCase__ ).groups()[0] )
elif _re_import_struct_add_many.search(lowerCAmelCase__ ) is not None:
UpperCAmelCase_ = _re_import_struct_add_many.search(lowerCAmelCase__ ).groups()[0].split(", " )
UpperCAmelCase_ = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0]
objects.extend(lowerCAmelCase__ )
elif _re_between_brackets.search(lowerCAmelCase__ ) is not None:
UpperCAmelCase_ = _re_between_brackets.search(lowerCAmelCase__ ).groups()[0].split(", " )
UpperCAmelCase_ = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0]
objects.extend(lowerCAmelCase__ )
elif _re_quote_object.search(lowerCAmelCase__ ) is not None:
objects.append(_re_quote_object.search(lowerCAmelCase__ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
UpperCAmelCase_ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
UpperCAmelCase_ = []
while (
line_index < len(lowerCAmelCase__ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
UpperCAmelCase_ = lines[line_index]
UpperCAmelCase_ = _re_import.search(lowerCAmelCase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
UpperCAmelCase_ = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(lowerCAmelCase__ ):
# If the line is an if is_backend_available, we grab all objects associated.
UpperCAmelCase_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCAmelCase_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCAmelCase_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
UpperCAmelCase_ = lines[line_index]
UpperCAmelCase_ = _re_import.search(lowerCAmelCase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
UpperCAmelCase_ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
def find_duplicates(lowerCAmelCase__ ):
return [k for k, v in collections.Counter(lowerCAmelCase__ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
UpperCAmelCase_ = []
for key in import_dict_objects.keys():
UpperCAmelCase_ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
UpperCAmelCase_ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
UpperCAmelCase_ = "base imports" if key == "none" else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def a__ ( ):
UpperCAmelCase_ = []
for root, _, files in os.walk(lowerCAmelCase__ ):
if "__init__.py" in files:
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "__init__.py" )
UpperCAmelCase_ = parse_init(lowerCAmelCase__ )
if objects is not None:
UpperCAmelCase_ = analyze_results(*lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
UpperCAmelCase_ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append("\n".join(lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) > 0:
raise ValueError("\n\n".join(lowerCAmelCase__ ) )
def a__ ( ):
UpperCAmelCase_ = []
for path, directories, files in os.walk(lowerCAmelCase__ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(lowerCAmelCase__ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowerCAmelCase__ ) / folder).glob("*.py" ) ) ) == 0:
continue
UpperCAmelCase_ = str((Path(lowerCAmelCase__ ) / folder).relative_to(lowerCAmelCase__ ) )
UpperCAmelCase_ = short_path.replace(os.path.sep , "." )
submodules.append(lowerCAmelCase__ )
for fname in files:
if fname == "__init__.py":
continue
UpperCAmelCase_ = str((Path(lowerCAmelCase__ ) / fname).relative_to(lowerCAmelCase__ ) )
UpperCAmelCase_ = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(lowerCAmelCase__ )
return submodules
lowerCamelCase = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
"""models.esm.openfold_utils""",
]
def a__ ( ):
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
UpperCAmelCase_ = direct_transformers_import(lowerCAmelCase__ )
UpperCAmelCase_ = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowerCAmelCase__ , "__init__.py" ) , "r" ) as f:
UpperCAmelCase_ = f.read()
import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , lowerCAmelCase__ ) ) )
UpperCAmelCase_ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowerCAmelCase__ ) > 0:
UpperCAmelCase_ = "\n".join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registed in the main init of Transformers:\n"
f"""{list_of_modules}\n"""
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 14 |
"""simple docstring"""
lowerCamelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355_818,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase_ = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""",
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''gpt_neox'''
def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=50432 , _UpperCAmelCase : Any=6144 , _UpperCAmelCase : Tuple=44 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Dict=24576 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Tuple=0.25 , _UpperCAmelCase : Union[str, Any]=10000 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Any=1e-5 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Dict , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = rotary_pct
UpperCAmelCase_ = rotary_emb_base
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = hidden_dropout
UpperCAmelCase_ = classifier_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = tie_word_embeddings
UpperCAmelCase_ = use_parallel_residual
UpperCAmelCase_ = rope_scaling
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them!" )
def lowercase__ ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
F"""got {self.rope_scaling}""" )
UpperCAmelCase_ = self.rope_scaling.get("type" , _UpperCAmelCase )
UpperCAmelCase_ = self.rope_scaling.get("factor" , _UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase_ = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ = make_batched(_UpperCAmelCase )
UpperCAmelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase_ = {"pixel_values": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative" )
if not cash_flows:
raise ValueError("Cash flows list cannot be empty" )
UpperCAmelCase_ = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCAmelCase__ ) )
return round(lowerCAmelCase__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
UpperCAmelCase_ = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]]
UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0]
UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
UpperCAmelCase_ = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
UpperCAmelCase_ = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
UpperCAmelCase_ = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
UpperCAmelCase_ = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCamelCase = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
UpperCAmelCase_ , UpperCAmelCase_ = grid.shape
UpperCAmelCase_ = [-1, 1, 0, 0]
UpperCAmelCase_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set()
UpperCAmelCase_ = np.full((rows, cols) , np.inf )
UpperCAmelCase_ = 0
UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = None
while queue:
((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase_ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase_ = dist + 1
UpperCAmelCase_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''gpt_bigcode'''
UpperCamelCase = ['''past_key_values''']
UpperCamelCase = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : List[Any] , _UpperCAmelCase : List[str]=50257 , _UpperCAmelCase : Any=1024 , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]="gelu_pytorch_tanh" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=50256 , _UpperCAmelCase : Optional[Any]=50256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , **_UpperCAmelCase : List[str] , ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = n_positions
UpperCAmelCase_ = n_embd
UpperCAmelCase_ = n_layer
UpperCAmelCase_ = n_head
UpperCAmelCase_ = n_inner
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = resid_pdrop
UpperCAmelCase_ = embd_pdrop
UpperCAmelCase_ = attn_pdrop
UpperCAmelCase_ = layer_norm_epsilon
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scale_attn_weights
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = attention_softmax_in_fpaa
UpperCAmelCase_ = scale_attention_softmax_in_fpaa
UpperCAmelCase_ = multi_query
UpperCAmelCase_ = bos_token_id
UpperCAmelCase_ = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 14 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = x
UpperCAmelCase_ = y
for step in range(lowerCAmelCase__ ): # noqa: B007
UpperCAmelCase_ = a * a - b * b + x
UpperCAmelCase_ = 2 * a * b + y
UpperCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) )
def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(lowerCAmelCase__ ):
for image_y in range(lowerCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase_ = figure_width / image_width * image_height
UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ )
else:
UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = int(lowerCAmelCase__ )
if decimal in (0, 1): # Exit cases for the recursion
return str(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ = divmod(lowerCAmelCase__ , 2 )
return binary_recursive(lowerCAmelCase__ ) + str(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = str(lowerCAmelCase__ ).strip()
if not number:
raise ValueError("No input value was provided" )
UpperCAmelCase_ = "-" if number.startswith("-" ) else ""
UpperCAmelCase_ = number.lstrip("-" )
if not number.isnumeric():
raise ValueError("Input value is not an integer" )
return f"""{negative}0b{binary_recursive(int(lowerCAmelCase__ ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Swinv2ForImageClassification""",
"""Swinv2ForMaskedImageModeling""",
"""Swinv2Model""",
"""Swinv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Tuple ) -> None:
'''simple docstring'''
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 14 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase_ = []
for num in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase_ = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def a__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 14 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Dict , _UpperCAmelCase : Dict ) -> List[str]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ):
UpperCAmelCase_ = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase__ ( self : Optional[int] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = "sgugger/tiny-distilbert-classification"
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , only_pretrain_model=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , torchscript=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , fpaa=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase__ ( self : str ) -> str:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase )
# set architectures equal to `None`
UpperCAmelCase_ = None
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == "cpu" , "Can't do half precision" )
def lowercase__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_UpperCAmelCase , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tinier_bart"
UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase__ ( self : str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tinier_bart"
UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] )
UpperCAmelCase_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , save_to_csv=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCAmelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(_UpperCAmelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(_UpperCAmelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(_UpperCAmelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(_UpperCAmelCase , "env.csv" ) , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_UpperCAmelCase , "inf_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(_UpperCAmelCase , "train_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(_UpperCAmelCase , "inf_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(_UpperCAmelCase , "train_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(_UpperCAmelCase , "env.csv" ) ).exists() )
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(_UpperCAmelCase : Optional[int] ):
self.assertTrue(hasattr(_UpperCAmelCase , "sequential" ) )
self.assertTrue(hasattr(_UpperCAmelCase , "cumulative" ) )
self.assertTrue(hasattr(_UpperCAmelCase , "current" ) )
self.assertTrue(hasattr(_UpperCAmelCase , "total" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCAmelCase , "log.txt" ) , log_print=_UpperCAmelCase , trace_memory_line_by_line=_UpperCAmelCase , multi_process=_UpperCAmelCase , )
UpperCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase )
UpperCAmelCase_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_UpperCAmelCase , "log.txt" ) ).exists() )
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''convbert'''
def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = head_ratio
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = num_groups
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 14 | 1 |
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {"""vocab_file""": """vocab.txt"""}
lowerCamelCase = {
"""vocab_file""": {
"""facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""",
"""facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""",
},
}
lowerCamelCase = {
"""facebook/esm2_t6_8M_UR50D""": 1_024,
"""facebook/esm2_t12_35M_UR50D""": 1_024,
}
def a__ ( lowerCAmelCase__ ):
with open(lowerCAmelCase__ , "r" ) as f:
UpperCAmelCase_ = f.read().splitlines()
return [l.strip() for l in lines]
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : Optional[Any]="<cls>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : Tuple="<mask>" , _UpperCAmelCase : Union[str, Any]="<eos>" , **_UpperCAmelCase : List[str] , ) -> List[Any]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = load_vocab_file(_UpperCAmelCase )
UpperCAmelCase_ = dict(enumerate(self.all_tokens ) )
UpperCAmelCase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase_ = unk_token
UpperCAmelCase_ = cls_token
UpperCAmelCase_ = pad_token
UpperCAmelCase_ = mask_token
UpperCAmelCase_ = eos_token
UpperCAmelCase_ = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def lowercase__ ( self : Tuple , _UpperCAmelCase : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(_UpperCAmelCase , self.unk_token )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return text.split()
def lowercase__ ( self : List[str] , _UpperCAmelCase : Dict=False ) -> Optional[int]:
'''simple docstring'''
return len(self._id_to_token )
def lowercase__ ( self : int ) -> Dict:
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str ) -> int:
'''simple docstring'''
return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : int ) -> str:
'''simple docstring'''
return self._id_to_token.get(_UpperCAmelCase , self.unk_token )
def lowercase__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase_ = [self.cls_token_id]
UpperCAmelCase_ = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def lowercase__ ( self : Tuple , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase_ = [1] + ([0] * len(_UpperCAmelCase )) + [1]
if token_ids_a is not None:
mask += [0] * len(_UpperCAmelCase ) + [1]
return mask
def lowercase__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = os.path.join(_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" )
with open(_UpperCAmelCase , "w" ) as f:
f.write("\n".join(self.all_tokens ) )
return (vocab_file,)
@property
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=_UpperCAmelCase )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Union[List[str], List[AddedToken]] , _UpperCAmelCase : bool = False ) -> int:
