code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __a ( _snake_case ): def __init__( self : List[str] ,lowerCamelCase : VQModel ,lowerCamelCase : UNetaDModel ,lowerCamelCase : DDIMScheduler ): '''simple docstring''' super().__init__() self.register_modules(vqvae=__A ,unet=__A ,scheduler=__A ) @torch.no_grad() def __call__( self : Optional[Any] ,lowerCamelCase : int = 1 ,lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowerCamelCase : float = 0.0 ,lowerCamelCase : int = 50 ,lowerCamelCase : Optional[str] = "pil" ,lowerCamelCase : bool = True ,**lowerCamelCase : int ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) ,generator=__A ,) __SCREAMING_SNAKE_CASE = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__A ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature __SCREAMING_SNAKE_CASE = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE = {} if accepts_eta: __SCREAMING_SNAKE_CASE = eta for t in self.progress_bar(self.scheduler.timesteps ): __SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(__A ,__A ) # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(__A ,__A ).sample # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(__A ,__A ,__A ,**__A ).prev_sample # decode the image latents with the VAE __SCREAMING_SNAKE_CASE = self.vqvae.decode(__A ).sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 ,1 ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : List[str] ,lowerCamelCase : int ,lowerCamelCase : Tuple=13 ,lowerCamelCase : int=32 ,lowerCamelCase : Optional[Any]=3 ,lowerCamelCase : int=4 ,lowerCamelCase : Tuple=[10, 20, 30, 40] ,lowerCamelCase : List[str]=[2, 2, 3, 2] ,lowerCamelCase : Tuple=True ,lowerCamelCase : List[Any]=True ,lowerCamelCase : Any=37 ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : str=10 ,lowerCamelCase : Optional[int]=0.02 ,lowerCamelCase : Optional[int]=["stage2", "stage3", "stage4"] ,lowerCamelCase : Optional[Any]=[2, 3, 4] ,lowerCamelCase : List[Any]=None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_stages __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_lowercase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[str] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ConvNextVaModel(config=_lowercase ) model.to(_lowercase ) model.eval() __SCREAMING_SNAKE_CASE = model(_lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Dict ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ConvNextVaForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() __SCREAMING_SNAKE_CASE = model(_lowercase ,labels=_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ,lowerCamelCase : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ConvNextVaBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __SCREAMING_SNAKE_CASE = model(_lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = ConvNextVaBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __SCREAMING_SNAKE_CASE = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __a ( __snake_case, __snake_case, unittest.TestCase ): __UpperCamelCase : Any = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCamelCase : int = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Any = False __UpperCamelCase : Dict = False __UpperCamelCase : str = False __UpperCamelCase : str = False __UpperCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ConvNextVaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=_lowercase ,has_text_modality=_lowercase ,hidden_size=37 ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_with_labels() __SCREAMING_SNAKE_CASE = True if model_class.__name__ in [ *get_values(_lowercase ), *get_values(_lowercase ), ]: continue __SCREAMING_SNAKE_CASE = model_class(_lowercase ) model.to(_lowercase ) model.train() __SCREAMING_SNAKE_CASE = self._prepare_for_class(_lowercase ,_lowercase ,return_labels=_lowercase ) __SCREAMING_SNAKE_CASE = model(**_lowercase ).loss loss.backward() def UpperCAmelCase__ ( self : Any ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_with_labels() __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True if ( model_class.__name__ in [*get_values(_lowercase ), *get_values(_lowercase )] or not model_class.supports_gradient_checkpointing ): continue __SCREAMING_SNAKE_CASE = model_class(_lowercase ) model.to(_lowercase ) model.gradient_checkpointing_enable() model.train() __SCREAMING_SNAKE_CASE = self._prepare_for_class(_lowercase ,_lowercase ,return_labels=_lowercase ) __SCREAMING_SNAKE_CASE = model(**_lowercase ).loss loss.backward() def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(_lowercase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowercase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Optional[int] ): __SCREAMING_SNAKE_CASE = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_lowercase ,_lowercase ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(_lowercase ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(_lowercase ,_lowercase ,_lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(_lowercase ,_lowercase ,_lowercase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = ConvNextVaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(_lowercase ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = preprocessor(images=_lowercase ,return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**_lowercase ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_lowercase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowercase ,atol=1E-4 ) )
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self : int ,lowerCamelCase : Dict ,lowerCamelCase : List[Any]=7 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=30 ,lowerCamelCase : Dict=400 ,lowerCamelCase : List[str]=True ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]=0.9 ,lowerCamelCase : Any=None ,lowerCamelCase : Union[str, Any]=True ,lowerCamelCase : Any=[0.5, 0.5, 0.5] ,lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 30} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize_and_center_crop __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = crop_pct __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Tuple = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ ,"""do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(A__ ,"""size""" ) ) self.assertTrue(hasattr(A__ ,"""crop_pct""" ) ) self.assertTrue(hasattr(A__ ,"""do_normalize""" ) ) self.assertTrue(hasattr(A__ ,"""image_mean""" ) ) self.assertTrue(hasattr(A__ ,"""image_std""" ) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size ,{"""height""": 30, """width""": 30} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(A__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A__ ,numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(A__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A__ ,torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(A__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __a ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] ): '''simple docstring''' self.test() def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = False while not completed: if counter == 1: self.reset() __SCREAMING_SNAKE_CASE = self.advance() if not self.does_advance(_a ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.update(_a ) counter += 1 if counter > 1_0000: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def UpperCAmelCase__ ( self : Any ): '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ): '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase__ ( self : Any ): '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Dict=False ): '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __a ( __SCREAMING_SNAKE_CASE ): def __init__( self : str ,lowerCamelCase : List[str] ): '''simple docstring''' super(_a ,self ).__init__() if not isinstance(_a ,_a ) or len(_a ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_a ,_a ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) __SCREAMING_SNAKE_CASE = token_ids __SCREAMING_SNAKE_CASE = len(self.token_ids ) __SCREAMING_SNAKE_CASE = -1 # the index of the currently fulfilled step __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase__ ( self : int ,lowerCamelCase : Dict ): '''simple docstring''' if not isinstance(_a ,_a ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(_a )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase__ ( self : str ,lowerCamelCase : Any ): '''simple docstring''' if not isinstance(_a ,_a ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(_a )}""" ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False if self.does_advance(_a ): self.fulfilled_idx += 1 __SCREAMING_SNAKE_CASE = True if self.fulfilled_idx == (self.seqlen - 1): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = completed else: # failed to make progress. __SCREAMING_SNAKE_CASE = True self.reset() return stepped, completed, reset def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 0 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[Any]=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = PhrasalConstraint(self.token_ids ) if stateful: __SCREAMING_SNAKE_CASE = self.seqlen __SCREAMING_SNAKE_CASE = self.fulfilled_idx __SCREAMING_SNAKE_CASE = self.completed return new_constraint class __a : def __init__( self : Union[str, Any] ,lowerCamelCase : int ,lowerCamelCase : Any=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = max([len(_a ) for one in nested_token_ids] ) __SCREAMING_SNAKE_CASE = {} for token_ids in nested_token_ids: __SCREAMING_SNAKE_CASE = root for tidx, token_id in enumerate(_a ): if token_id not in level: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = level[token_id] if no_subsets and self.has_subsets(_a ,_a ): raise ValueError( """Each list in `nested_token_ids` can\'t be a complete subset of another list, but is""" f""" {nested_token_ids}.""" ) __SCREAMING_SNAKE_CASE = root def UpperCAmelCase__ ( self : int ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.trie for current_token in current_seq: __SCREAMING_SNAKE_CASE = start[current_token] __SCREAMING_SNAKE_CASE = list(start.keys() ) return next_tokens def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.next_tokens(_a ) return len(_a ) == 0 def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(root.values() ) if len(_a ) == 0: return 1 else: return sum([self.count_leaves(_a ) for nn in next_nodes] ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : Any ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.count_leaves(_a ) return len(_a ) != leaf_count class __a ( __SCREAMING_SNAKE_CASE ): def __init__( self : Dict ,lowerCamelCase : List[str] ): '''simple docstring''' super(_a ,self ).__init__() if not isinstance(_a ,_a ) or len(_a ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_a ,_a ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_a ,_a ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) __SCREAMING_SNAKE_CASE = DisjunctiveTrie(_a ) __SCREAMING_SNAKE_CASE = nested_token_ids __SCREAMING_SNAKE_CASE = self.trie.max_height __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.trie.next_tokens(self.current_seq ) if len(_a ) == 0: return None else: return token_list def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : int ): '''simple docstring''' if not isinstance(_a ,_a ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_a )}""" ) __SCREAMING_SNAKE_CASE = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : int ): '''simple docstring''' if not isinstance(_a ,_a ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_a )}""" ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False if self.does_advance(_a ): self.current_seq.append(_a ) __SCREAMING_SNAKE_CASE = True else: __SCREAMING_SNAKE_CASE = True self.reset() __SCREAMING_SNAKE_CASE = self.trie.reached_leaf(self.current_seq ) __SCREAMING_SNAKE_CASE = completed return stepped, completed, reset def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : Any ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(self.token_ids ) if stateful: __SCREAMING_SNAKE_CASE = self.seqlen __SCREAMING_SNAKE_CASE = self.current_seq __SCREAMING_SNAKE_CASE = self.completed return new_constraint class __a : def __init__( self : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = constraints # max # of steps required to fulfill a given constraint __SCREAMING_SNAKE_CASE = max([c.seqlen for c in constraints] ) __SCREAMING_SNAKE_CASE = len(_a ) __SCREAMING_SNAKE_CASE = False self.init_state() def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = [constraint.copy(stateful=_a ) for constraint in self.constraints] def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __SCREAMING_SNAKE_CASE = constraint.advance() if isinstance(_a ,_a ): token_list.append(_a ) elif isinstance(_a ,_a ): token_list.extend(_a ) else: __SCREAMING_SNAKE_CASE = self.inprogress_constraint.advance() if isinstance(_a ,_a ): token_list.append(_a ) elif isinstance(_a ,_a ): token_list.extend(_a ) if len(_a ) == 0: return None else: return token_list def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.add(_a ) # the entire list of constraints are fulfilled if self.completed: break def UpperCAmelCase__ ( self : int ,lowerCamelCase : Tuple ): '''simple docstring''' if not isinstance(_a ,_a ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False, False if self.completed: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.inprogress_constraint.update(_a ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_a ) ) __SCREAMING_SNAKE_CASE = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __SCREAMING_SNAKE_CASE = None if len(self.pending_constraints ) == 0: # we're done! __SCREAMING_SNAKE_CASE = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_a ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pending_constraint.update(_a ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_a ) __SCREAMING_SNAKE_CASE = None if not complete and stepped: __SCREAMING_SNAKE_CASE = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __SCREAMING_SNAKE_CASE = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __SCREAMING_SNAKE_CASE = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __SCREAMING_SNAKE_CASE = [ constraint.copy(stateful=_a ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __SCREAMING_SNAKE_CASE = self.inprogress_constraint.copy(stateful=_a ) __SCREAMING_SNAKE_CASE = [constraint.copy() for constraint in self.pending_constraints] return new_state
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef a = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) return (preds == labels).mean() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) __SCREAMING_SNAKE_CASE = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE = fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) __SCREAMING_SNAKE_CASE = pearsonr(_lowerCamelCase , _lowerCamelCase )[0] __SCREAMING_SNAKE_CASE = spearmanr(_lowerCamelCase , _lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCamelCase , _lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCamelCase , _lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase )
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
import torch def __magic_name__ ( ) -> List[Any]: '''simple docstring''' if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: __SCREAMING_SNAKE_CASE = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
700