'''simple docstring'''
return super()._add_tokens(_UpperCAmelCase , special_tokens=_UpperCAmelCase )
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 | 1 |
"""simple docstring"""
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = tmp_path / "cache"
UpperCAmelCase_ = {"text": "string"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read()
_check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ )
@pytest.mark.parametrize(
"features" , [
None,
{"text": "string"},
{"text": "int32"},
{"text": "float32"},
] , )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = tmp_path / "cache"
UpperCAmelCase_ = {"text": "string"}
UpperCAmelCase_ = features.copy() if features else default_expected_features
UpperCAmelCase_ = (
Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read()
_check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = tmp_path / "cache"
UpperCAmelCase_ = {"text": "string"}
UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read()
_check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = text_path
elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [text_path]
UpperCAmelCase_ = tmp_path / "cache"
UpperCAmelCase_ = {"text": "string"}
UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read()
_check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=("train",) ):
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
for split in splits:
UpperCAmelCase_ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = tmp_path / "cache"
UpperCAmelCase_ = {"text": "string"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase_ = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read()
_check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ )
@pytest.mark.parametrize(
"features" , [
None,
{"text": "string"},
{"text": "int32"},
{"text": "float32"},
] , )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = tmp_path / "cache"
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
UpperCAmelCase_ = {"text": "string"}
UpperCAmelCase_ = features.copy() if features else default_expected_features
UpperCAmelCase_ = (
Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase_ = TextDatasetReader({"train": text_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read()
_check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if split:
UpperCAmelCase_ = {split: text_path}
else:
UpperCAmelCase_ = "train"
UpperCAmelCase_ = {"train": text_path, "test": text_path}
UpperCAmelCase_ = tmp_path / "cache"
UpperCAmelCase_ = {"text": "string"}
UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read()
_check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 14 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 | 1 |
"""simple docstring"""
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
lowerCamelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
lowerCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
lowerCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
lowerCamelCase = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
lowerCamelCase = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
lowerCamelCase = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(64, 64)
)
lowerCamelCase = tf.keras.preprocessing.image.img_to_array(test_image)
lowerCamelCase = np.expand_dims(test_image, axis=0)
lowerCamelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
lowerCamelCase = """Normal"""
if result[0][0] == 1:
lowerCamelCase = """Abnormality detected"""
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return []
UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ )
UpperCAmelCase_ = int(max_value - min_value ) + 1
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for i in my_list:
buckets[int(i - min_value )].append(lowerCAmelCase__ )
return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
lowerCamelCase = {
"""configuration_audio_spectrogram_transformer""": [
"""AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""ASTConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ASTForAudioClassification""",
"""ASTModel""",
"""ASTPreTrainedModel""",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""ASTFeatureExtractor"""]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowerCamelCase = 16
lowerCamelCase = 32
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 16 , lowerCAmelCase__ = "bert-base-cased" ):
UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = load_dataset("glue" , "mrpc" )
def tokenize_function(lowerCAmelCase__ ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=lowerCAmelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(lowerCAmelCase__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding="max_length" , max_length=128 , return_tensors="pt" )
return tokenizer.pad(lowerCAmelCase__ , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
UpperCAmelCase_ = DataLoader(
tokenized_datasets["train"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
UpperCAmelCase_ = DataLoader(
tokenized_datasets["validation"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
model.eval()
UpperCAmelCase_ = 0
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ = model(**lowerCAmelCase__ )
UpperCAmelCase_ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowerCAmelCase__ ) - 1:
UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
UpperCAmelCase_ = metric.compute()
return eval_metric["accuracy"]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# Initialize accelerator
UpperCAmelCase_ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ = config["lr"]
UpperCAmelCase_ = int(config["num_epochs"] )
UpperCAmelCase_ = int(config["seed"] )
UpperCAmelCase_ = int(config["batch_size"] )
UpperCAmelCase_ = args.model_name_or_path
set_seed(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
# Instantiate optimizer
UpperCAmelCase_ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
UpperCAmelCase_ = 1
UpperCAmelCase_ = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , )
else:
UpperCAmelCase_ = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ = 0
UpperCAmelCase_ = evaluate.load("glue" , "mrpc" )
UpperCAmelCase_ = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ = args.resume_from_checkpoint.split("epoch_" )[1]
UpperCAmelCase_ = ""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ = int(lowerCAmelCase__ ) + 1
UpperCAmelCase_ = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
accelerator.print("resumed checkpoint performance:" , lowerCAmelCase__ )
accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] )
accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] )
with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , "r" ) as f:
UpperCAmelCase_ = json.load(lowerCAmelCase__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ = {}
for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
UpperCAmelCase_ = model(**lowerCAmelCase__ )
UpperCAmelCase_ = outputs.loss
UpperCAmelCase_ = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ = f"""epoch_{epoch}"""
UpperCAmelCase_ = os.path.join(args.output_dir , lowerCAmelCase__ )
accelerator.save_state(lowerCAmelCase__ )
UpperCAmelCase_ = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = accuracy
UpperCAmelCase_ = lr_scheduler.get_lr()[0]
UpperCAmelCase_ = optimizer.param_groups[0]["lr"]
UpperCAmelCase_ = epoch
UpperCAmelCase_ = overall_step
accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , "w" ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( ):
UpperCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=lowerCAmelCase__ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCAmelCase__ , )
parser.add_argument(
"--output_dir" , type=lowerCAmelCase__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--resume_from_checkpoint" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="If the training should continue from a checkpoint folder." , )
parser.add_argument(
"--partial_train_epoch" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="If passed, the training will stop after this number of epochs." , )
parser.add_argument(
"--num_epochs" , type=lowerCAmelCase__ , default=2 , help="Number of train epochs." , )
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowerCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = create_model(
"HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = r".*sequential.(\d+).*"
UpperCAmelCase_ = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase_ = 1 if projecton_layer == 0 else 2
UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase_ = value
UpperCAmelCase_ = mixed_qkv.size(0 ) // 3
UpperCAmelCase_ = mixed_qkv[:qkv_dim]
UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase_ = query_layer
UpperCAmelCase_ = key_layer
UpperCAmelCase_ = value_layer
else:
UpperCAmelCase_ = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase_ = clap_model.state_dict()
UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = ClapConfig()
UpperCAmelCase_ = enable_fusion
UpperCAmelCase_ = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowerCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 | 1 |
"""simple docstring"""
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def a__ ( ):
UpperCAmelCase_ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" )
UpperCAmelCase_ = parser.add_subparsers(help="transformers-cli command helpers" )
# Register commands
ConvertCommand.register_subcommand(lowerCAmelCase__ )
DownloadCommand.register_subcommand(lowerCAmelCase__ )
EnvironmentCommand.register_subcommand(lowerCAmelCase__ )
RunCommand.register_subcommand(lowerCAmelCase__ )
ServeCommand.register_subcommand(lowerCAmelCase__ )
UserCommands.register_subcommand(lowerCAmelCase__ )
AddNewModelCommand.register_subcommand(lowerCAmelCase__ )
AddNewModelLikeCommand.register_subcommand(lowerCAmelCase__ )
LfsCommands.register_subcommand(lowerCAmelCase__ )
PTtoTFCommand.register_subcommand(lowerCAmelCase__ )
# Let's go
UpperCAmelCase_ = parser.parse_args()
if not hasattr(lowerCAmelCase__ , "func" ):
parser.print_help()
exit(1 )
# Run
UpperCAmelCase_ = args.func(lowerCAmelCase__ )
service.run()
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 | 1 |
"""simple docstring"""
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = RoFormerTokenizer
UpperCamelCase = RoFormerTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Union[str, Any] , **_UpperCAmelCase : int ) -> Optional[Any]:
'''simple docstring'''
return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , **_UpperCAmelCase : Optional[int] ) -> Tuple:
'''simple docstring'''
return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = "永和服装饰品有限公司,今天天气非常好"
UpperCAmelCase_ = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好"
return input_text, output_text
def lowercase__ ( self : Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ , UpperCAmelCase_ = self.get_chinese_input_output_texts()
UpperCAmelCase_ = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , output_text.split() )
UpperCAmelCase_ = tokens + [tokenizer.unk_token]
UpperCAmelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.get_rust_tokenizer()
UpperCAmelCase_ , UpperCAmelCase_ = self.get_chinese_input_output_texts()
UpperCAmelCase_ = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , output_text.split() )
UpperCAmelCase_ = tokens + [tokenizer.unk_token]
UpperCAmelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
pass
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
pass
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
| 14 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 | 1 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase__ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=13 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : int=[10, 20, 30, 40] , _UpperCAmelCase : List[str]=[2, 2, 3, 2] , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : int=10 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=["stage2", "stage3", "stage4"] , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Union[str, Any]=None , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = num_stages
UpperCAmelCase_ = hidden_sizes
UpperCAmelCase_ = depths
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = out_features
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = scope
UpperCAmelCase_ = num_stages
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = UperNetForSemanticSegmentation(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
UpperCamelCase = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = UperNetModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@unittest.skip(reason="UperNet does not use inputs_embeds" )
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not support input and output embeddings" )
def lowercase__ ( self : List[str] ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not have a base model" )
def lowercase__ ( self : str ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not have a base model" )
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def lowercase__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> Tuple:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = _config_zero_init(_UpperCAmelCase )
UpperCAmelCase_ = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="UperNet does not have tied weights" )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
pass
@slow
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = UperNetForSemanticSegmentation.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = hf_hub_download(
repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" )
UpperCAmelCase_ = Image.open(lowerCAmelCase__ ).convert("RGB" )
return image
@require_torch
@require_vision
@slow
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" )
UpperCAmelCase_ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(_UpperCAmelCase )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
def lowercase__ ( self : Any ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" )
UpperCAmelCase_ = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(_UpperCAmelCase )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 14 |
"""simple docstring"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_text_model'''
def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_vision_model'''
def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = return_dict
UpperCAmelCase_ = 1.0
@classmethod
def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = text_config
UpperCAmelCase_ = vision_config
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-4
def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return 14
| 14 | 1 |
"""simple docstring"""
lowerCamelCase = {
"""meter""": """m""",
"""kilometer""": """km""",
"""megametre""": """Mm""",
"""gigametre""": """Gm""",
"""terametre""": """Tm""",
"""petametre""": """Pm""",
"""exametre""": """Em""",
"""zettametre""": """Zm""",
"""yottametre""": """Ym""",
}
# Exponent of the factor(meter)
lowerCamelCase = {
"""m""": 0,
"""km""": 3,
"""Mm""": 6,
"""Gm""": 9,
"""Tm""": 12,
"""Pm""": 15,
"""Em""": 18,
"""Zm""": 21,
"""Ym""": 24,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = from_type.lower().strip("s" )
UpperCAmelCase_ = to_type.lower().strip("s" )
UpperCAmelCase_ = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ )
if from_sanitized not in METRIC_CONVERSION:
UpperCAmelCase_ = (
f"""Invalid 'from_type' value: {from_type!r}.\n"""