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __SCREAMING_SNAKE_CASE = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __SCREAMING_SNAKE_CASE = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __SCREAMING_SNAKE_CASE = subset[i - 1][j] if arr[i - 1] <= j: __SCREAMING_SNAKE_CASE = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> list: '''simple docstring''' if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence __SCREAMING_SNAKE_CASE = gray_code_sequence_string(SCREAMING_SNAKE_CASE_ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE_ ) ): __SCREAMING_SNAKE_CASE = int(sequence[i] , 2 ) return sequence def __magic_name__ ( __UpperCAmelCase ) -> list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __SCREAMING_SNAKE_CASE = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __SCREAMING_SNAKE_CASE = gray_code_sequence_string(bit_count - 1 ) __SCREAMING_SNAKE_CASE = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __SCREAMING_SNAKE_CASE = '0' + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __SCREAMING_SNAKE_CASE = '1' + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE = cha[1] else: __SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE = sys.stdin.fileno() __SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __magic_name__ ( ) -> Dict: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed a = logging.getLogger(__name__) def __magic_name__ ( __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase = 10 , __UpperCAmelCase = 2 ) -> int: '''simple docstring''' def get_dataset(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowerCAmelCase__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __SCREAMING_SNAKE_CASE = get_dataset(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = get_dataset(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4 ) __SCREAMING_SNAKE_CASE = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for epoch in range(lowerCAmelCase__ ): # Train quickly model.train() for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = batch __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.backward(lowerCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __a ( nn.Module ): '''simple docstring''' def __init__( self : Any ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' return x * self.a + self.b class __a ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dummy_dataloaders() __SCREAMING_SNAKE_CASE = ProjectConfiguration(total_limit=1 ,project_dir=snake_case__ ,automatic_checkpoint_naming=snake_case__ ) # Train baseline __SCREAMING_SNAKE_CASE = Accelerator(project_config=snake_case__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dummy_dataloaders() # Train baseline __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save initial __SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,"""initial""" ) accelerator.save_state(snake_case__ ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() __SCREAMING_SNAKE_CASE = train(3 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(42 ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dummy_dataloaders() __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) accelerator.load_state(snake_case__ ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) __SCREAMING_SNAKE_CASE = train(2 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save everything __SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,"""checkpoint""" ) accelerator.save_state(snake_case__ ) # Load everything back in and make sure all states work accelerator.load_state(snake_case__ ) test_rands += train(1 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dummy_dataloaders() __SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=snake_case__ ) # Train baseline __SCREAMING_SNAKE_CASE = Accelerator(project_dir=snake_case__ ,project_config=snake_case__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save initial accelerator.save_state() ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() __SCREAMING_SNAKE_CASE = train(3 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(42 ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dummy_dataloaders() __SCREAMING_SNAKE_CASE = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=snake_case__ ) __SCREAMING_SNAKE_CASE = Accelerator(project_dir=snake_case__ ,project_config=snake_case__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) accelerator.load_state(os.path.join(snake_case__ ,"""checkpoints""" ,"""checkpoint_0""" ) ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) __SCREAMING_SNAKE_CASE = train(2 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case__ ,"""checkpoints""" ,"""checkpoint_1""" ) ) test_rands += train(1 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() __SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3] ) __SCREAMING_SNAKE_CASE = torch.tensor([2, 3, 4] ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = torch.optim.Adam(net.parameters() ) __SCREAMING_SNAKE_CASE = Accelerator() with self.assertRaises(snake_case__ ) as ve: accelerator.register_for_checkpointing(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) __SCREAMING_SNAKE_CASE = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) __SCREAMING_SNAKE_CASE = torch.optim.lr_scheduler.StepLR(snake_case__ ,step_size=1 ,gamma=0.99 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dummy_dataloaders() __SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=snake_case__ ) # Train baseline __SCREAMING_SNAKE_CASE = Accelerator(project_dir=snake_case__ ,project_config=snake_case__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) # Save initial accelerator.save_state() __SCREAMING_SNAKE_CASE = scheduler.state_dict() train(3 ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) self.assertNotEqual(snake_case__ ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case__ ,"""checkpoints""" ,"""checkpoint_0""" ) ) self.assertEqual(snake_case__ ,scheduler.state_dict() ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __SCREAMING_SNAKE_CASE = DummyModel() __SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=snake_case__ ,total_limit=2 ) # Train baseline __SCREAMING_SNAKE_CASE = Accelerator(project_dir=snake_case__ ,project_config=snake_case__ ) __SCREAMING_SNAKE_CASE = accelerator.prepare(snake_case__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case__ ,"""checkpoints""" ,"""checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ ,"""checkpoints""" ,"""checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ ,"""checkpoints""" ,"""checkpoint_10""" ) ) ) @require_cuda def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ ,env=os.environ.copy() ) if __name__ == "__main__": a = '''/tmp/accelerate/state_checkpointing''' a = DummyModel() a = torch.optim.Adam(params=model.parameters(), lr=1E-3) a = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) a = dummy_dataloaders() a = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline a = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) a = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) a = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: a = group['''params'''][0].device break assert param_device.type == accelerator.device.type a = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: a = group['''params'''][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: a = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' import math def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = num % 8 __SCREAMING_SNAKE_CASE = octal + (remainder * math.floor(math.pow(10 , lowerCAmelCase_ ) )) counter += 1 __SCREAMING_SNAKE_CASE = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(lowerCAmelCase_ )}""" def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
706
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_snake_case ) class __a ( _snake_case ): __UpperCamelCase : Dict = field(default='image-classification', metadata={'include_in_asdict_even_if_is_default': True} ) __UpperCamelCase : Tuple = Features({'image': Image()} ) __UpperCamelCase : List[str] = Features({'labels': ClassLabel} ) __UpperCamelCase : Any = 'image' __UpperCamelCase : List[Any] = 'labels' def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,lowerCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __SCREAMING_SNAKE_CASE = copy.deepcopy(self ) __SCREAMING_SNAKE_CASE = self.label_schema.copy() __SCREAMING_SNAKE_CASE = features[self.label_column] __SCREAMING_SNAKE_CASE = label_schema return task_template @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
707
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __a : def __init__( self : str ,lowerCamelCase : int ,lowerCamelCase : Optional[Any]=13 ,lowerCamelCase : List[Any]=30 ,lowerCamelCase : Tuple=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Any=True ,lowerCamelCase : List[str]=32 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Union[str, Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Dict=10 ,lowerCamelCase : List[Any]=0.02 ,lowerCamelCase : Optional[int]=3 ,lowerCamelCase : Any=None ,lowerCamelCase : List[Any]=2 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFDeiTModel(config=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Any ,lowerCamelCase : int ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFDeiTForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = TFDeiTForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : Tuple ,lowerCamelCase : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = TFDeiTForImageClassification(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = TFDeiTForImageClassification(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __a ( lowerCAmelCase__, lowerCAmelCase__, unittest.TestCase ): __UpperCamelCase : List[str] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __UpperCamelCase : int = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : Any = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFDeiTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE ,tf.keras.layers.Dense ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Dict=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = super()._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFDeiTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors="""tf""" ) # forward pass __SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1E-4 ) )
708
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
13
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __a ( _A ): __UpperCamelCase : Union[str, Any] = 'sew-d' def __init__( self : List[str] ,lowerCamelCase : Tuple=32 ,lowerCamelCase : Optional[int]=768 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : Optional[Any]=12 ,lowerCamelCase : int=3072 ,lowerCamelCase : Tuple=2 ,lowerCamelCase : List[Any]=512 ,lowerCamelCase : Any=256 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Dict=True ,lowerCamelCase : str=("p2c", "c2p") ,lowerCamelCase : List[Any]="layer_norm" ,lowerCamelCase : int="gelu_python" ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : int=0.0 ,lowerCamelCase : Dict=0.1 ,lowerCamelCase : List[Any]=0.02 ,lowerCamelCase : Optional[int]=1E-7 ,lowerCamelCase : List[Any]=1E-5 ,lowerCamelCase : List[str]="group" ,lowerCamelCase : Optional[int]="gelu" ,lowerCamelCase : Tuple=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[Any]=False ,lowerCamelCase : Optional[int]=128 ,lowerCamelCase : Tuple=16 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Dict=0.05 ,lowerCamelCase : str=10 ,lowerCamelCase : Tuple=2 ,lowerCamelCase : Dict=0.0 ,lowerCamelCase : Dict=10 ,lowerCamelCase : Union[str, Any]=0 ,lowerCamelCase : List[Any]="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : List[str]=0 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : List[Any]=2 ,**lowerCamelCase : str ,): '''simple docstring''' super().__init__(**UpperCamelCase__ ,pad_token_id=UpperCamelCase__ ,bos_token_id=UpperCamelCase__ ,eos_token_id=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = list(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = list(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = position_buckets __SCREAMING_SNAKE_CASE = share_att_key __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = norm_rel_ebd __SCREAMING_SNAKE_CASE = list(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = feature_layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever a = logging.getLogger(__name__) class __a ( snake_case__ ): def __init__( self : str ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : Optional[Any]=None ): '''simple docstring''' super().__init__( _A ,question_encoder_tokenizer=_A ,generator_tokenizer=_A ,index=_A ,init_retrieval=_A ,) __SCREAMING_SNAKE_CASE = None def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any] ): '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __SCREAMING_SNAKE_CASE = self._infer_socket_ifname() # avoid clash with the NCCL port __SCREAMING_SNAKE_CASE = str(distributed_port + 1 ) __SCREAMING_SNAKE_CASE = dist.new_group(ranks=_A ,backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int]=torch.floataa ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.empty(_A ,dtype=_A ) dist.scatter(_A ,src=0 ,scatter_list=_A ,group=self.process_group ) return target_tensor def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __SCREAMING_SNAKE_CASE = next((addr for addr in addrs if addr.startswith("""e""" )) ,_A ) return ifname def UpperCAmelCase__ ( self : str ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any] ): '''simple docstring''' if not dist.is_initialized(): __SCREAMING_SNAKE_CASE = self._main_retrieve(_A ,_A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) # distributed training __SCREAMING_SNAKE_CASE = dist.get_world_size(group=self.process_group ) # gather logic __SCREAMING_SNAKE_CASE = None if self._is_main(): __SCREAMING_SNAKE_CASE = [torch.empty(question_hidden_states.shape ,dtype=torch.floataa ) for _ in range(_A )] dist.gather(torch.tensor(_A ) ,dst=0 ,gather_list=_A ,group=self.process_group ) # scatter logic __SCREAMING_SNAKE_CASE = question_hidden_states.shape[0] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] if self._is_main(): assert len(_A ) == world_size __SCREAMING_SNAKE_CASE = self._main_retrieve(torch.cat(_A ).numpy() ,_A ) __SCREAMING_SNAKE_CASE = torch.tensor(_A ), torch.tensor(_A ) __SCREAMING_SNAKE_CASE = self._chunk_tensor(_A ,_A ) __SCREAMING_SNAKE_CASE = self._chunk_tensor(_A ,_A ) __SCREAMING_SNAKE_CASE = self._scattered(_A ,[n_queries, n_docs] ,target_type=torch.intaa ) __SCREAMING_SNAKE_CASE = self._scattered(_A ,[n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_A )
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef a = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , """sklearn""" ) return (preds == labels).mean() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , """sklearn""" ) __SCREAMING_SNAKE_CASE = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , """sklearn""" ) __SCREAMING_SNAKE_CASE = pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] __SCREAMING_SNAKE_CASE = spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , """sklearn""" ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), f"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "mrpc": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "qqp": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , """sklearn""" ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ )
712
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor a = random.Random() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __SCREAMING_SNAKE_CASE = global_rng __SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __a ( unittest.TestCase ): def __init__( self : Dict ,lowerCamelCase : str ,lowerCamelCase : Optional[int]=7 ,lowerCamelCase : Dict=400 ,lowerCamelCase : Dict=2000 ,lowerCamelCase : str=24 ,lowerCamelCase : Any=24 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Optional[int]=1_6000 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = min_seq_length __SCREAMING_SNAKE_CASE = max_seq_length __SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = num_mel_bins __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = return_attention_mask __SCREAMING_SNAKE_CASE = do_normalize def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[Any]=False ,lowerCamelCase : Optional[Any]=False ): '''simple docstring''' def _flatten(lowerCamelCase : Any ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: __SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE = [np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __a ( __lowerCamelCase, unittest.TestCase ): __UpperCamelCase : Any = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = SpeechaTextFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Dict ): '''simple docstring''' self.assertTrue(np.all(np.mean(UpperCamelCase_ ,axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase_ ,axis=0 ) - 1 ) < 1E-3 ) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] __SCREAMING_SNAKE_CASE = [np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test feature size __SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase_ ,padding=UpperCamelCase_ ,return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __SCREAMING_SNAKE_CASE = feature_extractor(speech_inputs[0] ,return_tensors="""np""" ).input_features __SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ).input_features self.assertTrue(np.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1E-3 ) ) # Test batched __SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase_ ,return_tensors="""np""" ).input_features __SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase_ ,return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ ,UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] __SCREAMING_SNAKE_CASE = np.asarray(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase_ ,return_tensors="""np""" ).input_features __SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase_ ,return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase_ ,UpperCamelCase_ ): self.assertTrue(np.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1E-3 ) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] __SCREAMING_SNAKE_CASE = ["""longest""", """max_length""", """do_not_pad"""] __SCREAMING_SNAKE_CASE = [None, 16, None] for max_length, padding in zip(UpperCamelCase_ ,UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = feature_extractor( UpperCamelCase_ ,padding=UpperCamelCase_ ,max_length=UpperCamelCase_ ,return_attention_mask=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = inputs.input_features __SCREAMING_SNAKE_CASE = inputs.attention_mask __SCREAMING_SNAKE_CASE = [np.sum(UpperCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] __SCREAMING_SNAKE_CASE = ["""longest""", """max_length""", """do_not_pad"""] __SCREAMING_SNAKE_CASE = [None, 16, None] for max_length, padding in zip(UpperCamelCase_ ,UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = feature_extractor( UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding=UpperCamelCase_ ,return_tensors="""np""" ,return_attention_mask=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = inputs.input_features __SCREAMING_SNAKE_CASE = inputs.attention_mask __SCREAMING_SNAKE_CASE = [np.sum(UpperCamelCase_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] __SCREAMING_SNAKE_CASE = feature_extractor( UpperCamelCase_ ,padding="""max_length""" ,max_length=4 ,truncation=UpperCamelCase_ ,return_tensors="""np""" ,return_attention_mask=UpperCamelCase_ ,) __SCREAMING_SNAKE_CASE = inputs.input_features __SCREAMING_SNAKE_CASE = inputs.attention_mask __SCREAMING_SNAKE_CASE = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] __SCREAMING_SNAKE_CASE = feature_extractor( UpperCamelCase_ ,padding="""longest""" ,max_length=4 ,truncation=UpperCamelCase_ ,return_tensors="""np""" ,return_attention_mask=UpperCamelCase_ ,) __SCREAMING_SNAKE_CASE = inputs.input_features __SCREAMING_SNAKE_CASE = inputs.attention_mask __SCREAMING_SNAKE_CASE = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 4, 24) ) __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] __SCREAMING_SNAKE_CASE = feature_extractor( UpperCamelCase_ ,padding="""longest""" ,max_length=16 ,truncation=UpperCamelCase_ ,return_tensors="""np""" ,return_attention_mask=UpperCamelCase_ ,) __SCREAMING_SNAKE_CASE = inputs.input_features __SCREAMING_SNAKE_CASE = inputs.attention_mask __SCREAMING_SNAKE_CASE = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 6, 24) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' import torch __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = np.random.rand(100 ,32 ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __SCREAMING_SNAKE_CASE = feature_extractor.pad([{"""input_features""": inputs}] ,return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __SCREAMING_SNAKE_CASE = feature_extractor.pad([{"""input_features""": inputs}] ,return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[Any] ): '''simple docstring''' from datasets import load_dataset __SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(UpperCamelCase_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on __SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase_ ,return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape ,(1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] ,UpperCamelCase_ ,atol=1E-4 ) )