f"""Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
if to_sanitized not in METRIC_CONVERSION:
UpperCAmelCase_ = (
f"""Invalid 'to_type' value: {to_type!r}.\n"""
f"""Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
UpperCAmelCase_ = METRIC_CONVERSION[from_sanitized]
UpperCAmelCase_ = METRIC_CONVERSION[to_sanitized]
UpperCAmelCase_ = 1
if from_exponent > to_exponent:
UpperCAmelCase_ = from_exponent - to_exponent
else:
UpperCAmelCase_ = -(to_exponent - from_exponent)
return value * pow(10 , lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = XLMProphetNetTokenizer
UpperCamelCase = False
UpperCamelCase = True
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "[PAD]"
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "[PAD]" )
self.assertEqual(vocab_keys[1] , "[CLS]" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(_UpperCAmelCase ) , 1012 )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"[UNK]",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"[UNK]",
".",
] , )
@cached_property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" )
@slow
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = [35389, 6672, 49, 2]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = str(lowerCAmelCase__ )
return n == n[::-1]
def a__ ( lowerCAmelCase__ = 1000000 ):
UpperCAmelCase_ = 0
for i in range(1 , lowerCAmelCase__ ):
if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split("b" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
UpperCAmelCase_ = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ = int(shortest_edge / crop_pct )
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase = {
"""configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""],
"""configuration_data2vec_text""": [
"""DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecTextConfig""",
"""Data2VecTextOnnxConfig""",
],
"""configuration_data2vec_vision""": [
"""DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecVisionConfig""",
"""Data2VecVisionOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecAudioForAudioFrameClassification""",
"""Data2VecAudioForCTC""",
"""Data2VecAudioForSequenceClassification""",
"""Data2VecAudioForXVector""",
"""Data2VecAudioModel""",
"""Data2VecAudioPreTrainedModel""",
]
lowerCamelCase = [
"""DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecTextForCausalLM""",
"""Data2VecTextForMaskedLM""",
"""Data2VecTextForMultipleChoice""",
"""Data2VecTextForQuestionAnswering""",
"""Data2VecTextForSequenceClassification""",
"""Data2VecTextForTokenClassification""",
"""Data2VecTextModel""",
"""Data2VecTextPreTrainedModel""",
]
lowerCamelCase = [
"""DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecVisionForImageClassification""",
"""Data2VecVisionForMaskedImageModeling""",
"""Data2VecVisionForSemanticSegmentation""",
"""Data2VecVisionModel""",
"""Data2VecVisionPreTrainedModel""",
]
if is_tf_available():
lowerCamelCase = [
"""TFData2VecVisionForImageClassification""",
"""TFData2VecVisionForSemanticSegmentation""",
"""TFData2VecVisionModel""",
"""TFData2VecVisionPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
import string
def a__ ( lowerCAmelCase__ ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase_ = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ )
UpperCAmelCase_ = num - key
if num < 0:
UpperCAmelCase_ = num + len(string.ascii_uppercase )
UpperCAmelCase_ = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def a__ ( ):
UpperCAmelCase_ = input("Encrypted message: " )
UpperCAmelCase_ = message.upper()
decrypt(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = MgpstrTokenizer
UpperCamelCase = False
UpperCamelCase = {}
UpperCamelCase = False
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
UpperCAmelCase_ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
UpperCAmelCase_ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
def lowercase__ ( self : Tuple , **_UpperCAmelCase : int ) -> Optional[Any]:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowercase__ ( self : str , _UpperCAmelCase : str ) -> str:
'''simple docstring'''
UpperCAmelCase_ = "tester"
UpperCAmelCase_ = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
pass
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
UpperCAmelCase_ = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
UpperCAmelCase_ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase_ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def lowercase__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
UpperCAmelCase_ , UpperCAmelCase_ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase_ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(" " , "" ) , _UpperCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
pass
| 14 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) )
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 )
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = output_stride
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
UpperCAmelCase_ = width_multiplier
UpperCAmelCase_ = ffn_dropout
UpperCAmelCase_ = attn_dropout
def lowercase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModelTester(self )
UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCAmelCase_ = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits
# verify the logits
UpperCAmelCase_ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits.detach().cpu()
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
UpperCAmelCase_ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = [0] * len(lowerCAmelCase__ )
UpperCAmelCase_ = []
UpperCAmelCase_ = [1] * len(lowerCAmelCase__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowerCAmelCase__ ) ):
if indegree[i] == 0:
queue.append(lowerCAmelCase__ )
while queue:
UpperCAmelCase_ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
UpperCAmelCase_ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowerCAmelCase__ )
print(max(lowerCAmelCase__ ) )
# Adjacency list of Graph
lowerCamelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ = result + left + right
return input_list
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) <= 1:
return input_list
UpperCAmelCase_ = list(lowerCAmelCase__ )
# iteration for two-way merging
UpperCAmelCase_ = 2
while p <= len(lowerCAmelCase__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = i + p - 1
UpperCAmelCase_ = (low + high + 1) // 2
UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# final merge of last two parts
if p * 2 >= len(lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase = []
else:
lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 14 | 1 |
"""simple docstring"""
lowerCamelCase = """Input must be a string of 8 numbers plus letter"""
lowerCamelCase = """TRWAGMYFPDXBNJZSQVHLCKE"""
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = f"""Expected string as input, found {type(lowerCAmelCase__ ).__name__}"""
raise TypeError(lowerCAmelCase__ )
UpperCAmelCase_ = spanish_id.replace("-" , "" ).upper()
if len(lowerCAmelCase__ ) != 9:
raise ValueError(lowerCAmelCase__ )
try:
UpperCAmelCase_ = int(spanish_id_clean[0:8] )
UpperCAmelCase_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(lowerCAmelCase__ ) from ex
if letter.isdigit():
raise ValueError(lowerCAmelCase__ )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
"""simple docstring"""
lowerCamelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355_818,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase_ = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if depth < 0:
raise ValueError("Depth cannot be less than 0" )
if len(lowerCAmelCase__ ) == 0:
raise ValueError("Scores cannot be empty" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , )
return min(
minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , )
def a__ ( ):
UpperCAmelCase_ = [90, 23, 6, 33, 21, 65, 123, 34423]
UpperCAmelCase_ = math.log(len(lowerCAmelCase__ ) , 2 )
print("Optimal value : " , end="" )
print(minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase_ = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ = make_batched(_UpperCAmelCase )
UpperCAmelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase_ = {"pixel_values": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = os.path.join(args.tf_model_dir , "parameters.json" )
UpperCAmelCase_ = json.loads(open(lowerCAmelCase__ ).read() )
if not params:
raise ValueError(
f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" )
if not args.output.endswith(".pt" ):
UpperCAmelCase_ = args.output + ".pt"
UpperCAmelCase_ = OrderedDict()
with tf.device("/CPU:0" ):
UpperCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir )
UpperCAmelCase_ = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
UpperCAmelCase_ = reader.get_tensor(lowerCAmelCase__ ).astype(np.floataa )
if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ):
continue
if key_name.startswith("pasts/" ):
if key_name.startswith("pasts/mlp" ):
UpperCAmelCase_ = int(key_name[9] )
elif key_name.startswith("pasts/out" ):
UpperCAmelCase_ = 8
UpperCAmelCase_ = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.startswith("model/moe" ):
UpperCAmelCase_ = int(key_name[9:].split("/" )[0] )
if key_name.endswith("/switch_gating/kernel" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/softmlp/kernel" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ):
UpperCAmelCase_ = key_name[-9:-7]
for i in range(16 ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer)
UpperCAmelCase_ = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.startswith("model/mlp" ):
UpperCAmelCase_ = int(key_name[9:].split("/" )[0] )
if key_name.endswith("/p1/kernel" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wi.weight" % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/p1/bias" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wi.bias" % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/p2/kernel" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wo.weight" % player
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/p2/bias" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wo.bias" % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.startswith("model/ln" ):
UpperCAmelCase_ = int(key_name[8:].split("/" )[0] )
if key_name.endswith("/b" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.norm.bias" % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/g" ):
UpperCAmelCase_ = "model.blocks.%d.feed_forward.norm.weight" % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.startswith("model/att" ):
UpperCAmelCase_ = int(key_name[9:].split("/" )[0] )
if key_name.endswith("/qkv/kernel" ):
UpperCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
UpperCAmelCase_ = state[:, 0, :, :]
UpperCAmelCase_ = state[:, 1, :, :]
UpperCAmelCase_ = state[:, 2, :, :]
UpperCAmelCase_ = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/o/kernel" ):
UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player
UpperCAmelCase_ = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.startswith("model/an" ):
UpperCAmelCase_ = int(key_name[8:].split("/" )[0] )
if key_name.endswith("/b" ):
UpperCAmelCase_ = "model.blocks.%d.self_attn.norm.bias" % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.endswith("/g" ):
UpperCAmelCase_ = "model.blocks.%d.self_attn.norm.weight" % player
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif (
key_name.startswith("model/wte" )
or key_name.startswith("model/wpe" )
or key_name.startswith("model/ete" )
):
UpperCAmelCase_ = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[
key_name[-3:]
]
UpperCAmelCase_ = "model.%s.weight" % nlayer
UpperCAmelCase_ = vnp.copy() # same in embedded
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
if key_name.startswith("model/wte" ):
UpperCAmelCase_ = "lm_head.weight"
UpperCAmelCase_ = vnp.copy() # same in embedded
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name.startswith("model/wob" ):
UpperCAmelCase_ = "final_logits_bias"
UpperCAmelCase_ = vnp.copy() # same in embedded
UpperCAmelCase_ = state.reshape((1, -1) )
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name == "model/dense/kernel":
UpperCAmelCase_ = "model.last_project.weight"
UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
elif key_name == "model/dense_1/bias":
UpperCAmelCase_ = "model.last_project.bias"
UpperCAmelCase_ = vnp.copy() # same because it is one dimensional
UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ )
torch.save(lowerCAmelCase__ , args.output )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser(
description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""")
parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""")
lowerCamelCase = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 14 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
UpperCAmelCase_ = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]]
UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0]
UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
UpperCAmelCase_ = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
UpperCAmelCase_ = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
UpperCAmelCase_ = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
UpperCAmelCase_ = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 14 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""microsoft/beit-base-patch16-224-pt22k""": (
"""https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json"""
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''beit'''
def __init__( self : Dict , _UpperCAmelCase : Any=8192 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : str=3072 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Tuple=1e-12 , _UpperCAmelCase : Dict=224 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : str=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=[3, 5, 7, 11] , _UpperCAmelCase : Optional[Any]=[1, 2, 3, 6] , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=0.4 , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : int=1 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=255 , **_UpperCAmelCase : Dict , ) -> List[Any]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = use_mask_token
UpperCAmelCase_ = use_absolute_position_embeddings
UpperCAmelCase_ = use_relative_position_bias
UpperCAmelCase_ = use_shared_relative_position_bias
UpperCAmelCase_ = layer_scale_init_value
UpperCAmelCase_ = drop_path_rate
UpperCAmelCase_ = use_mean_pooling
# decode head attributes (semantic segmentation)
UpperCAmelCase_ = out_indices
UpperCAmelCase_ = pool_scales
# auxiliary head attributes (semantic segmentation)
UpperCAmelCase_ = use_auxiliary_head
UpperCAmelCase_ = auxiliary_loss_weight
UpperCAmelCase_ = auxiliary_channels
UpperCAmelCase_ = auxiliary_num_convs
UpperCAmelCase_ = auxiliary_concat_input
UpperCAmelCase_ = semantic_loss_ignore_index
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
UpperCAmelCase_ , UpperCAmelCase_ = grid.shape
UpperCAmelCase_ = [-1, 1, 0, 0]
UpperCAmelCase_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set()
UpperCAmelCase_ = np.full((rows, cols) , np.inf )
UpperCAmelCase_ = 0
UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = None
while queue:
((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase_ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase_ = dist + 1
UpperCAmelCase_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
return [ord(lowerCAmelCase__ ) - 96 for elem in plain]
def a__ ( lowerCAmelCase__ ):