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ,**lowerCamelCase : Optional[int] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ).image_processor def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCamelCase ,padding_value=1.0 ) __SCREAMING_SNAKE_CASE = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=lowerCamelCase ,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase ,return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [torch.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = [[1764, 2646]] __SCREAMING_SNAKE_CASE = [[683, 1024]] __SCREAMING_SNAKE_CASE = processor.post_process_masks(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE = processor.post_process_masks( lowerCamelCase ,torch.tensor(lowerCamelCase ) ,torch.tensor(lowerCamelCase ) ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) # should also work with np __SCREAMING_SNAKE_CASE = [np.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = processor.post_process_masks(lowerCamelCase ,np.array(lowerCamelCase ) ,np.array(lowerCamelCase ) ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE = [[1, 0], [0, 1]] with self.assertRaises(lowerCamelCase ): __SCREAMING_SNAKE_CASE = processor.post_process_masks(lowerCamelCase ,np.array(lowerCamelCase ) ,np.array(lowerCamelCase ) ) @require_vision @require_tf class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] ,**lowerCamelCase : List[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ).image_processor def UpperCAmelCase__ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCamelCase ,padding_value=1.0 ) __SCREAMING_SNAKE_CASE = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=lowerCamelCase ,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase ,return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) @require_tf def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [tf.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = [[1764, 2646]] __SCREAMING_SNAKE_CASE = [[683, 1024]] __SCREAMING_SNAKE_CASE = processor.post_process_masks(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,return_tensors="""tf""" ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE = processor.post_process_masks( lowerCamelCase ,tf.convert_to_tensor(lowerCamelCase ) ,tf.convert_to_tensor(lowerCamelCase ) ,return_tensors="""tf""" ,) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) # should also work with np __SCREAMING_SNAKE_CASE = [np.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = processor.post_process_masks( lowerCamelCase ,np.array(lowerCamelCase ) ,np.array(lowerCamelCase ) ,return_tensors="""tf""" ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __SCREAMING_SNAKE_CASE = processor.post_process_masks( lowerCamelCase ,np.array(lowerCamelCase ) ,np.array(lowerCamelCase ) ,return_tensors="""tf""" ) @require_vision @require_torchvision class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ).image_processor def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.random.randint(0 ,2 ,size=(1, 3, 5, 5) ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = [tf.convert_to_tensor(lowerCamelCase )] __SCREAMING_SNAKE_CASE = [torch.tensor(lowerCamelCase )] __SCREAMING_SNAKE_CASE = [[1764, 2646]] __SCREAMING_SNAKE_CASE = [[683, 1024]] __SCREAMING_SNAKE_CASE = processor.post_process_masks( lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,return_tensors="""tf""" ) __SCREAMING_SNAKE_CASE = processor.post_process_masks( lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase ,return_tensors="""pt""" )["pixel_values"].numpy() __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,return_tensors="""pt""" )["pixel_values"].numpy() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase ,return_tensors="""tf""" )["pixel_values"].numpy() __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,return_tensors="""tf""" )["pixel_values"].numpy() self.assertTrue(np.allclose(lowerCamelCase ,lowerCamelCase ) ) self.assertTrue(np.allclose(lowerCamelCase ,lowerCamelCase ) ) self.assertTrue(np.allclose(lowerCamelCase ,lowerCamelCase ) )
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __a ( _snake_case ): __UpperCamelCase : List[Any] = (CMStochasticIterativeScheduler,) __UpperCamelCase : Tuple = 10 def UpperCAmelCase__ ( self : Any ,**lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowercase_ ) return config def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = self.scheduler_classes[0](**lowercase_ ) scheduler.set_timesteps(lowercase_ ) __SCREAMING_SNAKE_CASE = scheduler.timesteps[0] __SCREAMING_SNAKE_CASE = scheduler.timesteps[1] __SCREAMING_SNAKE_CASE = self.dummy_sample __SCREAMING_SNAKE_CASE = 0.1 * sample __SCREAMING_SNAKE_CASE = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ).prev_sample __SCREAMING_SNAKE_CASE = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowercase_ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**lowercase_ ) __SCREAMING_SNAKE_CASE = 1 scheduler.set_timesteps(lowercase_ ) __SCREAMING_SNAKE_CASE = scheduler.timesteps __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowercase_ ): # 1. scale model input __SCREAMING_SNAKE_CASE = scheduler.scale_model_input(lowercase_ ,lowercase_ ) # 2. predict noise residual __SCREAMING_SNAKE_CASE = model(lowercase_ ,lowercase_ ) # 3. predict previous sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,generator=lowercase_ ).prev_sample __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(lowercase_ ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2_510 ) < 1E-3 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**lowercase_ ) __SCREAMING_SNAKE_CASE = [106, 0] scheduler.set_timesteps(timesteps=lowercase_ ) __SCREAMING_SNAKE_CASE = scheduler.timesteps __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __SCREAMING_SNAKE_CASE = scheduler.scale_model_input(lowercase_ ,lowercase_ ) # 2. predict noise residual __SCREAMING_SNAKE_CASE = model(lowercase_ ,lowercase_ ) # 3. predict previous sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,generator=lowercase_ ).prev_sample __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(lowercase_ ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4_527 ) < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**lowercase_ ) __SCREAMING_SNAKE_CASE = [39, 30, 12, 15, 0] with self.assertRaises(lowercase_ ,msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowercase_ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**lowercase_ ) __SCREAMING_SNAKE_CASE = [39, 30, 12, 1, 0] __SCREAMING_SNAKE_CASE = len(lowercase_ ) with self.assertRaises(lowercase_ ,msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowercase_ ,timesteps=lowercase_ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**lowercase_ ) __SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=lowercase_ )
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = [144, 192, 240] __SCREAMING_SNAKE_CASE : Optional[int] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __SCREAMING_SNAKE_CASE : Any = [96, 120, 144] __SCREAMING_SNAKE_CASE : Dict = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __SCREAMING_SNAKE_CASE : List[str] = [64, 80, 96] __SCREAMING_SNAKE_CASE : Union[str, Any] = [16, 16, 24, 48, 64, 80, 320] __SCREAMING_SNAKE_CASE : List[Any] = 0.0_5 __SCREAMING_SNAKE_CASE : str = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): __SCREAMING_SNAKE_CASE : str = 512 __SCREAMING_SNAKE_CASE : Any = 16 __SCREAMING_SNAKE_CASE : Optional[Any] = 21 __SCREAMING_SNAKE_CASE : Dict = """pascal-voc-id2label.json""" else: __SCREAMING_SNAKE_CASE : Dict = 1000 __SCREAMING_SNAKE_CASE : Any = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE : str = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel __SCREAMING_SNAKE_CASE : str = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' for i in range(1 , 6 ): if f"""layer_{i}.""" in name: __SCREAMING_SNAKE_CASE : Any = name.replace(f"""layer_{i}.""" , f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: __SCREAMING_SNAKE_CASE : Any = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: __SCREAMING_SNAKE_CASE : int = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace(f""".{i}.{j}.""" , f""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f""".{i}.{j}.""" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace(f""".{i}.{j}.""" , f""".{i}.""" ) if "expand_1x1" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f""".global_rep.{i}.weight""" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace(f""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if f""".global_rep.{i}.bias""" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace(f""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: __SCREAMING_SNAKE_CASE : str = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: __SCREAMING_SNAKE_CASE : int = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: __SCREAMING_SNAKE_CASE : str = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: __SCREAMING_SNAKE_CASE : Any = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): __SCREAMING_SNAKE_CASE : List[str] = """mobilevit.""" + name return name def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' if base_model: __SCREAMING_SNAKE_CASE : str = """""" else: __SCREAMING_SNAKE_CASE : Dict = """mobilevit.""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __SCREAMING_SNAKE_CASE : Any = key[8:] if "qkv" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.split(""".""" ) __SCREAMING_SNAKE_CASE : Any = int(key_split[0][6:] ) - 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_split[3] ) __SCREAMING_SNAKE_CASE : List[Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) __SCREAMING_SNAKE_CASE : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __SCREAMING_SNAKE_CASE : Optional[int] = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: __SCREAMING_SNAKE_CASE : str = val[:dim, :] __SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Dict = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : str = val[-dim:] else: __SCREAMING_SNAKE_CASE : str = val return orig_state_dict def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = get_mobilevit_config(snake_case__ ) # load original state_dict __SCREAMING_SNAKE_CASE : Any = torch.load(snake_case__ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): __SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __SCREAMING_SNAKE_CASE : Any = MobileViTForImageClassification(snake_case__ ).eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __SCREAMING_SNAKE_CASE : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : Any = model(**snake_case__ ) __SCREAMING_SNAKE_CASE : int = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ [[6.2_0_6_5, 6.1_2_9_2, 6.2_0_7_0], [6.1_0_7_9, 6.1_2_5_4, 6.1_7_4_7], [6.0_0_4_2, 6.1_0_7_1, 6.1_0_3_4]], [[-6.9_2_5_3, -6.8_6_5_3, -7.0_3_9_8], [-7.3_2_1_8, -7.3_9_8_3, -7.3_6_7_0], [-7.1_9_6_1, -7.2_4_8_2, -7.1_5_6_9]], [[-4.4_7_2_3, -4.4_3_4_8, -4.3_7_6_9], [-5.3_6_2_9, -5.4_6_3_2, -5.4_5_9_8], [-5.1_5_8_7, -5.3_4_0_2, -5.5_0_5_9]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[5.4_4_4_9, 5.5_7_3_3, 5.6_3_1_4], [5.1_8_1_5, 5.3_9_3_0, 5.5_9_6_3], [5.1_6_5_6, 5.4_3_3_3, 5.4_8_5_3]], [[-9.4_4_2_3, -9.7_7_6_6, -9.6_7_1_4], [-9.1_5_8_1, -9.5_7_2_0, -9.5_5_1_9], [-9.1_0_0_6, -9.6_4_5_8, -9.5_7_0_3]], [[-7.7_7_2_1, -7.3_7_1_6, -7.1_5_8_3], [-8.4_5_9_9, -8.0_6_2_4, -7.7_9_4_4], [-8.4_1_7_2, -7.8_3_6_6, -7.5_0_2_5]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __SCREAMING_SNAKE_CASE : int = torch.tensor( [ [[6.9_8_1_1, 6.9_7_4_3, 7.3_1_2_3], [7.1_7_7_7, 7.1_9_3_1, 7.3_9_3_8], [7.5_6_3_3, 7.8_0_5_0, 7.8_9_0_1]], [[-1_0.5_5_3_6, -1_0.2_3_3_2, -1_0.2_9_2_4], [-1_0.2_3_3_6, -9.8_6_2_4, -9.5_9_6_4], [-1_0.8_8_4_0, -1_0.8_1_5_8, -1_0.6_6_5_9]], [[-3.4_9_3_8, -3.0_6_3_1, -2.8_6_2_0], [-3.4_2_0_5, -2.8_1_3_5, -2.6_8_7_5], [-3.4_1_7_9, -2.7_9_4_5, -2.8_7_5_0]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __SCREAMING_SNAKE_CASE : Any = torch.tensor([-0.9_8_6_6, 0.2_3_9_2, -1.1_2_4_1] ) elif mobilevit_name == "mobilevit_xs": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-2.4_7_6_1, -0.9_3_9_9, -1.9_5_8_7] ) elif mobilevit_name == "mobilevit_xxs": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __SCREAMING_SNAKE_CASE : Any = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) __SCREAMING_SNAKE_CASE : Tuple = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__ , organization="""apple""" ) model.push_to_hub(snake_case__ , organization="""apple""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\'," " \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
716
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
13
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __a ( _snake_case ): __UpperCamelCase : List[str] = 'efficientnet' def __init__( self : int ,lowerCamelCase : int = 3 ,lowerCamelCase : int = 600 ,lowerCamelCase : float = 2.0 ,lowerCamelCase : float = 3.1 ,lowerCamelCase : int = 8 ,lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowerCamelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] ,lowerCamelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] ,lowerCamelCase : List[int] = [] ,lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowerCamelCase : float = 0.25 ,lowerCamelCase : str = "swish" ,lowerCamelCase : int = 2560 ,lowerCamelCase : str = "mean" ,lowerCamelCase : float = 0.02 ,lowerCamelCase : float = 0.001 ,lowerCamelCase : float = 0.99 ,lowerCamelCase : float = 0.5 ,lowerCamelCase : float = 0.2 ,**lowerCamelCase : List[str] ,): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = width_coefficient __SCREAMING_SNAKE_CASE = depth_coefficient __SCREAMING_SNAKE_CASE = depth_divisor __SCREAMING_SNAKE_CASE = kernel_sizes __SCREAMING_SNAKE_CASE = in_channels __SCREAMING_SNAKE_CASE = out_channels __SCREAMING_SNAKE_CASE = depthwise_padding __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = num_block_repeats __SCREAMING_SNAKE_CASE = expand_ratios __SCREAMING_SNAKE_CASE = squeeze_expansion_ratio __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dim __SCREAMING_SNAKE_CASE = pooling_type __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = batch_norm_eps __SCREAMING_SNAKE_CASE = batch_norm_momentum __SCREAMING_SNAKE_CASE = dropout_rate __SCREAMING_SNAKE_CASE = drop_connect_rate __SCREAMING_SNAKE_CASE = sum(UpperCAmelCase__ ) * 4 class __a ( _snake_case ): __UpperCamelCase : List[str] = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return 1E-5