return "".join(chr(elem + 96 ) for elem in encoded )
def a__ ( ):
UpperCAmelCase_ = encode(input("-> " ).strip().lower() )
print("Encoded: " , lowerCAmelCase__ )
print("Decoded:" , decode(lowerCAmelCase__ ) )
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = x
UpperCAmelCase_ = y
for step in range(lowerCAmelCase__ ): # noqa: B007
UpperCAmelCase_ = a * a - b * b + x
UpperCAmelCase_ = 2 * a * b + y
UpperCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) )
def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(lowerCAmelCase__ ):
for image_y in range(lowerCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase_ = figure_width / image_width * image_height
UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ )
else:
UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 | 1 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
UpperCAmelCase_ , UpperCAmelCase_ = grid.shape
UpperCAmelCase_ = [-1, 1, 0, 0]
UpperCAmelCase_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set()
UpperCAmelCase_ = np.full((rows, cols) , np.inf )
UpperCAmelCase_ = 0
UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = None
while queue:
((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase_ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase_ = dist + 1
UpperCAmelCase_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Swinv2ForImageClassification""",
"""Swinv2ForMaskedImageModeling""",
"""Swinv2Model""",
"""Swinv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1024 , lowerCAmelCase__=1024 , lowerCAmelCase__=False , **lowerCAmelCase__ ):
UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path="train" , **lowerCAmelCase__ )
UpperCAmelCase_ = tok.pad_token_id
def get_lens(lowerCAmelCase__ ):
UpperCAmelCase_ = tqdm(
DataLoader(lowerCAmelCase__ , batch_size=512 , num_workers=8 , shuffle=lowerCAmelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
UpperCAmelCase_ = []
for batch in dl:
UpperCAmelCase_ = batch["input_ids"].ne(lowerCAmelCase__ ).sum(1 ).tolist()
UpperCAmelCase_ = batch["labels"].ne(lowerCAmelCase__ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
max_lens.append(max(lowerCAmelCase__ , lowerCAmelCase__ ) )
else:
max_lens.extend(lowerCAmelCase__ )
return max_lens
UpperCAmelCase_ = get_lens(lowerCAmelCase__ )
UpperCAmelCase_ = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path="val" , **lowerCAmelCase__ )
UpperCAmelCase_ = get_lens(lowerCAmelCase__ )
pickle_save(lowerCAmelCase__ , train_ds.len_file )
pickle_save(lowerCAmelCase__ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 14 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase_ = []
for num in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase_ = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def a__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 14 | 1 |
"""simple docstring"""
lowerCamelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355_818,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase_ = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''convbert'''
def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = head_ratio
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = num_groups
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 14 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = "ZinengTang/tvlt-base"
UpperCAmelCase_ = tempfile.mkdtemp()
def lowercase__ ( self : Any , **_UpperCAmelCase : Dict ) -> Tuple:
'''simple docstring'''
return TvltImageProcessor.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> int:
'''simple docstring'''
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : List[str] ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = self.get_image_processor()
UpperCAmelCase_ = self.get_feature_extractor()
UpperCAmelCase_ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def lowercase__ ( self : int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.get_image_processor()
UpperCAmelCase_ = self.get_feature_extractor()
UpperCAmelCase_ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
UpperCAmelCase_ = np.ones([12000] )
UpperCAmelCase_ = feature_extractor(_UpperCAmelCase , return_tensors="np" )
UpperCAmelCase_ = processor(audio=_UpperCAmelCase , return_tensors="np" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase__ ( self : Dict ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = self.get_image_processor()
UpperCAmelCase_ = self.get_feature_extractor()
UpperCAmelCase_ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
UpperCAmelCase_ = np.ones([3, 224, 224] )
UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="np" )
UpperCAmelCase_ = processor(images=_UpperCAmelCase , return_tensors="np" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowercase__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.get_image_processor()
UpperCAmelCase_ = self.get_feature_extractor()
UpperCAmelCase_ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
UpperCAmelCase_ = np.ones([12000] )
UpperCAmelCase_ = np.ones([3, 224, 224] )
UpperCAmelCase_ = processor(audio=_UpperCAmelCase , images=_UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] )
# test if it raises when no input is passed
with pytest.raises(_UpperCAmelCase ):
processor()
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = self.get_image_processor()
UpperCAmelCase_ = self.get_feature_extractor()
UpperCAmelCase_ = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""",
f"""stage{idx}.patch_embed.proj.weight""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""",
f"""stage{idx}.patch_embed.proj.bias""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""",
f"""stage{idx}.patch_embed.norm.weight""",
) )
embed.append(
(
f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""",
f"""stage{idx}.patch_embed.norm.bias""",
) )
return embed
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""",
f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""",
f"""stage{idx}.blocks.{cnt}.attn.proj.weight""",
) )
attention_weights.append(
(
f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""",
f"""stage{idx}.blocks.{cnt}.attn.proj.bias""",
) )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") )
attention_weights.append(
(f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") )
return attention_weights
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
token.append((f"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") )
return token
def a__ ( ):
UpperCAmelCase_ = []
head.append(("layernorm.weight", "norm.weight") )
head.append(("layernorm.bias", "norm.bias") )
head.append(("classifier.weight", "head.weight") )
head.append(("classifier.bias", "head.bias") )
return head
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = "imagenet-1k-id2label.json"
UpperCAmelCase_ = 1000
UpperCAmelCase_ = "huggingface/label-files"
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
UpperCAmelCase_ = idalabel
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ = UpperCAmelCase_ = CvtConfig(num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13":
UpperCAmelCase_ = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21":
UpperCAmelCase_ = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
UpperCAmelCase_ = [2, 2, 20]
UpperCAmelCase_ = [3, 12, 16]
UpperCAmelCase_ = [192, 768, 1024]
UpperCAmelCase_ = CvtForImageClassification(lowerCAmelCase__ )
UpperCAmelCase_ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
UpperCAmelCase_ = image_size
UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=torch.device("cpu" ) )
UpperCAmelCase_ = OrderedDict()
UpperCAmelCase_ = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
UpperCAmelCase_ = list_of_state_dict + cls_token(lowerCAmelCase__ )
UpperCAmelCase_ = list_of_state_dict + embeddings(lowerCAmelCase__ )
for cnt in range(config.depth[idx] ):
UpperCAmelCase_ = list_of_state_dict + attention(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = list_of_state_dict + final()
for gg in list_of_state_dict:
print(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument(
"""--cvt_model""",
default="""cvt-w24""",
type=str,
help="""Name of the cvt model you'd like to convert.""",
)
parser.add_argument(
"""--image_size""",
default=384,
type=int,
help="""Input Image Size""",
)
parser.add_argument(
"""--cvt_file_name""",
default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""",
type=str,
help="""Input Image Size""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 14 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 | 1 |
"""simple docstring"""
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCamelCase = logging.getLogger(__name__)
lowerCamelCase = """pytorch_model.bin"""
@dataclasses.dataclass
class lowercase__ :
'''simple docstring'''
UpperCamelCase = dataclasses.field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , )
@dataclasses.dataclass
class lowercase__ :
'''simple docstring'''
UpperCamelCase = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} )
UpperCamelCase = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A csv or a json file containing the validation data.'''} )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The name of the task to train on.'''} , )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The list of labels for the task.'''} )
@dataclasses.dataclass
class lowercase__ :
'''simple docstring'''
UpperCamelCase = dataclasses.field(
metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} )
UpperCamelCase = dataclasses.field(
default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} )
UpperCamelCase = dataclasses.field(
default='''no''' , metadata={
'''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'''
} , )
UpperCamelCase = dataclasses.field(
default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase = dataclasses.field(
default=0.0 , metadata={
'''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.'''
} , )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , )
UpperCamelCase = dataclasses.field(
default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , )
UpperCamelCase = dataclasses.field(
default=1_00 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , )
UpperCamelCase = dataclasses.field(
default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Random seed for initialization.'''} , )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
UpperCAmelCase_ = dataset.filter(lambda lowerCAmelCase__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
UpperCAmelCase_ = int(eval_result * len(lowerCAmelCase__ ) )
print(lowerCAmelCase__ )
UpperCAmelCase_ = dataset.sort("probability" , reverse=lowerCAmelCase__ )
UpperCAmelCase_ = dataset.select(range(lowerCAmelCase__ ) )
UpperCAmelCase_ = dataset.remove_columns(["label", "probability"] )
UpperCAmelCase_ = dataset.rename_column("prediction" , "label" )
UpperCAmelCase_ = dataset.map(lambda lowerCAmelCase__ : {"label": idalabel[example["label"]]} )
UpperCAmelCase_ = dataset.shuffle(seed=args.seed )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(lowerCAmelCase__ , index=lowerCAmelCase__ )
else:
dataset.to_json(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ):
UpperCAmelCase_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase_ = STModelArguments(model_name_or_path=lowerCAmelCase__ )
UpperCAmelCase_ = STDataArguments(train_file=lowerCAmelCase__ , infer_file=lowerCAmelCase__ )
UpperCAmelCase_ = STTrainingArguments(output_dir=lowerCAmelCase__ )
UpperCAmelCase_ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(lowerCAmelCase__ ).items():
setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
for key, value in kwargs.items():
if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ):
setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Sanity checks
UpperCAmelCase_ = {}
UpperCAmelCase_ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
UpperCAmelCase_ = args.train_file
UpperCAmelCase_ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
UpperCAmelCase_ = args.eval_file
for key in data_files:
UpperCAmelCase_ = data_files[key].split("." )[-1]
assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
UpperCAmelCase_ = extension
else:
assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("Creating the initial data directory for self-training..." )
UpperCAmelCase_ = f"""{args.output_dir}/self-train_iter-{{}}""".format
UpperCAmelCase_ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
accelerator.wait_for_everyone()
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = 0
UpperCAmelCase_ = False
# Show the progress bar
UpperCAmelCase_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
UpperCAmelCase_ = data_dir_format(lowerCAmelCase__ )
assert os.path.exists(lowerCAmelCase__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "stage-1" )
UpperCAmelCase_ = {
"accelerator": accelerator,
"model_name_or_path": args.model_name_or_path,
"cache_dir": args.cache_dir,
"do_train": True,
"train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"],
"do_eval": True if args.eval_file is not None else False,
"eval_file": data_files["eval"],
"do_predict": True,
"infer_file": data_files["infer"],
"task_name": args.task_name,
"label_list": args.label_list,
"output_dir": current_output_dir,
"eval_metric": args.eval_metric,
"evaluation_strategy": args.evaluation_strategy,
"early_stopping_patience": args.early_stopping_patience,
"early_stopping_threshold": args.early_stopping_threshold,
"seed": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ):
arguments_dict.update({key: value} )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "best-checkpoint" , lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ):
logger.info(
"Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , lowerCAmelCase__ , lowerCAmelCase__ , )
else:
logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , lowerCAmelCase__ )
finetune(**lowerCAmelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(lowerCAmelCase__ )
logger.info("Self-training job completed: iteration: %d, stage: 1." , lowerCAmelCase__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "best-checkpoint" )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "stage-2" )
# Update arguments_dict
UpperCAmelCase_ = model_path
UpperCAmelCase_ = data_files["train"]
UpperCAmelCase_ = current_output_dir
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "best-checkpoint" , lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ):
logger.info(
"Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , lowerCAmelCase__ , lowerCAmelCase__ , )
else:
logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , lowerCAmelCase__ )
finetune(**lowerCAmelCase__ )
accelerator.wait_for_everyone()
assert os.path.exists(lowerCAmelCase__ )
logger.info("Self-training job completed: iteration: %d, stage: 2." , lowerCAmelCase__ )
UpperCAmelCase_ = iteration
UpperCAmelCase_ = data_dir_format(iteration + 1 )
UpperCAmelCase_ = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase__ , "best-checkpoint" ) )
UpperCAmelCase_ = config.idalabel
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "eval_results_best-checkpoint.json" )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "test_results_best-checkpoint.json" )
assert os.path.exists(lowerCAmelCase__ )
with open(lowerCAmelCase__ , "r" ) as f:
UpperCAmelCase_ = float(json.load(lowerCAmelCase__ )[args.eval_metric] )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "infer_output_best-checkpoint.csv" )
assert os.path.exists(lowerCAmelCase__ )