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = to_pil_image(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = pil_image.size __SCREAMING_SNAKE_CASE = pytesseract.image_to_data(__UpperCAmelCase , lang=__UpperCAmelCase , output_type="""dict""" , config=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __SCREAMING_SNAKE_CASE = [idx for idx, word in enumerate(__UpperCAmelCase ) if not word.strip()] __SCREAMING_SNAKE_CASE = [word for idx, word in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices] __SCREAMING_SNAKE_CASE = [coord for idx, coord in enumerate(__UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __SCREAMING_SNAKE_CASE = [] for x, y, w, h in zip(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [x, y, x + w, y + h] actual_boxes.append(__UpperCAmelCase ) # finally, normalize the bounding boxes __SCREAMING_SNAKE_CASE = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __a ( SCREAMING_SNAKE_CASE__ ): __UpperCamelCase : int = ['pixel_values'] def __init__( self : Any ,lowerCamelCase : Any = True ,lowerCamelCase : Optional[Any] = None ,lowerCamelCase : int = PILImageResampling.BILINEAR ,lowerCamelCase : List[str] = True ,lowerCamelCase : Dict = 1 / 255 ,lowerCamelCase : List[Any] = True ,lowerCamelCase : str = None ,lowerCamelCase : Optional[Any] = None ,lowerCamelCase : int = True ,lowerCamelCase : int = None ,lowerCamelCase : List[Any] = "" ,**lowerCamelCase : Tuple ,): '''simple docstring''' super().__init__(**snake_case__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 224, "width": 224} __SCREAMING_SNAKE_CASE = get_size_dict(snake_case__ ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_value __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD __SCREAMING_SNAKE_CASE = apply_ocr __SCREAMING_SNAKE_CASE = ocr_lang __SCREAMING_SNAKE_CASE = tesseract_config def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ,lowerCamelCase : Any ,lowerCamelCase : Optional[Any] = PILImageResampling.BILINEAR ,lowerCamelCase : str = None ,**lowerCamelCase : Dict ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = (size["height"], size["width"]) return resize(snake_case__ ,size=snake_case__ ,resample=snake_case__ ,data_format=snake_case__ ,**snake_case__ ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[Any] ,lowerCamelCase : Optional[Any] = None ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' return rescale(snake_case__ ,scale=snake_case__ ,data_format=snake_case__ ,**snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Dict ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Dict = None ,**lowerCamelCase : Tuple ,): '''simple docstring''' return normalize(snake_case__ ,mean=snake_case__ ,std=snake_case__ ,data_format=snake_case__ ,**snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Any ,lowerCamelCase : str = None ,lowerCamelCase : Dict = None ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : List[Any] = None ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = None ,lowerCamelCase : List[str] = None ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = None ,lowerCamelCase : int = None ,lowerCamelCase : str = None ,lowerCamelCase : List[Any] = None ,lowerCamelCase : Optional[Any] = ChannelDimension.FIRST ,**lowerCamelCase : List[str] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(snake_case__ ) __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = apply_ocr if apply_ocr is not None else self.apply_ocr __SCREAMING_SNAKE_CASE = ocr_lang if ocr_lang is not None else self.ocr_lang __SCREAMING_SNAKE_CASE = tesseract_config if tesseract_config is not None else self.tesseract_config __SCREAMING_SNAKE_CASE = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(snake_case__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,"""pytesseract""" ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for image in images: __SCREAMING_SNAKE_CASE = apply_tesseract(snake_case__ ,snake_case__ ,snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=snake_case__ ,size=snake_case__ ,resample=snake_case__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=snake_case__ ,scale=snake_case__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=snake_case__ ,mean=snake_case__ ,std=snake_case__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(snake_case__ ,snake_case__ ) for image in images] __SCREAMING_SNAKE_CASE = BatchFeature(data={"""pixel_values""": images} ,tensor_type=snake_case__ ) if apply_ocr: __SCREAMING_SNAKE_CASE = words_batch __SCREAMING_SNAKE_CASE = boxes_batch return data
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __a ( metaclass=__lowerCamelCase ): __UpperCamelCase : Optional[Any] = ['torch', 'torchsde'] def __init__( self : Optional[int] ,*lowerCamelCase : Optional[Any] ,**lowerCamelCase : Dict ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] ,*lowerCamelCase : Optional[int] ,**lowerCamelCase : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def UpperCAmelCase__ ( cls : List[str] ,*lowerCamelCase : Dict ,**lowerCamelCase : List[Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __a ( _snake_case ): __UpperCamelCase : Dict = (DDPMScheduler,) def UpperCAmelCase__ ( self : int ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case_ ) return config def UpperCAmelCase__ ( self : int ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case_ ,beta_end=snake_case_ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case_ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case_ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' self.check_over_configs(thresholding=snake_case_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case_ ,prediction_type=snake_case_ ,sample_max_value=snake_case_ ,) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case_ ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**snake_case_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**snake_case_ ) __SCREAMING_SNAKE_CASE = len(snake_case_ ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(snake_case_ ,snake_case_ ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(snake_case_ ,snake_case_ ,snake_case_ ,generator=snake_case_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(snake_case_ ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = scheduler_class(**snake_case_ ) __SCREAMING_SNAKE_CASE = len(snake_case_ ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(snake_case_ ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(snake_case_ ,snake_case_ ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(snake_case_ ,snake_case_ ,snake_case_ ,generator=snake_case_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(snake_case_ ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**snake_case_ ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case_ ) __SCREAMING_SNAKE_CASE = scheduler.timesteps for i, timestep in enumerate(snake_case_ ): if i == len(snake_case_ ) - 1: __SCREAMING_SNAKE_CASE = -1 else: __SCREAMING_SNAKE_CASE = timesteps[i + 1] __SCREAMING_SNAKE_CASE = scheduler.previous_timestep(snake_case_ ) __SCREAMING_SNAKE_CASE = prev_t.item() self.assertEqual(snake_case_ ,snake_case_ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**snake_case_ ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 51, 0] with self.assertRaises(snake_case_ ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=snake_case_ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**snake_case_ ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] __SCREAMING_SNAKE_CASE = len(snake_case_ ) with self.assertRaises(snake_case_ ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=snake_case_ ,timesteps=snake_case_ ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**snake_case_ ) __SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=snake_case_ )
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __a ( lowercase__ ): def __init__( self : Optional[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : int ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __SCREAMING_SNAKE_CASE = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase__ ,scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : List[Any] ,lowerCamelCase : int = 1 ,lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowerCamelCase : float = 0.0 ,lowerCamelCase : int = 50 ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Optional[str] = "pil" ,lowerCamelCase : bool = True ,): '''simple docstring''' if isinstance(self.unet.config.sample_size ,UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __SCREAMING_SNAKE_CASE = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __SCREAMING_SNAKE_CASE = randn_tensor(UpperCAmelCase__ ,generator=UpperCAmelCase__ ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase__ ,UpperCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,eta=UpperCAmelCase__ ,use_clipped_model_output=UpperCAmelCase__ ,generator=UpperCAmelCase__ ).prev_sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 ,1 ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
a = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE = """""".join(bin(_lowerCAmelCase )[2:].zfill(8 ) for byte in data ) __SCREAMING_SNAKE_CASE = len(_lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __SCREAMING_SNAKE_CASE = b"""=""" * ((6 - len(_lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowerCAmelCase ) % 6) else: __SCREAMING_SNAKE_CASE = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowerCAmelCase ) , 6 ) ).encode() + padding ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __SCREAMING_SNAKE_CASE = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) __SCREAMING_SNAKE_CASE = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __SCREAMING_SNAKE_CASE = encoded_data[:-padding] __SCREAMING_SNAKE_CASE = """""".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __SCREAMING_SNAKE_CASE = """""".join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) __SCREAMING_SNAKE_CASE = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowerCAmelCase ) , 8 ) ] return bytes(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __a: def __init__( self : Union[str, Any] ,lowerCamelCase : Dict ,lowerCamelCase : str=13 ,lowerCamelCase : Optional[Any]=7 ,lowerCamelCase : Tuple=True ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Optional[int]=99 ,lowerCamelCase : Union[str, Any]=32 ,lowerCamelCase : str=2 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : str="gelu" ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : str=0.1 ,lowerCamelCase : Optional[int]=512 ,lowerCamelCase : List[Any]=16 ,lowerCamelCase : Optional[int]=2 ,lowerCamelCase : Dict=0.02 ,lowerCamelCase : int=3 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : int=None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = 13 __SCREAMING_SNAKE_CASE = 7 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 99 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 37 __SCREAMING_SNAKE_CASE = '''gelu''' __SCREAMING_SNAKE_CASE = 0.1 __SCREAMING_SNAKE_CASE = 0.1 __SCREAMING_SNAKE_CASE = 512 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0.02 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = None def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,return_dict=__lowerCamelCase ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any ,lowerCamelCase : Dict ,lowerCamelCase : List[str] ,lowerCamelCase : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFRoFormerModel(config=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __SCREAMING_SNAKE_CASE = [input_ids, input_mask] __SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ,lowerCamelCase : Dict ,lowerCamelCase : str ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE = model(__lowerCamelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) ,[self.batch_size, self.seq_length, self.vocab_size] ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : Dict ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Dict ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : List[str] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Any ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : str ,lowerCamelCase : List[str] ,lowerCamelCase : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Dict ,lowerCamelCase : List[Any] ,lowerCamelCase : Dict ,lowerCamelCase : Any ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[Any] ,lowerCamelCase : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=__lowerCamelCase ) __SCREAMING_SNAKE_CASE = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) = config_and_inputs __SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __a( lowerCamelCase__, lowerCamelCase__, unittest.TestCase ): __UpperCamelCase : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase : Optional[Any] = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[str] ,lowerCamelCase : List[Any] ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=__lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCamelCase ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class __a( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] # TODO Replace vocab size __SCREAMING_SNAKE_CASE = 5_0000 __SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape ,__lowerCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,__lowerCamelCase ,atol=1E-4 ) @require_tf class __a( unittest.TestCase ): __UpperCamelCase : Any = 1E-4 def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tf.constant([[4, 10]] ) __SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 ,embedding_dim=6 ) __SCREAMING_SNAKE_CASE = emba(input_ids.shape ) __SCREAMING_SNAKE_CASE = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(__lowerCamelCase ,__lowerCamelCase ,atol=self.tolerance ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) __SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 ,embedding_dim=512 ) emba([2, 16, 512] ) __SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCamelCase ,__lowerCamelCase ,atol=self.tolerance ) @require_tf class __a( unittest.TestCase ): __UpperCamelCase : Any = 1E-4 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 __SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 12 * 16 * 64 ,dtype=tf.floataa ) ,shape=(2, 12, 16, 64) ) / 100 __SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 ,embedding_dim=64 ) __SCREAMING_SNAKE_CASE = embed_positions([2, 16, 768] )[None, None, :, :] __SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) __SCREAMING_SNAKE_CASE = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] ,__lowerCamelCase ,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] ,__lowerCamelCase ,atol=self.tolerance )
701
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
'''simple docstring''' import random class __a : @staticmethod def UpperCAmelCase__ ( lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ord(_lowercase ) for i in text] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for i in plain: __SCREAMING_SNAKE_CASE = random.randint(1 ,300 ) __SCREAMING_SNAKE_CASE = (i + k) * k cipher.append(_lowercase ) key.append(_lowercase ) return cipher, key @staticmethod def UpperCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : list[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for i in range(len(_lowercase ) ): __SCREAMING_SNAKE_CASE = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_lowercase ) ) return "".join(_lowercase ) if __name__ == "__main__": a = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
702
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE = cha[1] else: __SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE = sys.stdin.fileno() __SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a = logging.get_logger("transformers.models.speecht5") a = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } a = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } a = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } a = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } a = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } a = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } a = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } a = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } a = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a = [] a = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] a = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] a = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] a = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' for attribute in key.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if weight_type is not None: __SCREAMING_SNAKE_CASE = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).shape else: __SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value elif weight_type == "running_mean": __SCREAMING_SNAKE_CASE = value elif weight_type == "running_var": __SCREAMING_SNAKE_CASE = value elif weight_type == "num_batches_tracked": __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __SCREAMING_SNAKE_CASE = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] if task == "s2t": __SCREAMING_SNAKE_CASE = hf_model.speechta.encoder.prenet.feature_encoder __SCREAMING_SNAKE_CASE = MAPPING_S2T __SCREAMING_SNAKE_CASE = IGNORE_KEYS_S2T elif task == "t2s": __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = MAPPING_T2S __SCREAMING_SNAKE_CASE = IGNORE_KEYS_T2S elif task == "s2s": __SCREAMING_SNAKE_CASE = hf_model.speechta.encoder.prenet.feature_encoder __SCREAMING_SNAKE_CASE = MAPPING_S2S __SCREAMING_SNAKE_CASE = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): logger.info(f"""{name} was ignored""" ) continue __SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) __SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __SCREAMING_SNAKE_CASE = key.split(""".