# Loading the dataset from local csv or json files.
UpperCAmelCase_ = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"]
UpperCAmelCase_ = load_dataset("csv" , data_files={"data": infer_output_file} )["data"]
if accelerator.is_main_process:
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(lowerCAmelCase__ ):
shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
accelerator.wait_for_everyone()
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
UpperCAmelCase_ = eval_result
if best_iteration is None:
UpperCAmelCase_ = new_iteration
UpperCAmelCase_ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
UpperCAmelCase_ = new_iteration
UpperCAmelCase_ = new_eval_result
UpperCAmelCase_ = 0
else:
if new_eval_result == best_eval_result:
UpperCAmelCase_ = new_iteration
UpperCAmelCase_ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
UpperCAmelCase_ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("Best iteration: %d" , lowerCAmelCase__ )
logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(lowerCAmelCase__ , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(lowerCAmelCase__ , "eval_results_best-iteration.json" ) , )
else:
# Assume that the last iteration is the best
logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 )
logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(lowerCAmelCase__ , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(lowerCAmelCase__ , "eval_results_best-iteration.json" ) , )
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return []
UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ )
UpperCAmelCase_ = int(max_value - min_value ) + 1
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for i in my_list:
buckets[int(i - min_value )].append(lowerCAmelCase__ )
return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
# Load configuration defined in the metadata file
with open(lowerCAmelCase__ ) as metadata_file:
UpperCAmelCase_ = json.load(lowerCAmelCase__ )
UpperCAmelCase_ = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" )["module"]
# Load the entity vocab file
UpperCAmelCase_ = load_original_entity_vocab(lowerCAmelCase__ )
# add an entry for [MASK2]
UpperCAmelCase_ = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCAmelCase_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCAmelCase_ = AddedToken("<ent>" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ )
UpperCAmelCase_ = AddedToken("<ent2>" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowerCAmelCase__ )
with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json" ) , "r" ) as f:
UpperCAmelCase_ = json.load(lowerCAmelCase__ )
UpperCAmelCase_ = "MLukeTokenizer"
with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = MLukeTokenizer.from_pretrained(lowerCAmelCase__ )
# Initialize the embeddings of the special tokens
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(["@"] )[0]
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(["#"] )[0]
UpperCAmelCase_ = state_dict["embeddings.word_embeddings.weight"]
UpperCAmelCase_ = word_emb[ent_init_index].unsqueeze(0 )
UpperCAmelCase_ = word_emb[enta_init_index].unsqueeze(0 )
UpperCAmelCase_ = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCAmelCase_ = state_dict[bias_name]
UpperCAmelCase_ = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCAmelCase_ = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCAmelCase_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCAmelCase_ = f"""encoder.layer.{layer_index}.attention.self."""
UpperCAmelCase_ = state_dict[prefix + matrix_name]
UpperCAmelCase_ = state_dict[prefix + matrix_name]
UpperCAmelCase_ = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCAmelCase_ = state_dict["entity_embeddings.entity_embeddings.weight"]
UpperCAmelCase_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
UpperCAmelCase_ = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCAmelCase_ = state_dict["entity_predictions.bias"]
UpperCAmelCase_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
UpperCAmelCase_ = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCAmelCase_ = LukeForMaskedLM(config=lowerCAmelCase__ ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
UpperCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
UpperCAmelCase_ = state_dict[key]
else:
UpperCAmelCase_ = state_dict[key]
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowerCAmelCase__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCAmelCase_ = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task="entity_classification" )
UpperCAmelCase_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
UpperCAmelCase_ = (0, 9)
UpperCAmelCase_ = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCAmelCase_ = torch.Size((1, 33, 768) )
UpperCAmelCase_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCAmelCase_ = torch.Size((1, 1, 768) )
UpperCAmelCase_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCAmelCase_ = MLukeTokenizer.from_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = "Tokyo is the capital of <mask>."
UpperCAmelCase_ = (24, 30)
UpperCAmelCase_ = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
UpperCAmelCase_ = encoding["input_ids"][0].tolist()
UpperCAmelCase_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
UpperCAmelCase_ = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowerCAmelCase__ )
UpperCAmelCase_ = outputs.entity_logits[0][0].argmax().item()
UpperCAmelCase_ = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowerCAmelCase__ ) )
model.save_pretrained(lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = ["[MASK]", "[PAD]", "[UNK]"]
UpperCAmelCase_ = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )]
UpperCAmelCase_ = {}
for entry in data:
UpperCAmelCase_ = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCAmelCase_ = entity_id
break
UpperCAmelCase_ = f"""{language}:{entity_name}"""
UpperCAmelCase_ = entity_id
return new_mapping
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""")
parser.add_argument(
"""--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration."""
)
parser.add_argument(
"""--entity_vocab_path""",
default=None,
type=str,
help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model."""
)
parser.add_argument(
"""--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted."""
)
lowerCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import math
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 ):
UpperCAmelCase_ = end or len(lowerCAmelCase__ )
for i in range(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
UpperCAmelCase_ = array[temp_index - 1]
temp_index -= 1
UpperCAmelCase_ = temp_index_value
return array
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Max Heap
UpperCAmelCase_ = index
UpperCAmelCase_ = 2 * index + 1 # Left Node
UpperCAmelCase_ = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
UpperCAmelCase_ = left_index
if right_index < heap_size and array[largest] < array[right_index]:
UpperCAmelCase_ = right_index
if largest != index:
UpperCAmelCase_ , UpperCAmelCase_ = array[largest], array[index]
heapify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = len(lowerCAmelCase__ )
for i in range(n // 2 , -1 , -1 ):
heapify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
for i in range(n - 1 , 0 , -1 ):
UpperCAmelCase_ , UpperCAmelCase_ = array[0], array[i]
heapify(lowerCAmelCase__ , 0 , lowerCAmelCase__ )
return array
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = low
UpperCAmelCase_ = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
UpperCAmelCase_ , UpperCAmelCase_ = array[j], array[i]
i += 1
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return array
UpperCAmelCase_ = 2 * math.ceil(math.loga(len(lowerCAmelCase__ ) ) )
UpperCAmelCase_ = 16
return intro_sort(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowerCAmelCase__ )
max_depth -= 1
UpperCAmelCase_ = median_of_a(lowerCAmelCase__ , lowerCAmelCase__ , start + ((end - start) // 2) + 1 , end - 1 )
UpperCAmelCase_ = partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
intro_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = p
return insertion_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase = input("""Enter numbers separated by a comma : """).strip()
lowerCamelCase = [float(item) for item in user_input.split(""",""")]
print(sort(unsorted))
| 14 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowerCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = create_model(
"HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = r".*sequential.(\d+).*"
UpperCAmelCase_ = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase_ = 1 if projecton_layer == 0 else 2
UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase_ = value
UpperCAmelCase_ = mixed_qkv.size(0 ) // 3
UpperCAmelCase_ = mixed_qkv[:qkv_dim]
UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase_ = query_layer
UpperCAmelCase_ = key_layer
UpperCAmelCase_ = value_layer
else:
UpperCAmelCase_ = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase_ = clap_model.state_dict()
UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = ClapConfig()
UpperCAmelCase_ = enable_fusion
UpperCAmelCase_ = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowerCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 14 | 1 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def a__ ( ):
UpperCAmelCase_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=lowerCAmelCase__ )
UpperCAmelCase_ = parser.add_subparsers(help="accelerate command helpers" )
# Register commands
get_config_parser(subparsers=lowerCAmelCase__ )
env_command_parser(subparsers=lowerCAmelCase__ )
launch_command_parser(subparsers=lowerCAmelCase__ )
tpu_command_parser(subparsers=lowerCAmelCase__ )
test_command_parser(subparsers=lowerCAmelCase__ )
# Let's go
UpperCAmelCase_ = parser.parse_args()
if not hasattr(lowerCAmelCase__ , "func" ):
parser.print_help()
exit(1 )
# Run
args.func(lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 | 1 |
"""simple docstring"""
import heapq
import sys
import numpy as np
lowerCamelCase = tuple[int, int]
class lowercase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = []
UpperCAmelCase_ = set()
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float("inf" )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
return len(self.elements ) == 0
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(_UpperCAmelCase )
else:
# update
# print("update", item)
UpperCAmelCase_ = []
((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Dict ) -> Optional[Any]:
'''simple docstring'''
if item in self.set:
self.set.remove(_UpperCAmelCase )
UpperCAmelCase_ = []
((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
return self.elements[0][1]
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements )
self.set.remove(_UpperCAmelCase )
return (priority, item)
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# euclidean distance
UpperCAmelCase_ = np.array(lowerCAmelCase__ )
UpperCAmelCase_ = np.array(lowerCAmelCase__ )
return np.linalg.norm(a - b )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# integer division by time variable
return consistent_heuristic(lowerCAmelCase__ , lowerCAmelCase__ ) // t
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = g_function[start] + Wa * heuristics[i](lowerCAmelCase__ , lowerCAmelCase__ )
return ans
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = np.chararray((n, n) )
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
UpperCAmelCase_ = "*"
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
if (j, (n - 1) - i) in blocks:
UpperCAmelCase_ = "#"
UpperCAmelCase_ = "-"
UpperCAmelCase_ = back_pointer[goal]
while x != start:
((UpperCAmelCase_) , (UpperCAmelCase_)) = x
# print(x)
UpperCAmelCase_ = "-"
UpperCAmelCase_ = back_pointer[x]
UpperCAmelCase_ = "-"
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=" " )
print("<-- End position" , end=" " )
else:
print(grid[i][j] , end=" " )
print()
print("^" )
print("Start position" )
print()
print("# is an obstacle" )
print("- is the path taken by algorithm" )
print("PATH TAKEN BY THE ALGORITHM IS:-" )
UpperCAmelCase_ = back_pointer[goal]
while x != start:
print(lowerCAmelCase__ , end=" " )
UpperCAmelCase_ = back_pointer[x]
print(lowerCAmelCase__ )
sys.exit()
def a__ ( lowerCAmelCase__ ):
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
for itera in range(lowerCAmelCase__ ):
open_list[itera].remove_element(lowerCAmelCase__ )
# print("s", s)
# print("j", j)
((UpperCAmelCase_) , (UpperCAmelCase_)) = s
UpperCAmelCase_ = (x - 1, y)
UpperCAmelCase_ = (x + 1, y)
UpperCAmelCase_ = (x, y + 1)
UpperCAmelCase_ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(lowerCAmelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(lowerCAmelCase__ )
UpperCAmelCase_ = -1
UpperCAmelCase_ = float("inf" )
if valid(lowerCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1:
UpperCAmelCase_ = g_function[s] + 1
UpperCAmelCase_ = s
if neighbours not in close_list_anchor:
open_list[0].put(lowerCAmelCase__ , key(lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , lowerCAmelCase__ ):
if key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) <= Wa * key(
lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ):
open_list[j].put(
lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) )
def a__ ( ):
UpperCAmelCase_ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
lowerCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
lowerCamelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
lowerCamelCase = make_common_ground()
lowerCamelCase = blocks_blk
# hyper parameters
lowerCamelCase = 1
lowerCamelCase = 1
lowerCamelCase = 20
lowerCamelCase = 3 # one consistent and two other inconsistent
# start and end destination
lowerCamelCase = (0, 0)
lowerCamelCase = (n - 1, n - 1)
lowerCamelCase = 1
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = {start: 0, goal: float("inf" )}
UpperCAmelCase_ = {start: -1, goal: -1}
UpperCAmelCase_ = []
UpperCAmelCase_ = set()
for i in range(lowerCAmelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) )
UpperCAmelCase_ = []
UpperCAmelCase_ = []
while open_list[0].minkey() < float("inf" ):
for i in range(1 , lowerCAmelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("inf" ):
do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
else:
UpperCAmelCase_ , UpperCAmelCase_ = open_list[i].top_show()
visited.add(lowerCAmelCase__ )
expand_state(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
close_list_inad.append(lowerCAmelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("inf" ):
do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
else:
UpperCAmelCase_ = open_list[0].top_show()
visited.add(lowerCAmelCase__ )
expand_state(
lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
close_list_anchor.append(lowerCAmelCase__ )
print("No path found to goal" )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(lowerCAmelCase__ ):
if (j, i) in blocks:
print("#" , end=" " )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print("*" , end=" " )
else:
print("-" , end=" " )
else:
print("*" , end=" " )
if (j, i) == (n - 1, n - 1):
print("<-- End position" , end=" " )
print()
print("^" )
print("Start position" )
print()
print("# is an obstacle" )
print("- is the path taken by algorithm" )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 14 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 | 1 |
"""simple docstring"""
lowerCamelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"""
def a__ ( lowerCAmelCase__ ):
# Make sure the supplied data is a bytes-like object
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(lowerCAmelCase__ )
UpperCAmelCase_ = "".join(bin(lowerCAmelCase__ )[2:].zfill(8 ) for byte in data )
UpperCAmelCase_ = len(lowerCAmelCase__ ) % 6 != 0
if padding_needed:
# The padding that will be added later
UpperCAmelCase_ = b"=" * ((6 - len(lowerCAmelCase__ ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(lowerCAmelCase__ ) % 6)
else:
UpperCAmelCase_ = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(lowerCAmelCase__ ) , 6 ) ).encode()
+ padding
)
def a__ ( lowerCAmelCase__ ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = (
"argument should be a bytes-like object or ASCII string, "
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(lowerCAmelCase__ )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
try:
UpperCAmelCase_ = encoded_data.decode("utf-8" )
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters" )
UpperCAmelCase_ = encoded_data.count("=" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(lowerCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
UpperCAmelCase_ = encoded_data[:-padding]
UpperCAmelCase_ = "".join(
bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
UpperCAmelCase_ = "".join(
bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )
UpperCAmelCase_ = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(lowerCAmelCase__ ) , 8 )
]
return bytes(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 | 1 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {"""vocab_file""": """spiece.model"""}
lowerCamelCase = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
}
}
lowerCamelCase = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
# Segments (not really needed)
lowerCamelCase = 0
lowerCamelCase = 1
lowerCamelCase = 2
lowerCamelCase = 3
lowerCamelCase = 4
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = '''left'''
def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=False , _UpperCAmelCase : List[Any]="<s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : Union[str, Any]="<sep>" , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : Any="<cls>" , _UpperCAmelCase : str="<mask>" , _UpperCAmelCase : Dict=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ) -> None:
'''simple docstring'''
UpperCAmelCase_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase_ = 3
UpperCAmelCase_ = do_lower_case
UpperCAmelCase_ = remove_space
UpperCAmelCase_ = keep_accents
UpperCAmelCase_ = vocab_file
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
@property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return len(self.sp_model )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.__dict__.copy()
UpperCAmelCase_ = None
return state
def __setstate__( self : str , _UpperCAmelCase : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowercase__ ( self : int , _UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
if self.remove_space:
UpperCAmelCase_ = " ".join(inputs.strip().split() )
else:
UpperCAmelCase_ = inputs
UpperCAmelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
UpperCAmelCase_ = unicodedata.normalize("NFKD" , _UpperCAmelCase )
UpperCAmelCase_ = "".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase_ = outputs.lower()
return outputs
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase_ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase_ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase_ = cur_pieces[1:]
else:
UpperCAmelCase_ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def lowercase__ ( self : str , _UpperCAmelCase : Union[str, Any] ) -> int:
'''simple docstring'''
return self.sp_model.PieceToId(_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.IdToPiece(_UpperCAmelCase )
def lowercase__ ( self : str , _UpperCAmelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase , " " ).strip()
return out_string
def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[str] , ) -> str:
'''simple docstring'''
UpperCAmelCase_ = kwargs.pop("use_source_tokenizer" , _UpperCAmelCase )
UpperCAmelCase_ = self.convert_ids_to_tokens(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
UpperCAmelCase_ = []
UpperCAmelCase_ = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_UpperCAmelCase ) )
UpperCAmelCase_ = []
sub_texts.append(_UpperCAmelCase )
else:
current_sub_text.append(_UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
UpperCAmelCase_ = "".join(_UpperCAmelCase )
UpperCAmelCase_ = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
UpperCAmelCase_ = self.clean_up_tokenization(_UpperCAmelCase )
return clean_text
else:
return text
def lowercase__ ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase__ ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def lowercase__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase_ = [self.sep_token_id]
UpperCAmelCase_ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , "wb" ) as fi:
UpperCAmelCase_ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
| 14 |
"""simple docstring"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_text_model'''
def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_vision_model'''
def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = return_dict
UpperCAmelCase_ = 1.0
@classmethod
def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = text_config
UpperCAmelCase_ = vision_config
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-4
def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return 14
| 14 | 1 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
lowerCamelCase = datasets.logging.get_logger(__name__)
lowerCamelCase = """\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",
author = \"Moosavi, Nafise Sadat and
Strube, Michael\",
booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",
month = aug,
year = \"2016\",
address = \"Berlin, Germany\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/P16-1060\",
doi = \"10.18653/v1/P16-1060\",
pages = \"632--642\",
}
"""
lowerCamelCase = """\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
"""
lowerCamelCase = """
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting 'keep_singletons=False', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
'mentions': mentions
'muc': MUC metric [Vilain et al, 1995]
'bcub': B-cubed [Bagga and Baldwin, 1998]
'ceafe': CEAFe [Luo et al., 2005]
'lea': LEA [Moosavi and Strube, 2016]
'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric('coval')
>>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',
... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',
... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',
... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',
... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',
... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{'mentions/recall': 1.0,[...] 'conll_score': 100.0}
"""
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="dummy_doc" ):
UpperCAmelCase_ = {doc: key_lines}
UpperCAmelCase_ = {doc: sys_lines}
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ , UpperCAmelCase_ = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ )
key_singletons_num += singletons_num
if NP_only or min_span:
UpperCAmelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ )
sys_singletons_num += singletons_num
if NP_only or min_span:
UpperCAmelCase_ = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ )
if remove_nested:
UpperCAmelCase_ , UpperCAmelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
UpperCAmelCase_ , UpperCAmelCase_ = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
UpperCAmelCase_ = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
"Number of removed nested coreferring mentions in the key "
f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" )
logger.info(
"Number of resulting singleton clusters in the key "
f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" )
if not keep_singletons:
logger.info(
f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """
"files, respectively" )
return doc_coref_infos
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
for name, metric in metrics:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} )
logger.info(
name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , )
if conll_subparts_num == 3:
UpperCAmelCase_ = (conll / 3) * 100
logger.info(f"""CoNLL score: {conll:.2f}""" )
output_scores.update({"conll_score": conll} )
return output_scores
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = False
for line in key_lines:
if not line.startswith("#" ):
if len(line.split() ) > 6:
UpperCAmelCase_ = line.split()[5]
if not parse_col == "-":
UpperCAmelCase_ = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" ) ),
"references": datasets.Sequence(datasets.Value("string" ) ),
} ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[
"https://github.com/ns-moosavi/coval",
"https://www.aclweb.org/anthology/P16-1060",
"http://www.conll.cemantix.org/2012/data.html",
] , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Dict=False ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = [
("mentions", evaluator.mentions),
("muc", evaluator.muc),
("bcub", evaluator.b_cubed),
("ceafe", evaluator.ceafe),
("lea", evaluator.lea),
]
if min_span:
UpperCAmelCase_ = util.check_gold_parse_annotation(_UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError("References should have gold parse annotation to use 'min_span'." )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
UpperCAmelCase_ = evaluate(
key_lines=_UpperCAmelCase , sys_lines=_UpperCAmelCase , metrics=_UpperCAmelCase , NP_only=_UpperCAmelCase , remove_nested=_UpperCAmelCase , keep_singletons=_UpperCAmelCase , min_span=_UpperCAmelCase , )
return score
| 14 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = XLMProphetNetTokenizer
UpperCamelCase = False
UpperCamelCase = True
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "[PAD]"
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "[PAD]" )
self.assertEqual(vocab_keys[1] , "[CLS]" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(_UpperCAmelCase ) , 1012 )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"[UNK]",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"[UNK]",
".",
] , )
@cached_property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" )
@slow
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = [35389, 6672, 49, 2]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
| 14 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase_ = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ = make_batched(_UpperCAmelCase )
UpperCAmelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase_ = {"pixel_values": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
UpperCAmelCase_ = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ = int(shortest_edge / crop_pct )
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
UpperCAmelCase_ = precision
UpperCAmelCase_ = ceil(precision / 14 )
UpperCAmelCase_ = 426880 * Decimal(10005 ).sqrt()
UpperCAmelCase_ = 1
UpperCAmelCase_ = 13591409
UpperCAmelCase_ = Decimal(lowerCAmelCase__ )
for k in range(1 , lowerCAmelCase__ ):
UpperCAmelCase_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
lowerCamelCase = 50
print(F"The first {n} digits of pi is: {pi(n)}")
| 14 |
"""simple docstring"""
import string
def a__ ( lowerCAmelCase__ ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase_ = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ )
UpperCAmelCase_ = num - key
if num < 0:
UpperCAmelCase_ = num + len(string.ascii_uppercase )
UpperCAmelCase_ = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def a__ ( ):
UpperCAmelCase_ = input("Encrypted message: " )
UpperCAmelCase_ = message.upper()
decrypt(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
"""simple docstring"""
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : str = None , _UpperCAmelCase : uuid.UUID = None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Tuple=None ) -> Tuple:
'''simple docstring'''
if not conversation_id:
UpperCAmelCase_ = uuid.uuida()
if past_user_inputs is None:
UpperCAmelCase_ = []
if generated_responses is None:
UpperCAmelCase_ = []
UpperCAmelCase_ = conversation_id
UpperCAmelCase_ = past_user_inputs
UpperCAmelCase_ = generated_responses
UpperCAmelCase_ = text
def __eq__( self : Any , _UpperCAmelCase : int ) -> Union[str, Any]:
'''simple docstring'''
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> int:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
F"""with: \"{text}\".""" )
UpperCAmelCase_ = text
else:
logger.warning(
F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
UpperCAmelCase_ = text
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
UpperCAmelCase_ = None
def lowercase__ ( self : str , _UpperCAmelCase : str ) -> Dict:
'''simple docstring'''
self.generated_responses.append(_UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = F"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
UpperCAmelCase_ = "user" if is_user else "bot"
output += F"""{name} >> {text} \n"""
return output
@add_end_docstrings(
SCREAMING_SNAKE_CASE , R'''
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
''' , )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
UpperCAmelCase_ = self.tokenizer.eos_token
def lowercase__ ( self : str , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = {}
UpperCAmelCase_ = {}
if min_length_for_response is not None:
UpperCAmelCase_ = min_length_for_response
if minimum_tokens is not None:
UpperCAmelCase_ = minimum_tokens
if "max_length" in generate_kwargs:
UpperCAmelCase_ = generate_kwargs["max_length"]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
UpperCAmelCase_ = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(_UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__( self : Union[str, Any] , _UpperCAmelCase : Union[Conversation, List[Conversation]] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : Union[str, Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = super().__call__(_UpperCAmelCase , num_workers=_UpperCAmelCase , **_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase__ ( self : Tuple , _UpperCAmelCase : Conversation , _UpperCAmelCase : str=32 ) -> Dict[str, Any]:
'''simple docstring'''
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError("ConversationalPipeline, expects Conversation as inputs" )
if conversation.new_user_input is None:
raise ValueError(
F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"Add user inputs with the conversation's `add_user_input` method" )
if hasattr(self.tokenizer , "_build_conversation_input_ids" ):
UpperCAmelCase_ = self.tokenizer._build_conversation_input_ids(_UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
UpperCAmelCase_ = self._legacy_parse_and_tokenize(_UpperCAmelCase )
if self.framework == "pt":
UpperCAmelCase_ = torch.LongTensor([input_ids] )
elif self.framework == "tf":