*.""" ) if prefix in name and suffix in name: __SCREAMING_SNAKE_CASE = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(__SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , __SCREAMING_SNAKE_CASE ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = "weight_g" elif "weight_v" in name: __SCREAMING_SNAKE_CASE = "weight_v" elif "bias" in name: __SCREAMING_SNAKE_CASE = "bias" elif "weight" in name: __SCREAMING_SNAKE_CASE = "weight" elif "running_mean" in name: __SCREAMING_SNAKE_CASE = "running_mean" elif "running_var" in name: __SCREAMING_SNAKE_CASE = "running_var" elif "num_batches_tracked" in name: __SCREAMING_SNAKE_CASE = "num_batches_tracked" else: __SCREAMING_SNAKE_CASE = None set_recursively(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] __SCREAMING_SNAKE_CASE = name.split(""".""" ) __SCREAMING_SNAKE_CASE = int(items[0] ) __SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: __SCREAMING_SNAKE_CASE = SpeechTaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = SpeechTaConfig() if task == "s2t": __SCREAMING_SNAKE_CASE = config.max_text_positions __SCREAMING_SNAKE_CASE = SpeechTaForSpeechToText(__SCREAMING_SNAKE_CASE ) elif task == "t2s": __SCREAMING_SNAKE_CASE = 1876 __SCREAMING_SNAKE_CASE = 600 __SCREAMING_SNAKE_CASE = config.max_speech_positions __SCREAMING_SNAKE_CASE = SpeechTaForTextToSpeech(__SCREAMING_SNAKE_CASE ) elif task == "s2s": __SCREAMING_SNAKE_CASE = 1876 __SCREAMING_SNAKE_CASE = config.max_speech_positions __SCREAMING_SNAKE_CASE = SpeechTaForSpeechToSpeech(__SCREAMING_SNAKE_CASE ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: __SCREAMING_SNAKE_CASE = SpeechTaTokenizer(__SCREAMING_SNAKE_CASE , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken("""<mask>""" , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) __SCREAMING_SNAKE_CASE = SpeechTaFeatureExtractor() __SCREAMING_SNAKE_CASE = SpeechTaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.load(__SCREAMING_SNAKE_CASE ) recursively_load_weights(fairseq_checkpoint["""model"""] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(__SCREAMING_SNAKE_CASE ) model.push_to_hub(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __a : def __init__( self : Union[str, Any] ,lowerCamelCase : str ,lowerCamelCase : int = 13 ,lowerCamelCase : int = 64 ,lowerCamelCase : int = 2 ,lowerCamelCase : int = 3 ,lowerCamelCase : int = 3 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,lowerCamelCase : int = 128 ,lowerCamelCase : int=[16, 32, 64, 128] ,lowerCamelCase : int = 7 ,lowerCamelCase : int = 4 ,lowerCamelCase : int = 37 ,lowerCamelCase : str = "gelu" ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : int = 10 ,lowerCamelCase : float = 0.02 ,lowerCamelCase : int = 2 ,lowerCamelCase : int = 1 ,lowerCamelCase : int = 128 ,lowerCamelCase : List[int] = [2, 2, 2, 2] ,lowerCamelCase : int = 2 ,lowerCamelCase : int = 2 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = encoder_stride __SCREAMING_SNAKE_CASE = num_attention_outputs __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = embed_dim + 1 __SCREAMING_SNAKE_CASE = resolution __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = dim __SCREAMING_SNAKE_CASE = mlp_expansion_ratio def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A_ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,resolution=self.resolution ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,dim=self.dim ,mlp_expansion_ratio=self.mlp_expansion_ratio ,) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFEfficientFormerModel(config=A_ ) __SCREAMING_SNAKE_CASE = model(A_ ,training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : int ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = TFEfficientFormerForImageClassification(A_ ) __SCREAMING_SNAKE_CASE = model(A_ ,labels=A_ ,training=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = TFEfficientFormerForImageClassification(A_ ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __a ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): __UpperCamelCase : Optional[Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __UpperCamelCase : List[Any] = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[Any] = False def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFEfficientFormerModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester( self ,config_class=A_ ,has_text_modality=A_ ,hidden_size=37 ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(A_ ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,A_ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Dict ,lowerCamelCase : int ,lowerCamelCase : List[str] ): __SCREAMING_SNAKE_CASE = model_class(A_ ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(A_ ,A_ ) ,training=A_ ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) ,A_ ) if hasattr(self.model_tester ,"""encoder_seq_length""" ): __SCREAMING_SNAKE_CASE = self.model_tester.encoder_seq_length if hasattr(self.model_tester ,"""chunk_length""" ) and self.model_tester.chunk_length > 1: __SCREAMING_SNAKE_CASE = seq_length * self.model_tester.chunk_length else: __SCREAMING_SNAKE_CASE = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) if config.is_encoder_decoder: __SCREAMING_SNAKE_CASE = outputs.decoder_hidden_states self.asseretIsInstance(A_ ,(list, tuple) ) self.assertEqual(len(A_ ) ,A_ ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""seq_length""" ,A_ ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""decoder_seq_length""" ,A_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[decoder_seq_length, self.model_tester.hidden_size] ,) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(A_ ,A_ ,A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(A_ ,A_ ,A_ ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFEfficientFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""seq_length""" ,A_ ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""encoder_seq_length""" ,A_ ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""key_length""" ,A_ ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester ,"""chunk_length""" ,A_ ) if chunk_length is not None and hasattr(self.model_tester ,"""num_hashes""" ): __SCREAMING_SNAKE_CASE = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(A_ ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(A_ ,A_ ) ,training=A_ ) __SCREAMING_SNAKE_CASE = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) ,self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(A_ ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(A_ ,A_ ) ,training=A_ ) __SCREAMING_SNAKE_CASE = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) ,self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] ,) else: self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] ,) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __SCREAMING_SNAKE_CASE = model_class(A_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __SCREAMING_SNAKE_CASE = { key: tf.keras.Input(shape=val.shape[1:] ,dtype=val.dtype ,name=A_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __SCREAMING_SNAKE_CASE = model(A_ ) self.assertTrue(outputs_dict is not None ) def __magic_name__ ( ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=A_ ,return_tensors="""tf""" ) # forward pass __SCREAMING_SNAKE_CASE = model(**A_ ,training=A_ ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,A_ ) __SCREAMING_SNAKE_CASE = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A_ ,atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=A_ ,return_tensors="""tf""" ) # forward pass __SCREAMING_SNAKE_CASE = model(**A_ ,training=A_ ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,A_ ) __SCREAMING_SNAKE_CASE = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A_ ,atol=1E-4 ) )
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[tuple[int, int]]: '''simple docstring''' __SCREAMING_SNAKE_CASE = position __SCREAMING_SNAKE_CASE = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __SCREAMING_SNAKE_CASE = [] for position in positions: __SCREAMING_SNAKE_CASE = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_lowerCamelCase ) return permissible_positions def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' if is_complete(_lowerCamelCase ): return True for position in get_valid_pos(_lowerCamelCase , len(_lowerCamelCase ) ): __SCREAMING_SNAKE_CASE = position if board[y][x] == 0: __SCREAMING_SNAKE_CASE = curr + 1 if open_knight_tour_helper(_lowerCamelCase , _lowerCamelCase , curr + 1 ): return True __SCREAMING_SNAKE_CASE = 0 return False def __magic_name__ ( __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [[0 for i in range(_lowerCamelCase )] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): __SCREAMING_SNAKE_CASE = 1 if open_knight_tour_helper(_lowerCamelCase , (i, j) , 1 ): return board __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' import argparse import struct import unittest class __a : def __init__( self : List[Any] ,lowerCamelCase : bytes ): '''simple docstring''' __SCREAMING_SNAKE_CASE = data # Initialize hash values __SCREAMING_SNAKE_CASE = [ 0x6A_09E_667, 0xBB_67A_E85, 0x3C_6EF_372, 0xA5_4FF_53A, 0x51_0E5_27F, 0x9B_056_88C, 0x1F_83D_9AB, 0x5B_E0C_D19, ] # Initialize round constants __SCREAMING_SNAKE_CASE = [ 0x42_8A2_F98, 0x71_374_491, 0xB5_C0F_BCF, 0xE9_B5D_BA5, 0x39_56C_25B, 0x59_F11_1F1, 0x92_3F8_2A4, 0xAB_1C5_ED5, 0xD8_07A_A98, 0x12_835_B01, 0x24_318_5BE, 0x55_0C7_DC3, 0x72_BE5_D74, 0x80_DEB_1FE, 0x9B_DC0_6A7, 0xC1_9BF_174, 0xE4_9B6_9C1, 0xEF_BE4_786, 0x0F_C19_DC6, 0x24_0CA_1CC, 0x2D_E92_C6F, 0x4A_748_4AA, 0x5C_B0A_9DC, 0x76_F98_8DA, 0x98_3E5_152, 0xA8_31C_66D, 0xB0_032_7C8, 0xBF_597_FC7, 0xC6_E00_BF3, 0xD5_A79_147, 0x06_CA6_351, 0x14_292_967, 0x27_B70_A85, 0x2E_1B2_138, 0x4D_2C6_DFC, 0x53_380_D13, 0x65_0A7_354, 0x76_6A0_ABB, 0x81_C2C_92E, 0x92_722_C85, 0xA2_BFE_8A1, 0xA8_1A6_64B, 0xC2_4B8_B70, 0xC7_6C5_1A3, 0xD1_92E_819, 0xD6_990_624, 0xF4_0E3_585, 0x10_6AA_070, 0x19_A4C_116, 0x1E_376_C08, 0x27_487_74C, 0x34_B0B_CB5, 0x39_1C0_CB3, 0x4E_D8A_A4A, 0x5B_9CC_A4F, 0x68_2E6_FF3, 0x74_8F8_2EE, 0x78_A56_36F, 0x84_C87_814, 0x8C_C70_208, 0x90_BEF_FFA, 0xA4_506_CEB, 0xBE_F9A_3F7, 0xC6_717_8F2, ] __SCREAMING_SNAKE_CASE = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase__ ( lowerCamelCase : bytes ): '''simple docstring''' __SCREAMING_SNAKE_CASE = b"""\x80""" + (b"""\x00""" * (63 - (len(__UpperCamelCase ) + 8) % 64)) __SCREAMING_SNAKE_CASE = struct.pack(""">Q""" ,(len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __SCREAMING_SNAKE_CASE = list(struct.unpack(""">16L""" ,__UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array __SCREAMING_SNAKE_CASE = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) __SCREAMING_SNAKE_CASE = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) __SCREAMING_SNAKE_CASE = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression __SCREAMING_SNAKE_CASE = self.ror(__UpperCamelCase ,6 ) ^ self.ror(__UpperCamelCase ,11 ) ^ self.ror(__UpperCamelCase ,25 ) __SCREAMING_SNAKE_CASE = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g) __SCREAMING_SNAKE_CASE = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 __SCREAMING_SNAKE_CASE = self.ror(__UpperCamelCase ,2 ) ^ self.ror(__UpperCamelCase ,13 ) ^ self.ror(__UpperCamelCase ,22 ) __SCREAMING_SNAKE_CASE = (a & b) ^ (a & c) ^ (b & c) __SCREAMING_SNAKE_CASE = (sa + maj) % 0x100_000_000 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) __SCREAMING_SNAKE_CASE = [a, b, c, d, e, f, g, h] # Modify final values __SCREAMING_SNAKE_CASE = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] __SCREAMING_SNAKE_CASE = """""".join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : int ,lowerCamelCase : int ): '''simple docstring''' return 0xFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any ): '''simple docstring''' import hashlib __SCREAMING_SNAKE_CASE = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash ,hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def __magic_name__ ( ) -> Any: '''simple docstring''' import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: __SCREAMING_SNAKE_CASE = f.read() else: __SCREAMING_SNAKE_CASE = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) print(SHAaaa(_SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
706
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase , id=__UpperCAmelCase )
707
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") a = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) a = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) a = BeautifulSoup(res.text, "html.parser") a = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'''https://google.com{link.get("href")}''')
708
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
13
0
'''simple docstring''' from __future__ import annotations import math def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True a = [num for num in range(3, 100001, 2) if not is_prime(num)] def __magic_name__ ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) __SCREAMING_SNAKE_CASE = [] for num in range(len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = 0 while 2 * i * i <= odd_composites[num]: __SCREAMING_SNAKE_CASE = odd_composites[num] - 2 * i * i if is_prime(__UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__UpperCAmelCase ) == n: return list_nums return [] def __magic_name__ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' from __future__ import annotations import time a = list[tuple[int, int]] a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __a : def __init__( self : Dict ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : Node | None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos_x __SCREAMING_SNAKE_CASE = pos_y __SCREAMING_SNAKE_CASE = (pos_y, pos_x) __SCREAMING_SNAKE_CASE = goal_x __SCREAMING_SNAKE_CASE = goal_y __SCREAMING_SNAKE_CASE = parent class __a : def __init__( self : Optional[int] ,lowerCamelCase : tuple[int, int] ,lowerCamelCase : tuple[int, int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = [self.start] __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' while self.node_queue: __SCREAMING_SNAKE_CASE = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __SCREAMING_SNAKE_CASE = True return self.retrace_path(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = self.get_successors(UpperCamelCase__ ) for node in successors: self.node_queue.append(UpperCamelCase__ ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ ( self : Any ,lowerCamelCase : Node ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for action in delta: __SCREAMING_SNAKE_CASE = parent.pos_x + action[1] __SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCamelCase__ ,UpperCamelCase__ ,self.target.pos_y ,self.target.pos_x ,UpperCamelCase__ ) ) return successors def UpperCAmelCase__ ( self : str ,lowerCamelCase : Node | None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = node __SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path class __a : def __init__( self : str ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BreadthFirstSearch(UpperCamelCase__ ,UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = BreadthFirstSearch(UpperCamelCase__ ,UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : Any ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __SCREAMING_SNAKE_CASE = self.fwd_bfs.node_queue.pop(0 ) __SCREAMING_SNAKE_CASE = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __SCREAMING_SNAKE_CASE = True return self.retrace_bidirectional_path( UpperCamelCase__ ,UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = current_bwd_node __SCREAMING_SNAKE_CASE = current_fwd_node __SCREAMING_SNAKE_CASE = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCamelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCamelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCamelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Node ,lowerCamelCase : Node ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.fwd_bfs.retrace_path(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = self.bwd_bfs.retrace_path(UpperCamelCase__ ) bwd_path.pop() bwd_path.reverse() __SCREAMING_SNAKE_CASE = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a = (0, 0) a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a = time.time() a = BreadthFirstSearch(init, goal) a = bfs.search() a = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) a = time.time() a = BidirectionalBreadthFirstSearch(init, goal) a = bd_bfs.search() a = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a = logging.get_logger(__name__) a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} with open(__lowerCAmelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCAmelCase ): __SCREAMING_SNAKE_CASE = line.strip() if line: __SCREAMING_SNAKE_CASE = line.split() __SCREAMING_SNAKE_CASE = line_number __SCREAMING_SNAKE_CASE = words[0] __SCREAMING_SNAKE_CASE = value return result def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__lowerCAmelCase , __lowerCAmelCase ) __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = hf_pointer for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__lowerCAmelCase , __lowerCAmelCase ) __SCREAMING_SNAKE_CASE = shape_pointer.shape # let's reduce dimension __SCREAMING_SNAKE_CASE = value[0] else: __SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__lowerCAmelCase , __lowerCAmelCase ) __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = """.""".join([key, hf_param_name] ) else: __SCREAMING_SNAKE_CASE = key __SCREAMING_SNAKE_CASE = value if """lm_head""" in full_key else value[0] a = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): __SCREAMING_SNAKE_CASE = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: __SCREAMING_SNAKE_CASE = """weight_v""" elif "bias" in name: __SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __SCREAMING_SNAKE_CASE = """weight""" else: __SCREAMING_SNAKE_CASE = None if hf_dict is not None: rename_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return is_used return is_used def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __SCREAMING_SNAKE_CASE = True else: __SCREAMING_SNAKE_CASE = load_wavaveca_layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] __SCREAMING_SNAKE_CASE = name.split(""".""" ) __SCREAMING_SNAKE_CASE = int(items[0] ) __SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False ) -> Dict: '''simple docstring''' if config_path is not None: __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(__lowerCAmelCase ) else: __SCREAMING_SNAKE_CASE = WavaVecaConfig() if is_seq_class: __SCREAMING_SNAKE_CASE = read_txt_into_dict(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) feature_extractor.save_pretrained(__lowerCAmelCase ) elif is_finetuned: if dict_path: __SCREAMING_SNAKE_CASE = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __SCREAMING_SNAKE_CASE = target_dict.pad_index __SCREAMING_SNAKE_CASE = target_dict.bos_index __SCREAMING_SNAKE_CASE = target_dict.eos_index __SCREAMING_SNAKE_CASE = len(target_dict.symbols ) __SCREAMING_SNAKE_CASE = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) __SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) __SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaForCTC(__lowerCAmelCase ) else: __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(__lowerCAmelCase ) if is_finetuned or is_seq_class: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __SCREAMING_SNAKE_CASE = argparse.Namespace(task="""audio_pretraining""" ) __SCREAMING_SNAKE_CASE = fairseq.tasks.setup_task(__lowerCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCAmelCase ) __SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) a = parser.parse_args() a = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,_UpperCAmelCase ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase ,_UpperCAmelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Union[str, Any] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ,**lowerCamelCase : Tuple ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def UpperCAmelCase__ ( self : int ,**lowerCamelCase : List[Any] ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_UpperCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=_UpperCAmelCase ,image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = AlignProcessor.from_pretrained(self.tmpdirname ,use_fast=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=_UpperCAmelCase ,image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,_UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer ,_UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,_UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor ,_UpperCAmelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=_UpperCAmelCase ,padding_value=1.0 ) __SCREAMING_SNAKE_CASE = AlignProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_UpperCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_UpperCAmelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=_UpperCAmelCase ,image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(_UpperCAmelCase ,return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=_UpperCAmelCase ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=_UpperCAmelCase ,image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = processor(text=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase ,padding="""max_length""" ,max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=_UpperCAmelCase ,image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=_UpperCAmelCase ,images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=_UpperCAmelCase ,image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = AlignProcessor(tokenizer=_UpperCAmelCase ,image_processor=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = '''lower newer''' __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=_UpperCAmelCase ,images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
712
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = JsonDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = JsonDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} __SCREAMING_SNAKE_CASE = features.copy() __SCREAMING_SNAKE_CASE = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = JsonDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __SCREAMING_SNAKE_CASE = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , split=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = jsonl_path elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [jsonl_path] __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __SCREAMING_SNAKE_CASE = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=("train",) ) -> Union[str, Any]: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for split in splits: __SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_json_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = JsonDatasetReader({"""train""": jsonl_path} , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if split: __SCREAMING_SNAKE_CASE = {split: jsonl_path} else: __SCREAMING_SNAKE_CASE = """train""" __SCREAMING_SNAKE_CASE = {"""train""": jsonl_path, """test""": jsonl_path} __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __SCREAMING_SNAKE_CASE = JsonDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_json_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' return json.load(UpperCAmelCase__ ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [json.loads(UpperCAmelCase__ ) for line in buffer] class __a : @pytest.mark.parametrize("""lines, load_json_function""" ,[(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[int] ,lowerCamelCase : Any ,lowerCamelCase : Dict ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A ,_A ,lines=_A ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE = load_json_function(_A ) assert isinstance(_A ,_A ) assert isinstance(exported_content[0] ,_A ) assert len(_A ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" ,[ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] ,) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Dict ,lowerCamelCase : Dict ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple ,lowerCamelCase : List[str] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A ,_A ,lines=_A ,orient=_A ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE = load_json(_A ) assert isinstance(_A ,_A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_A ,"""keys""" ) and not hasattr(exported_content[0] ,"""keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_A ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" ,[(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : int ,lowerCamelCase : Union[str, Any] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A ,_A ,lines=_A ,num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE = load_json_function(_A ) assert isinstance(_A ,_A ) assert isinstance(exported_content[0] ,_A ) assert len(_A ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" ,[ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] ,) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Dict ,lowerCamelCase : str ,lowerCamelCase : Tuple ,lowerCamelCase : str ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(_A ,_A ,lines=_A ,orient=_A ,num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE = load_json(_A ) assert isinstance(_A ,_A ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_A ,"""keys""" ) and not hasattr(exported_content[0] ,"""keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_A ) == 10 def UpperCAmelCase__ ( self : str ,lowerCamelCase : Dict ): '''simple docstring''' with pytest.raises(_A ): with io.BytesIO() as buffer: JsonDatasetWriter(_A ,_A ,num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" ,[("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / f"""test.json.{extension}""" __SCREAMING_SNAKE_CASE = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_A ,_A ,compression=_A ).write() with fsspec.open(_A ,"""rb""" ,compression="""infer""" ) as f: __SCREAMING_SNAKE_CASE = f.read() with fsspec.open(_A ,"""rb""" ,compression="""infer""" ) as f: __SCREAMING_SNAKE_CASE = f.read() assert exported_content == original_content
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __a ( __lowerCAmelCase ): __UpperCamelCase : Any = "xlm-roberta-xl" def __init__( self : int ,lowerCamelCase : str=25_0880 ,lowerCamelCase : Optional[Any]=2560 ,lowerCamelCase : str=36 ,lowerCamelCase : List[Any]=32 ,lowerCamelCase : Union[str, Any]=1_0240 ,lowerCamelCase : List[Any]="gelu" ,lowerCamelCase : Any=0.1 ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Optional[int]=514 ,lowerCamelCase : int=1 ,lowerCamelCase : Dict=0.02 ,lowerCamelCase : int=1E-0_5 ,lowerCamelCase : Any=1 ,lowerCamelCase : Union[str, Any]=0 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : Optional[Any]="absolute" ,lowerCamelCase : Any=True ,lowerCamelCase : int=None ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( __lowerCAmelCase ): @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a = logging.get_logger(__name__) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __SCREAMING_SNAKE_CASE = json.loads(snake_case_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __SCREAMING_SNAKE_CASE = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __SCREAMING_SNAKE_CASE = json.loads(snake_case_ ) if not mpi_options.get("""sagemaker_mpi_enabled""" , snake_case_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __a ( UpperCamelCase_ ): __UpperCamelCase : Dict = field( default='', metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'}, ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" ,lowerCamelCase ,) @cached_property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __SCREAMING_SNAKE_CASE = torch.device("""cpu""" ) __SCREAMING_SNAKE_CASE = 0 elif is_sagemaker_model_parallel_available(): __SCREAMING_SNAKE_CASE = smp.local_rank() __SCREAMING_SNAKE_CASE = torch.device("""cuda""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" ,timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __SCREAMING_SNAKE_CASE = torch.device("""cuda""" ,self.local_rank ) __SCREAMING_SNAKE_CASE = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __SCREAMING_SNAKE_CASE = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" ,timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = torch.device("""cuda""" ,self.local_rank ) __SCREAMING_SNAKE_CASE = 1 if device.type == "cuda": torch.cuda.set_device(lowerCamelCase ) return device @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return False
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( lowercase_ ): __UpperCamelCase : str = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''LayoutLMv3ImageProcessor''' __UpperCamelCase : Tuple = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : List[str] ,lowerCamelCase : Tuple=None ,lowerCamelCase : Union[str, Any]=None ,**lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase ,) __SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase ,lowerCamelCase ) def __call__( self : Optional[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] = None ,lowerCamelCase : str = None ,lowerCamelCase : Optional[Any] = None ,lowerCamelCase : str = None ,lowerCamelCase : Union[str, Any] = True ,lowerCamelCase : str = False ,lowerCamelCase : Tuple = None ,lowerCamelCase : Dict = None ,lowerCamelCase : Dict = 0 ,lowerCamelCase : Tuple = None ,lowerCamelCase : Dict = None ,lowerCamelCase : Tuple = None ,lowerCamelCase : Union[str, Any] = False ,lowerCamelCase : Tuple = False ,lowerCamelCase : int = False ,lowerCamelCase : Any = False ,lowerCamelCase : List[Any] = True ,lowerCamelCase : Union[str, Any] = None ,**lowerCamelCase : List[Any] ,): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor __SCREAMING_SNAKE_CASE = self.image_processor(images=lowerCamelCase ,return_tensors=lowerCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [text] # add batch dimension (as the image processor always adds a batch dimension) __SCREAMING_SNAKE_CASE = features["""words"""] __SCREAMING_SNAKE_CASE = self.tokenizer( text=text if text is not None else features["""words"""] ,text_pair=text_pair if text_pair is not None else None ,boxes=boxes if boxes is not None else features["""boxes"""] ,word_labels=lowerCamelCase ,add_special_tokens=lowerCamelCase ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=lowerCamelCase ,stride=lowerCamelCase ,pad_to_multiple_of=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,return_overflowing_tokens=lowerCamelCase ,return_special_tokens_mask=lowerCamelCase ,return_offsets_mapping=lowerCamelCase ,return_length=lowerCamelCase ,verbose=lowerCamelCase ,return_tensors=lowerCamelCase ,**lowerCamelCase ,) # add pixel values __SCREAMING_SNAKE_CASE = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: __SCREAMING_SNAKE_CASE = self.get_overflowing_images(lowerCamelCase ,encoded_inputs["""overflow_to_sample_mapping"""] ) __SCREAMING_SNAKE_CASE = images return encoded_inputs def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(lowerCamelCase )} and {len(lowerCamelCase )}""" ) return images_with_overflow def UpperCAmelCase__ ( self : Optional[int] ,*lowerCamelCase : Tuple ,**lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ,*lowerCamelCase : Tuple ,**lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase ,) return self.image_processor_class @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase ,) return self.image_processor
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 200 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 100, 200] __SCREAMING_SNAKE_CASE = [0] * (pence + 1) __SCREAMING_SNAKE_CASE = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCamelCase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : Union[str, Any] ,lowerCamelCase : Dict ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Any=32 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : str=3 ,lowerCamelCase : Any=16 ,lowerCamelCase : Optional[int]=[32, 64, 128] ,lowerCamelCase : str=[1, 2, 1] ,lowerCamelCase : Tuple=[2, 2, 4] ,lowerCamelCase : str=2 ,lowerCamelCase : Tuple=2.0 ,lowerCamelCase : Dict=True ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : str=0.0 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : List[Any]="gelu" ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : Any=True ,lowerCamelCase : List[Any]=0.02 ,lowerCamelCase : str=1E-5 ,lowerCamelCase : Dict=True ,lowerCamelCase : Any=None ,lowerCamelCase : str=True ,lowerCamelCase : Any=10 ,lowerCamelCase : List[Any]=8 ,lowerCamelCase : Tuple=["stage1", "stage2"] ,lowerCamelCase : Any=[1, 2] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = patch_norm __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = encoder_stride __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : Dict ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FocalNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __SCREAMING_SNAKE_CASE = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FocalNetBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = FocalNetBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Dict ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FocalNetForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FocalNetForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( snake_case__, snake_case__, unittest.TestCase ): __UpperCamelCase : int = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __UpperCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : Dict = False __UpperCamelCase : str = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : str = False def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FocalNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,embed_dim=37 ,has_text_modality=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE ,nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = outputs.hidden_states __SCREAMING_SNAKE_CASE = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) # FocalNet has a different seq_length __SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) __SCREAMING_SNAKE_CASE = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = reshaped_hidden_states[0].shape __SCREAMING_SNAKE_CASE = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __SCREAMING_SNAKE_CASE = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,(padded_height, padded_width) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = FocalNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class __a ( snake_case__, unittest.TestCase ): __UpperCamelCase : List[str] = (FocalNetBackbone,) if is_torch_available() else () __UpperCamelCase : Optional[Any] = FocalNetConfig __UpperCamelCase : List[Any] = False def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FocalNetModelTester(self )