UpperCAmelCase_ = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=10 , **_UpperCAmelCase : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = generate_kwargs.get("max_length" , self.model.config.max_length )
UpperCAmelCase_ = model_inputs["input_ids"].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
UpperCAmelCase_ = max_length - minimum_tokens
UpperCAmelCase_ = model_inputs["input_ids"][:, -trim:]
if "attention_mask" in model_inputs:
UpperCAmelCase_ = model_inputs["attention_mask"][:, -trim:]
UpperCAmelCase_ = model_inputs.pop("conversation" )
UpperCAmelCase_ = max_length
UpperCAmelCase_ = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase )
if self.model.config.is_encoder_decoder:
UpperCAmelCase_ = 1
else:
UpperCAmelCase_ = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=True ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = model_outputs["output_ids"]
UpperCAmelCase_ = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , )
UpperCAmelCase_ = model_outputs["conversation"]
conversation.mark_processed()
conversation.append_response(_UpperCAmelCase )
return conversation
def lowercase__ ( self : Tuple , _UpperCAmelCase : Conversation ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.eos_token_id
UpperCAmelCase_ = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) )
if len(_UpperCAmelCase ) > self.tokenizer.model_max_length:
UpperCAmelCase_ = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 14 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) )
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 )
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = output_stride
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
UpperCAmelCase_ = width_multiplier
UpperCAmelCase_ = ffn_dropout
UpperCAmelCase_ = attn_dropout
def lowercase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModelTester(self )
UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCAmelCase_ = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits
# verify the logits
UpperCAmelCase_ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits.detach().cpu()
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
UpperCAmelCase_ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = []
UpperCAmelCase_ = 0
UpperCAmelCase_ = sum(lowerCAmelCase__ )
create_state_space_tree(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return result
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
if sum(lowerCAmelCase__ ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase__ )) < max_sum:
return
if sum(lowerCAmelCase__ ) == max_sum:
result.append(lowerCAmelCase__ )
return
for index in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ):
create_state_space_tree(
lowerCAmelCase__ , lowerCAmelCase__ , index + 1 , [*path, nums[index]] , lowerCAmelCase__ , remaining_nums_sum - nums[index] , )
lowerCamelCase = [3, 34, 4, 12, 5, 2]
lowerCamelCase = 9
lowerCamelCase = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ = result + left + right
return input_list
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) <= 1:
return input_list
UpperCAmelCase_ = list(lowerCAmelCase__ )
# iteration for two-way merging
UpperCAmelCase_ = 2
while p <= len(lowerCAmelCase__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = i + p - 1
UpperCAmelCase_ = (low + high + 1) // 2
UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# final merge of last two parts
if p * 2 >= len(lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase = []
else:
lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
lowerCamelCase = {
"""config""": [
"""EXTERNAL_DATA_FORMAT_SIZE_LIMIT""",
"""OnnxConfig""",
"""OnnxConfigWithPast""",
"""OnnxSeq2SeqConfigWithPast""",
"""PatchingSpec""",
],
"""convert""": ["""export""", """validate_model_outputs"""],
"""features""": ["""FeaturesManager"""],
"""utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
lowerCamelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355_818,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase_ = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not all(x.isalpha() for x in string ):
raise ValueError("String must only contain alphabetic characters." )
UpperCAmelCase_ = sorted(string.lower() )
return len(lowerCAmelCase__ ) == len(set(lowerCAmelCase__ ) )
if __name__ == "__main__":
lowerCamelCase = input("""Enter a string """).strip()
lowerCamelCase = is_isogram(input_str)
print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase_ = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ = make_batched(_UpperCAmelCase )
UpperCAmelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase_ = {"pixel_values": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
UpperCAmelCase_ = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[Any] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(self.unet.config.sample_size , _UpperCAmelCase ):
UpperCAmelCase_ = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
UpperCAmelCase_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCAmelCase_ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCAmelCase_ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
UpperCAmelCase_ = self.scheduler.step(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , eta=_UpperCAmelCase , use_clipped_model_output=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample
UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase_ = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 14 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
UpperCAmelCase_ = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]]
UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0]
UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
UpperCAmelCase_ = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
UpperCAmelCase_ = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
UpperCAmelCase_ = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
UpperCAmelCase_ = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 14 | 1 |
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = JukeboxTokenizer
UpperCamelCase = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
import torch
UpperCAmelCase_ = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
UpperCAmelCase_ = tokenizer(**self.metas )["input_ids"]
# fmt: off
UpperCAmelCase_ = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
import torch
UpperCAmelCase_ = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
UpperCAmelCase_ = tokenizer(**self.metas )["input_ids"]
# fmt: off
UpperCAmelCase_ = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 14 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
UpperCAmelCase_ , UpperCAmelCase_ = grid.shape
UpperCAmelCase_ = [-1, 1, 0, 0]
UpperCAmelCase_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set()
UpperCAmelCase_ = np.full((rows, cols) , np.inf )
UpperCAmelCase_ = 0
UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = None
while queue:
((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase_ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase_ = dist + 1
UpperCAmelCase_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
lowerCamelCase = """__DUMMY_TRANSFORMERS_USER__"""
lowerCamelCase = """Dummy User"""
lowerCamelCase = """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"""
lowerCamelCase = """https://hub-ci.huggingface.co"""
lowerCamelCase = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}"""
lowerCamelCase = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}"""
lowerCamelCase = Path("""~/.huggingface/hub_ci_token""").expanduser()
@pytest.fixture
def a__ ( lowerCAmelCase__ ):
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCAmelCase__ )
@pytest.fixture
def a__ ( lowerCAmelCase__ ):
monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCAmelCase__ )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCAmelCase__ )
@pytest.fixture
def a__ ( lowerCAmelCase__ ):
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCAmelCase__ )
@pytest.fixture
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
HfFolder.save_token(lowerCAmelCase__ )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def a__ ( ):
return HfApi(endpoint=lowerCAmelCase__ )
@pytest.fixture(scope="session" )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = HfFolder.get_token()
HfFolder.save_token(lowerCAmelCase__ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(lowerCAmelCase__ )
@pytest.fixture
def a__ ( lowerCAmelCase__ ):
def _cleanup_repo(lowerCAmelCase__ ):
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def a__ ( lowerCAmelCase__ ):
@contextmanager
def _temporary_repo(lowerCAmelCase__ ):
try:
yield repo_id
finally:
cleanup_repo(lowerCAmelCase__ )
return _temporary_repo
@pytest.fixture(scope="session" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = f"""repo_txt_data-{int(time.time() * 10e3 )}"""
UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__ )
hf_api.upload_file(
token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCAmelCase__ , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = f"""repo_zipped_txt_data-{int(time.time() * 10e3 )}"""
UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__ )
hf_api.upload_file(
token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase__ , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = f"""repo_zipped_img_data-{int(time.time() * 10e3 )}"""
UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__ )
hf_api.upload_file(
token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase__ , repo_type="dataset" , )
yield repo_id
try:
hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return hf_private_dataset_repo_zipped_img_data_
| 14 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = x
UpperCAmelCase_ = y
for step in range(lowerCAmelCase__ ): # noqa: B007
UpperCAmelCase_ = a * a - b * b + x
UpperCAmelCase_ = 2 * a * b + y
UpperCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) )
def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(lowerCAmelCase__ ):
for image_y in range(lowerCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase_ = figure_width / image_width * image_height
UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ )
else:
UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = []
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
self.events.append("on_init_end" )
def lowercase__ ( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
self.events.append("on_train_begin" )
def lowercase__ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ) -> Any:
'''simple docstring'''
self.events.append("on_train_end" )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
'''simple docstring'''
self.events.append("on_epoch_begin" )
def lowercase__ ( self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , **_UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
self.events.append("on_epoch_end" )
def lowercase__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , **_UpperCAmelCase : Tuple ) -> Optional[Any]:
'''simple docstring'''
self.events.append("on_step_begin" )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : int ) -> Tuple:
'''simple docstring'''
self.events.append("on_step_end" )
def lowercase__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : str ) -> Any:
'''simple docstring'''
self.events.append("on_evaluate" )
def lowercase__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
self.events.append("on_predict" )
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Any ) -> List[Any]:
'''simple docstring'''
self.events.append("on_save" )
def lowercase__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : str ) -> List[str]:
'''simple docstring'''
self.events.append("on_log" )
def lowercase__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , **_UpperCAmelCase : Any ) -> Optional[int]:
'''simple docstring'''
self.events.append("on_prediction_step" )
@require_torch
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
def lowercase__ ( self : List[str] ) -> str:
'''simple docstring'''
shutil.rmtree(self.output_dir )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str=0 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Dict=64 , _UpperCAmelCase : str=None , _UpperCAmelCase : Dict=False , **_UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = RegressionDataset(length=_UpperCAmelCase )
UpperCAmelCase_ = RegressionDataset(length=_UpperCAmelCase )
UpperCAmelCase_ = RegressionModelConfig(a=_UpperCAmelCase , b=_UpperCAmelCase )
UpperCAmelCase_ = RegressionPreTrainedModel(_UpperCAmelCase )
UpperCAmelCase_ = TrainingArguments(self.output_dir , disable_tqdm=_UpperCAmelCase , report_to=[] , **_UpperCAmelCase )
return Trainer(
_UpperCAmelCase , _UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , callbacks=_UpperCAmelCase , )
def lowercase__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
# Order doesn't matter
UpperCAmelCase_ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : cb.__name__ if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cb.__class__.__name__ )
UpperCAmelCase_ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : cb.__name__ if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cb.__class__.__name__ )
for cba, cba in zip(_UpperCAmelCase , _UpperCAmelCase ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(_UpperCAmelCase , cba.__class__ )
elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(cba.__class__ , _UpperCAmelCase )
else:
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Dict ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = ["on_init_end", "on_train_begin"]
UpperCAmelCase_ = 0
UpperCAmelCase_ = len(trainer.get_eval_dataloader() )
UpperCAmelCase_ = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("on_epoch_begin" )
for _ in range(_UpperCAmelCase ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("on_log" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("on_save" )
expected_events.append("on_epoch_end" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
# Callbacks passed at init are added to the default callbacks
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
UpperCAmelCase_ = self.get_trainer(disable_tqdm=_UpperCAmelCase )
UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
UpperCAmelCase_ = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(_UpperCAmelCase )
expected_callbacks.remove(_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = trainer.pop_callback(_UpperCAmelCase )
self.assertEqual(cb.__class__ , _UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
trainer.add_callback(_UpperCAmelCase )
expected_callbacks.insert(0 , _UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
# We can also add, pop, or remove by instance
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = trainer.callback_handler.callbacks[0]
trainer.remove_callback(_UpperCAmelCase )
expected_callbacks.remove(_UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = trainer.callback_handler.callbacks[0]
UpperCAmelCase_ = trainer.pop_callback(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
trainer.add_callback(_UpperCAmelCase )
expected_callbacks.insert(0 , _UpperCAmelCase )
self.check_callbacks_equality(trainer.callback_handler.callbacks , _UpperCAmelCase )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="ignore" , category=_UpperCAmelCase )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase , self.get_expected_events(_UpperCAmelCase ) )