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = f"""Input value of [number={number}] must be an integer""" raise TypeError(__UpperCAmelCase ) if number < 1: __SCREAMING_SNAKE_CASE = f"""Input value of [number={number}] must be > 0""" raise ValueError(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 1 for i in range(1 , __UpperCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __a( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = (32, 32) __SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase ) return image @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=7 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,attention_head_dim=8 ,use_linear_projection=lowerCamelCase ,only_cross_attention=(True, True, False) ,num_class_embeds=100 ,) return model @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) return CLIPTextModel(lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale __SCREAMING_SNAKE_CASE = DDPMScheduler() __SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = self.dummy_vae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=lowerCamelCase ,low_res_scheduler=lowerCamelCase ,scheduler=lowerCamelCase ,vae=lowerCamelCase ,text_encoder=lowerCamelCase ,tokenizer=lowerCamelCase ,max_noise_level=350 ,) __SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] ,image=lowerCamelCase ,generator=lowerCamelCase ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] ,image=lowerCamelCase ,generator=lowerCamelCase ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase ,)[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __SCREAMING_SNAKE_CASE = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale __SCREAMING_SNAKE_CASE = DDPMScheduler() __SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = self.dummy_vae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=lowerCamelCase ,low_res_scheduler=lowerCamelCase ,scheduler=lowerCamelCase ,vae=lowerCamelCase ,text_encoder=lowerCamelCase ,tokenizer=lowerCamelCase ,max_noise_level=350 ,) __SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images assert image.shape[0] == 2 __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] ,image=lowerCamelCase ,generator=lowerCamelCase ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale __SCREAMING_SNAKE_CASE = DDPMScheduler() __SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = self.dummy_vae __SCREAMING_SNAKE_CASE = self.dummy_text_encoder __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __SCREAMING_SNAKE_CASE = unet.half() __SCREAMING_SNAKE_CASE = text_encoder.half() # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=lowerCamelCase ,low_res_scheduler=lowerCamelCase ,scheduler=lowerCamelCase ,vae=lowerCamelCase ,text_encoder=lowerCamelCase ,tokenizer=lowerCamelCase ,max_noise_level=350 ,) __SCREAMING_SNAKE_CASE = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe( [prompt] ,image=lowerCamelCase ,generator=lowerCamelCase ,num_inference_steps=2 ,output_type="""np""" ,).images __SCREAMING_SNAKE_CASE = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __a( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-x4-upscaler""" __SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = """a cat sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase ,image=lowerCamelCase ,generator=lowerCamelCase ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-x4-upscaler""" __SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase ,torch_dtype=torch.floataa ,) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = """a cat sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase ,image=lowerCamelCase ,generator=lowerCamelCase ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __SCREAMING_SNAKE_CASE = """stabilityai/stable-diffusion-x4-upscaler""" __SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase ,torch_dtype=torch.floataa ,) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE = """a cat sitting on a park bench""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase ,image=lowerCamelCase ,generator=lowerCamelCase ,num_inference_steps=5 ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
701
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] a = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __SCREAMING_SNAKE_CASE = int(re.match(R""".*layer_(\d*).*""" , __UpperCAmelCase )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' if dtype == torch.bool: return 1 / 8 __SCREAMING_SNAKE_CASE = re.search(R"""[^\d](\d+)$""" , str(__UpperCAmelCase ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) __SCREAMING_SNAKE_CASE = int(bit_search.groups()[0] ) return bit_size // 8 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if bloom_config_file == "": __SCREAMING_SNAKE_CASE = BloomConfig() else: __SCREAMING_SNAKE_CASE = BloomConfig.from_json_file(__UpperCAmelCase ) if shard_model: __SCREAMING_SNAKE_CASE = os.listdir(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sorted(filter(lambda __UpperCAmelCase : s.startswith("""layer""" ) and "model_00" in s , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = {"""weight_map""": {}, """metadata""": {}} __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BloomConfig() for j, file in enumerate(__UpperCAmelCase ): print("""Processing file: {}""".format(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = None for i in range(__UpperCAmelCase ): # load all TP files __SCREAMING_SNAKE_CASE = file.replace("""model_00""" , f"""model_0{i}""" ) __SCREAMING_SNAKE_CASE = torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names __SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = temp.pop(__UpperCAmelCase ) if tensors is None: __SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp torch.save( __UpperCAmelCase , os.path.join( __UpperCAmelCase , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __SCREAMING_SNAKE_CASE = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __SCREAMING_SNAKE_CASE = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(__UpperCAmelCase ) ).zfill(5 ) ) __SCREAMING_SNAKE_CASE = BloomConfig() __SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + CONFIG_NAME __SCREAMING_SNAKE_CASE = total_size with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(__UpperCAmelCase , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + """\n""" f.write(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = BloomModel(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = os.listdir(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sorted(filter(lambda __UpperCAmelCase : s.startswith("""layer""" ) and "model_00" in s , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = None for i, file in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = None for i in range(__UpperCAmelCase ): # load all TP files __SCREAMING_SNAKE_CASE = file.replace("""model_00""" , f"""model_0{i}""" ) __SCREAMING_SNAKE_CASE = torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , map_location="""cpu""" ) # Rename keys in the transformers names __SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = temp.pop(__UpperCAmelCase ) if tensors is None: __SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] , dim=__UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp __SCREAMING_SNAKE_CASE = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: __SCREAMING_SNAKE_CASE = set(other_keys.missing_keys ) else: __SCREAMING_SNAKE_CASE = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: __SCREAMING_SNAKE_CASE = model.to(config.torch_dtype ) torch.save(model.state_dict() , __UpperCAmelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
702
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE = cha[1] else: __SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE = sys.stdin.fileno() __SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
0
'''simple docstring''' import numpy # List of input, output pairs a = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a = (((515, 22, 13), 555), ((61, 35, 49), 150)) a = [2, 4, 1, 5] a = len(train_data) a = 0.009 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase="train" ) -> Union[str, Any]: '''simple docstring''' return calculate_hypothesis_value(__UpperCAmelCase , __UpperCAmelCase ) - output( __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for i in range(len(__UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=m ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 for i in range(__UpperCAmelCase ): if index == -1: summation_value += _error(__UpperCAmelCase ) else: summation_value += _error(__UpperCAmelCase ) * train_data[i][0][index] return summation_value def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = summation_of_cost_derivative(__UpperCAmelCase , __UpperCAmelCase ) / m return cost_derivative_value def __magic_name__ ( ) -> Any: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __SCREAMING_SNAKE_CASE = 0.0_0_0_0_0_2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while True: j += 1 __SCREAMING_SNAKE_CASE = [0, 0, 0, 0] for i in range(0 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = get_cost_derivative(i - 1 ) __SCREAMING_SNAKE_CASE = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCAmelCase , __UpperCAmelCase , atol=__UpperCAmelCase , rtol=__UpperCAmelCase , ): break __SCREAMING_SNAKE_CASE = temp_parameter_vector print(("""Number of iterations:""", j) ) def __magic_name__ ( ) -> str: '''simple docstring''' for i in range(len(__UpperCAmelCase ) ): print(("""Actual output value:""", output(__UpperCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__UpperCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a = {"facebook/blenderbot_small-90M": 512} def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char __SCREAMING_SNAKE_CASE = set(__UpperCAmelCase ) return pairs class __a ( _snake_case ): __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple="__start__" ,lowerCamelCase : Tuple="__end__" ,lowerCamelCase : Dict="__unk__" ,lowerCamelCase : str="__null__" ,**lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(unk_token=lowerCamelCase ,bos_token=lowerCamelCase ,eos_token=lowerCamelCase ,pad_token=lowerCamelCase ,**lowerCamelCase ) with open(lowerCamelCase ,encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(lowerCamelCase ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase ,encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in merges] __SCREAMING_SNAKE_CASE = dict(zip(lowerCamelCase ,range(len(lowerCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE = {} @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = re.sub("""([.,!?()])""" ,r""" \1""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = re.sub("""(')""" ,r""" \1 """ ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = re.sub(r"""\s{2,}""" ,""" """ ,lowerCamelCase ) if "\n" in token: __SCREAMING_SNAKE_CASE = token.replace("""\n""" ,""" __newln__""" ) __SCREAMING_SNAKE_CASE = token.split(""" """ ) __SCREAMING_SNAKE_CASE = [] for token in tokens: if not len(lowerCamelCase ): continue __SCREAMING_SNAKE_CASE = token.lower() __SCREAMING_SNAKE_CASE = tuple(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __SCREAMING_SNAKE_CASE = get_pairs(lowerCamelCase ) if not pairs: words.append(lowerCamelCase ) continue while True: __SCREAMING_SNAKE_CASE = min(lowerCamelCase ,key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(lowerCamelCase ): try: __SCREAMING_SNAKE_CASE = word.index(lowerCamelCase ,lowerCamelCase ) new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE = tuple(lowerCamelCase ) __SCREAMING_SNAKE_CASE = new_word if len(lowerCamelCase ) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(lowerCamelCase ) __SCREAMING_SNAKE_CASE = """@@ """.join(lowerCamelCase ) __SCREAMING_SNAKE_CASE = word[:-4] __SCREAMING_SNAKE_CASE = word words.append(lowerCamelCase ) return " ".join(lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = re.findall(r"""\S+\n?""" ,lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = token.lower() return self.encoder.get(lowerCamelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : int ): '''simple docstring''' return self.decoder.get(lowerCamelCase ,self.unk_token ) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """ """.join(lowerCamelCase ).replace("""@@ """ ,"""""" ).strip() return out_string def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : str ,lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join( lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase ,ensure_ascii=lowerCamelCase ) + """\n""" ) __SCREAMING_SNAKE_CASE = 0 with open(lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE = token_index writer.write(""" """.join(lowerCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __SCREAMING_SNAKE_CASE = [] for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __a ( _snake_case, _snake_case ): '''simple docstring''' __UpperCamelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : str = 2 @register_to_config def __init__( self : int ,lowerCamelCase : int = 1000 ,lowerCamelCase : float = 0.00_085 ,lowerCamelCase : float = 0.012 ,lowerCamelCase : str = "linear" ,lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None ,lowerCamelCase : str = "epsilon" ,lowerCamelCase : Optional[bool] = False ,lowerCamelCase : Optional[bool] = False ,lowerCamelCase : float = 1.0 ,lowerCamelCase : str = "linspace" ,lowerCamelCase : int = 0 ,): '''simple docstring''' if trained_betas is not None: __SCREAMING_SNAKE_CASE = torch.tensor(lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE = torch.linspace(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,lowerCamelCase ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase ,alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase ,alpha_transform_type="""exp""" ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __SCREAMING_SNAKE_CASE = 1.0 - self.betas __SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = use_karras_sigmas def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : int ,lowerCamelCase : Dict=None ): '''simple docstring''' if schedule_timesteps is None: __SCREAMING_SNAKE_CASE = self.timesteps __SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __SCREAMING_SNAKE_CASE = 1 if len(lowerCamelCase ) > 1 else 0 else: __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(lowerCamelCase ) else timestep __SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Union[float, torch.FloatTensor] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.index_for_timestep(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.sigmas[step_index] __SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase__ ( self : int ,lowerCamelCase : int ,lowerCamelCase : Union[str, torch.device] = None ,lowerCamelCase : Optional[int] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __SCREAMING_SNAKE_CASE = np.linspace(0 ,num_train_timesteps - 1 ,lowerCamelCase ,dtype=lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(0 ,lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE = (np.arange(lowerCamelCase ,0 ,-step_ratio )).round().copy().astype(lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __SCREAMING_SNAKE_CASE = np.log(lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.interp(lowerCamelCase ,np.arange(0 ,len(lowerCamelCase ) ) ,lowerCamelCase ) if self.config.use_karras_sigmas: __SCREAMING_SNAKE_CASE = self._convert_to_karras(in_sigmas=lowerCamelCase ,num_inference_steps=self.num_inference_steps ) __SCREAMING_SNAKE_CASE = np.array([self._sigma_to_t(lowerCamelCase ,lowerCamelCase ) for sigma in sigmas] ) __SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCamelCase ).startswith("""mps""" ): # mps does not support float64 __SCREAMING_SNAKE_CASE = timesteps.to(lowerCamelCase ,dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = timesteps.to(device=lowerCamelCase ) # empty dt and derivative __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __SCREAMING_SNAKE_CASE = defaultdict(lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.log(lowerCamelCase ) # get distribution __SCREAMING_SNAKE_CASE = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __SCREAMING_SNAKE_CASE = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __SCREAMING_SNAKE_CASE = low_idx + 1 __SCREAMING_SNAKE_CASE = log_sigmas[low_idx] __SCREAMING_SNAKE_CASE = log_sigmas[high_idx] # interpolate sigmas __SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) __SCREAMING_SNAKE_CASE = np.clip(lowerCamelCase ,0 ,1 ) # transform interpolation to time range __SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx __SCREAMING_SNAKE_CASE = t.reshape(sigma.shape ) return t def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = in_sigmas[-1].item() __SCREAMING_SNAKE_CASE = in_sigmas[0].item() __SCREAMING_SNAKE_CASE = 7.0 # 7.0 is the value used in the paper __SCREAMING_SNAKE_CASE = np.linspace(0 ,1 ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = sigma_min ** (1 / rho) __SCREAMING_SNAKE_CASE = sigma_max ** (1 / rho) __SCREAMING_SNAKE_CASE = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.dt is None def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Union[torch.FloatTensor, np.ndarray] ,lowerCamelCase : Union[float, torch.FloatTensor] ,lowerCamelCase : Union[torch.FloatTensor, np.ndarray] ,lowerCamelCase : bool = True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.index_for_timestep(lowerCamelCase ) # advance index counter by 1 __SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __SCREAMING_SNAKE_CASE = self.sigmas[step_index] __SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] __SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next __SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next __SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __SCREAMING_SNAKE_CASE = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __SCREAMING_SNAKE_CASE = sigma_next - sigma_hat # store for 2nd order step __SCREAMING_SNAKE_CASE = derivative __SCREAMING_SNAKE_CASE = dt __SCREAMING_SNAKE_CASE = sample else: # 2. 2nd order / Heun's method __SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_next __SCREAMING_SNAKE_CASE = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __SCREAMING_SNAKE_CASE = self.dt __SCREAMING_SNAKE_CASE = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase ): # mps does not support float64 __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = [self.index_for_timestep(lowerCamelCase ,lowerCamelCase ) for t in timesteps] __SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) __SCREAMING_SNAKE_CASE = sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): __SCREAMING_SNAKE_CASE = False def __magic_name__ ( ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __SCREAMING_SNAKE_CASE = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = plt.imshow(__UpperCAmelCase ) fig.axes.get_xaxis().set_visible(__UpperCAmelCase ) fig.axes.get_yaxis().set_visible(__UpperCAmelCase ) plt.show() def __magic_name__ ( ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = datetime.now() __SCREAMING_SNAKE_CASE = current_time.strftime("""%H:%M:%S""" ) return timestamp