# Independent log/save/eval
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase , self.get_expected_events(_UpperCAmelCase ) )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase , self.get_expected_events(_UpperCAmelCase ) )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase , self.get_expected_events(_UpperCAmelCase ) )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase , self.get_expected_events(_UpperCAmelCase ) )
# A bit of everything
UpperCAmelCase_ = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(_UpperCAmelCase , self.get_expected_events(_UpperCAmelCase ) )
# warning should be emitted for duplicated callbacks
with patch("transformers.trainer_callback.logger.warning" ) as warn_mock:
UpperCAmelCase_ = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(_UpperCAmelCase ) in warn_mock.call_args[0][0]
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Swinv2ForImageClassification""",
"""Swinv2ForMaskedImageModeling""",
"""Swinv2Model""",
"""Swinv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = KandinskyVaaInpaintPipeline
UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
UpperCamelCase = [
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
UpperCamelCase = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
UpperCamelCase = False
@property
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return 32
@property
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
return 32
@property
def lowercase__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
return self.time_input_dim
@property
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
return 100
@property
def lowercase__ ( self : Any ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase_ = UNetaDConditionModel(**_UpperCAmelCase )
return model
@property
def lowercase__ ( self : Optional[int] ) -> str:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.dummy_unet
UpperCAmelCase_ = self.dummy_movq
UpperCAmelCase_ = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_UpperCAmelCase , )
UpperCAmelCase_ = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=0 ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_UpperCAmelCase )
# create init_image
UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((256, 256) )
# create mask
UpperCAmelCase_ = np.ones((64, 64) , dtype=np.floataa )
UpperCAmelCase_ = 0
if str(_UpperCAmelCase ).startswith("mps" ):
UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCAmelCase_ = {
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = "cpu"
UpperCAmelCase_ = self.get_dummy_components()
UpperCAmelCase_ = self.pipeline_class(**_UpperCAmelCase )
UpperCAmelCase_ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
UpperCAmelCase_ = output.images
UpperCAmelCase_ = pipe(
**self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0]
UpperCAmelCase_ = image[0, -3:, -3:, -1]
UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
print(F"""image.shape {image.shape}""" )
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def lowercase__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase_ = np.ones((768, 768) , dtype=np.floataa )
UpperCAmelCase_ = 0
UpperCAmelCase_ = "a hat"
UpperCAmelCase_ = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_UpperCAmelCase )
UpperCAmelCase_ = KandinskyVaaInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase_ = pipeline.to(_UpperCAmelCase )
pipeline.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ = pipe_prior(
_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase_ = pipeline(
image=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , )
UpperCAmelCase_ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 14 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase_ = []
for num in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase_ = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def a__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 14 | 1 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''SpeechT5FeatureExtractor'''
UpperCamelCase = '''SpeechT5Tokenizer'''
def __init__( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> Dict:
'''simple docstring'''
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Any , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = kwargs.pop("audio" , _UpperCAmelCase )
UpperCAmelCase_ = kwargs.pop("text" , _UpperCAmelCase )
UpperCAmelCase_ = kwargs.pop("text_target" , _UpperCAmelCase )
UpperCAmelCase_ = kwargs.pop("audio_target" , _UpperCAmelCase )
UpperCAmelCase_ = kwargs.pop("sampling_rate" , _UpperCAmelCase )
if audio is not None and text is not None:
raise ValueError(
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" )
if audio_target is not None and text_target is not None:
raise ValueError(
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." )
if audio is not None:
UpperCAmelCase_ = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase )
elif text is not None:
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase )
else:
UpperCAmelCase_ = None
if audio_target is not None:
UpperCAmelCase_ = self.feature_extractor(audio_target=_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = targets["input_values"]
elif text_target is not None:
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = targets["input_ids"]
else:
UpperCAmelCase_ = None
if inputs is None:
return targets
if targets is not None:
UpperCAmelCase_ = labels
UpperCAmelCase_ = targets.get("attention_mask" )
if decoder_attention_mask is not None:
UpperCAmelCase_ = decoder_attention_mask
return inputs
def lowercase__ ( self : int , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : int ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = kwargs.pop("input_values" , _UpperCAmelCase )
UpperCAmelCase_ = kwargs.pop("input_ids" , _UpperCAmelCase )
UpperCAmelCase_ = kwargs.pop("labels" , _UpperCAmelCase )
if input_values is not None and input_ids is not None:
raise ValueError("Cannot process both `input_values` and `input_ids` inputs." )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." )
if input_values is not None:
UpperCAmelCase_ = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif input_ids is not None:
UpperCAmelCase_ = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase )
else:
UpperCAmelCase_ = None
if labels is not None:
if "input_ids" in labels or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and "input_ids" in labels[0]):
UpperCAmelCase_ = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = targets["input_ids"]
else:
UpperCAmelCase_ = self.feature_extractor.feature_size
UpperCAmelCase_ = self.feature_extractor.num_mel_bins
UpperCAmelCase_ = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = feature_size_hack
UpperCAmelCase_ = targets["input_values"]
else:
UpperCAmelCase_ = None
if inputs is None:
return targets
if targets is not None:
UpperCAmelCase_ = labels
UpperCAmelCase_ = targets.get("attention_mask" )
if decoder_attention_mask is not None:
UpperCAmelCase_ = decoder_attention_mask
return inputs
def lowercase__ ( self : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : Any ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ) -> List[str]:
'''simple docstring'''
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''convbert'''
def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = head_ratio
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = num_groups
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if height >= 1:
move_tower(height - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
move_disk(lowerCAmelCase__ , lowerCAmelCase__ )
move_tower(height - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
print("moving disk from" , lowerCAmelCase__ , "to" , lowerCAmelCase__ )
def a__ ( ):
UpperCAmelCase_ = int(input("Height of hanoi: " ).strip() )
move_tower(lowerCAmelCase__ , "A" , "B" , "C" )
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 | 1 |
"""simple docstring"""
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=7 ):
UpperCAmelCase_ = None
if token is not None:
UpperCAmelCase_ = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""}
# The id of a workflow (not of a workflow run)
UpperCAmelCase_ = "636036"
UpperCAmelCase_ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"""
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"""
UpperCAmelCase_ = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json()
return result["workflow_runs"]
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = get_daily_ci_runs(lowerCAmelCase__ )
UpperCAmelCase_ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
UpperCAmelCase_ = workflow_run["id"]
break
return workflow_run_id
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = get_last_daily_ci_runs(lowerCAmelCase__ )
if workflow_run_id is not None:
UpperCAmelCase_ = get_artifacts_links(worflow_run_id=lowerCAmelCase__ , token=lowerCAmelCase__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
UpperCAmelCase_ = artifacts_links[artifact_name]
download_artifact(
artifact_name=lowerCAmelCase__ , artifact_url=lowerCAmelCase__ , output_dir=lowerCAmelCase__ , token=lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
get_last_daily_ci_artifacts(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = {}
for artifact_name in artifact_names:
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""{artifact_name}.zip""" )
if os.path.isfile(lowerCAmelCase__ ):
UpperCAmelCase_ = {}
with zipfile.ZipFile(lowerCAmelCase__ ) as z:
for filename in z.namelist():
if not os.path.isdir(lowerCAmelCase__ ):
# read the file
with z.open(lowerCAmelCase__ ) as f:
UpperCAmelCase_ = f.read().decode("UTF-8" )
return results
| 14 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''llama'''
UpperCamelCase = ['''past_key_values''']
def __init__( self : str , _UpperCAmelCase : Dict=32000 , _UpperCAmelCase : Any=4096 , _UpperCAmelCase : Optional[int]=11008 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict="silu" , _UpperCAmelCase : List[str]=2048 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Any=1e-6 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_key_value_heads
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = rms_norm_eps
UpperCAmelCase_ = pretraining_tp
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
F"""got {self.rope_scaling}""" )
UpperCAmelCase_ = self.rope_scaling.get("type" , _UpperCAmelCase )
UpperCAmelCase_ = self.rope_scaling.get("factor" , _UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return []
UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ )
UpperCAmelCase_ = int(max_value - min_value ) + 1
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for i in my_list:
buckets[int(i - min_value )].append(lowerCAmelCase__ )
return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 14 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "tf_padding" ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "depth_multiplier" ) )
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int=13 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=1024 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : int="relu6" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Tuple=None , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = int(last_hidden_size * depth_multiplier )
UpperCAmelCase_ = output_stride
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = MobileNetVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileNetVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
UpperCamelCase = (
{'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileNetVaModelTester(self )
UpperCAmelCase_ = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
pass
def lowercase__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 26
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MobileNetVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1001) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_informer""": [
"""INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""InformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""InformerForPrediction""",
"""InformerModel""",
"""InformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowerCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = create_model(
"HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = r".*sequential.(\d+).*"
UpperCAmelCase_ = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase_ = 1 if projecton_layer == 0 else 2
UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase_ = value
UpperCAmelCase_ = mixed_qkv.size(0 ) // 3
UpperCAmelCase_ = mixed_qkv[:qkv_dim]
UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase_ = query_layer
UpperCAmelCase_ = key_layer
UpperCAmelCase_ = value_layer
else:
UpperCAmelCase_ = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase_ = clap_model.state_dict()
UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = ClapConfig()
UpperCAmelCase_ = enable_fusion
UpperCAmelCase_ = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowerCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 14 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""",
"""uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""",
"""uclanlp/visualbert-vqa-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json"""
),
"""uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""",
"""uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""",
"""uclanlp/visualbert-vcr-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json"""
),
"""uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""",
"""uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""",
"""uclanlp/visualbert-nlvr2-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json"""
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''visual_bert'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple=30522 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Optional[int]=2 , **_UpperCAmelCase : Optional[int] , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = visual_embedding_dim
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = bypass_transformer
UpperCAmelCase_ = special_visual_initialize
| 14 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Union[str, Any] , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"height": 384, "width": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCAmelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCAmelCase_ = do_convert_rgb
def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
UpperCAmelCase_ = (size["height"], size["width"])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> Union[str, Any]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCAmelCase_ = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = BatchFeature(data={"pixel_values": images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 14 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""",
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''vit_msn'''
def __init__( self : int , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Tuple=1e-06 , _UpperCAmelCase : int=224 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : List[Any] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = qkv_bias
| 14 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.