708
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
13
0
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = 9 __SCREAMING_SNAKE_CASE = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __SCREAMING_SNAKE_CASE = kruskal(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__UpperCAmelCase ) == sorted(__UpperCAmelCase )
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right a = 256047 a = 256145 @require_sentencepiece @require_tokenizers class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : List[str] = NllbTokenizer __UpperCamelCase : Union[str, Any] = NllbTokenizerFast __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Dict = True __UpperCamelCase : Optional[Any] = {} def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = NllbTokenizer(lowerCamelCase ,keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = NllbTokenizer(lowerCamelCase ,keep_accents=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase ,lowerCamelCase ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ,legacy_format=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase ,lowerCamelCase ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ,legacy_format=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) @require_torch def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' if not self.test_seqaseq: return __SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. __SCREAMING_SNAKE_CASE = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] __SCREAMING_SNAKE_CASE = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: __SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase ,tgt_texts=lowerCamelCase ,max_length=3 ,max_target_length=10 ,return_tensors="""pt""" ,src_lang="""eng_Latn""" ,tgt_lang="""ron_Latn""" ,) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,10 ) # max_target_length will default to max_length if not specified __SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( lowerCamelCase ,tgt_texts=lowerCamelCase ,max_length=3 ,return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.labels.shape[1] ,3 ) __SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase ,max_length=3 ,max_target_length=10 ,return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 ) self.assertNotIn("""decoder_input_ids""" ,lowerCamelCase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Any ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = [AddedToken("""<special>""" ,lstrip=lowerCamelCase )] __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCamelCase ,additional_special_tokens=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode("""Hey this is a <special> token""" ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode("""<special>""" ,add_special_tokens=lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCamelCase ,additional_special_tokens=lowerCamelCase ,**lowerCamelCase ,) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained( lowerCamelCase ,additional_special_tokens=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.encode("""Hey this is a <special> token""" ) __SCREAMING_SNAKE_CASE = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): __UpperCamelCase : Tuple = 'facebook/nllb-200-distilled-600M' __UpperCamelCase : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCamelCase : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCamelCase : Dict = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def UpperCAmelCase__ ( cls : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = NllbTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="""eng_Latn""" ,tgt_lang="""ron_Latn""" ) __SCREAMING_SNAKE_CASE = 1 return cls def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] ,25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] ,25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] ,25_6057 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.assertIn(lowerCamelCase ,self.tokenizer.all_special_ids ) # fmt: off __SCREAMING_SNAKE_CASE = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCamelCase ,skip_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,max_length=lowerCamelCase ,truncation=lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1] ,2 ) self.assertEqual(ids[0] ,lowerCamelCase ) self.assertEqual(len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) ,[25_6203, 3] ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = NllbTokenizer.from_pretrained(lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase ) @require_torch def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) __SCREAMING_SNAKE_CASE = shift_tokens_right( batch["""labels"""] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) self.assertEqual((2, 15) ,batch.input_ids.shape ) self.assertEqual((2, 15) ,batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase ) self.assertEqual(lowerCamelCase ,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=3 ,return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = self.tokenizer( text_target=self.tgt_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=10 ,return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = targets["""input_ids"""] __SCREAMING_SNAKE_CASE = shift_tokens_right( lowerCamelCase ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ # A, test, EOS, en_XX """input_ids""": [[25_6047, 70, 7356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_6057, } ,) @require_torch def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer( """UN Chief says there is no military solution in Syria""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids ,[1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = self.tokenizer( """UN Chief says there is no military solution in Syria""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids ,[25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __a ( _snake_case ): __UpperCamelCase : Union[str, Any] = 'donut-swin' __UpperCamelCase : Dict = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] ,lowerCamelCase : List[Any]=224 ,lowerCamelCase : List[str]=4 ,lowerCamelCase : str=3 ,lowerCamelCase : Tuple=96 ,lowerCamelCase : Dict=[2, 2, 6, 2] ,lowerCamelCase : str=[3, 6, 12, 24] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : Dict=4.0 ,lowerCamelCase : str=True ,lowerCamelCase : Union[str, Any]=0.0 ,lowerCamelCase : Union[str, Any]=0.0 ,lowerCamelCase : str=0.1 ,lowerCamelCase : Dict="gelu" ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : Dict=0.02 ,lowerCamelCase : List[Any]=1E-5 ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) )
712
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a = logging.get_logger(__name__) a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} with open(__UpperCAmelCase , """r""" ) as file: for line_number, line in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = line.strip() if line: __SCREAMING_SNAKE_CASE = line.split() __SCREAMING_SNAKE_CASE = line_number __SCREAMING_SNAKE_CASE = words[0] __SCREAMING_SNAKE_CASE = value return result def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for attribute in key.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = hf_pointer for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = shape_pointer.shape # let's reduce dimension __SCREAMING_SNAKE_CASE = value[0] else: __SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = PARAM_MAPPING[full_name.split(""".""" )[-1]] __SCREAMING_SNAKE_CASE = """param""" if weight_type is not None and weight_type != "param": __SCREAMING_SNAKE_CASE = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __SCREAMING_SNAKE_CASE = """.""".join([key, hf_param_name] ) else: __SCREAMING_SNAKE_CASE = key __SCREAMING_SNAKE_CASE = value if """lm_head""" in full_key else value[0] a = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): __SCREAMING_SNAKE_CASE = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(__UpperCAmelCase )[0].split(""".""" )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , __UpperCAmelCase ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: __SCREAMING_SNAKE_CASE = """weight_v""" elif "bias" in name: __SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __SCREAMING_SNAKE_CASE = """weight""" else: __SCREAMING_SNAKE_CASE = None if hf_dict is not None: rename_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return is_used return is_used def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __SCREAMING_SNAKE_CASE = True else: __SCREAMING_SNAKE_CASE = load_wavaveca_layer(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] __SCREAMING_SNAKE_CASE = name.split(""".""" ) __SCREAMING_SNAKE_CASE = int(items[0] ) __SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' if config_path is not None: __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WavaVecaConfig() if is_seq_class: __SCREAMING_SNAKE_CASE = read_txt_into_dict(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) feature_extractor.save_pretrained(__UpperCAmelCase ) elif is_finetuned: if dict_path: __SCREAMING_SNAKE_CASE = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __SCREAMING_SNAKE_CASE = target_dict.pad_index __SCREAMING_SNAKE_CASE = target_dict.bos_index __SCREAMING_SNAKE_CASE = target_dict.eos_index __SCREAMING_SNAKE_CASE = len(target_dict.symbols ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , """vocab.json""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = target_dict.indices # fairseq has the <pad> and <s> switched __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaForCTC(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(__UpperCAmelCase ) if is_finetuned or is_seq_class: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __SCREAMING_SNAKE_CASE = argparse.Namespace(task="""audio_pretraining""" ) __SCREAMING_SNAKE_CASE = fairseq.tasks.setup_task(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) a = parser.parse_args() a = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = BlipImageProcessor() __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) __SCREAMING_SNAKE_CASE = InstructBlipProcessor(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ).tokenizer def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : List[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ).image_processor def UpperCAmelCase__ ( self : List[Any] ,**lowerCamelCase : Dict ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ).qformer_tokenizer def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCamelCase ,padding_value=1.0 ) __SCREAMING_SNAKE_CASE = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=lowerCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase ) self.assertIsInstance(processor.qformer_tokenizer ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ,qformer_tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase ,return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ,qformer_tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase ,return_token_type_ids=lowerCamelCase ) __SCREAMING_SNAKE_CASE = qformer_tokenizer(lowerCamelCase ,return_token_type_ids=lowerCamelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor["""qformer_""" + key] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ,qformer_tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ,images=lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] ,) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ,qformer_tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ,qformer_tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ,images=lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] ,)
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE : Union[str, Any] = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE : Dict = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE : int = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE : List[Any] = cha[1] else: __SCREAMING_SNAKE_CASE : Dict = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE : Tuple = sys.stdin.fileno() __SCREAMING_SNAKE_CASE : int = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE : Tuple = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE : int = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
716
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
13
0
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a = logging.get_logger(__name__) class __a : def __init__( self : int ,lowerCamelCase : str = None ,lowerCamelCase : uuid.UUID = None ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' if not conversation_id: __SCREAMING_SNAKE_CASE = uuid.uuida() if past_user_inputs is None: __SCREAMING_SNAKE_CASE = [] if generated_responses is None: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = conversation_id __SCREAMING_SNAKE_CASE = past_user_inputs __SCREAMING_SNAKE_CASE = generated_responses __SCREAMING_SNAKE_CASE = text def __eq__( self : str ,lowerCamelCase : Tuple ): '''simple docstring''' if not isinstance(lowerCamelCase ,lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ,lowerCamelCase : bool = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) __SCREAMING_SNAKE_CASE = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __SCREAMING_SNAKE_CASE = text def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __SCREAMING_SNAKE_CASE = None def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : str ): '''simple docstring''' self.generated_responses.append(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __SCREAMING_SNAKE_CASE = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( _snake_case, R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ', ) class __a ( _snake_case ): def __init__( self : str ,*lowerCamelCase : Tuple ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(*lowerCamelCase ,**lowerCamelCase ) if self.tokenizer.pad_token_id is None: __SCREAMING_SNAKE_CASE = self.tokenizer.eos_token def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : Union[str, Any]=None ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} if min_length_for_response is not None: __SCREAMING_SNAKE_CASE = min_length_for_response if minimum_tokens is not None: __SCREAMING_SNAKE_CASE = minimum_tokens if "max_length" in generate_kwargs: __SCREAMING_SNAKE_CASE = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] ,lowerCamelCase : Union[Conversation, List[Conversation]] ,lowerCamelCase : Tuple=0 ,**lowerCamelCase : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = super().__call__(lowerCamelCase ,num_workers=lowerCamelCase ,**lowerCamelCase ) if isinstance(lowerCamelCase ,lowerCamelCase ) and len(lowerCamelCase ) == 1: return outputs[0] return outputs def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Conversation ,lowerCamelCase : Optional[int]=32 ): '''simple docstring''' if not isinstance(lowerCamelCase ,lowerCamelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer ,"""_build_conversation_input_ids""" ): __SCREAMING_SNAKE_CASE = self.tokenizer._build_conversation_input_ids(lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __SCREAMING_SNAKE_CASE = self._legacy_parse_and_tokenize(lowerCamelCase ) if self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.LongTensor([input_ids] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple=10 ,**lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __SCREAMING_SNAKE_CASE = max_length - minimum_tokens __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __SCREAMING_SNAKE_CASE = model_inputs["""attention_mask"""][:, -trim:] __SCREAMING_SNAKE_CASE = model_inputs.pop("""conversation""" ) __SCREAMING_SNAKE_CASE = max_length __SCREAMING_SNAKE_CASE = self.model.generate(**lowerCamelCase ,**lowerCamelCase ) if self.model.config.is_encoder_decoder: __SCREAMING_SNAKE_CASE = 1 else: __SCREAMING_SNAKE_CASE = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs["""output_ids"""] __SCREAMING_SNAKE_CASE = self.tokenizer.decode( output_ids[0] ,skip_special_tokens=lowerCamelCase ,clean_up_tokenization_spaces=lowerCamelCase ,) __SCREAMING_SNAKE_CASE = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(lowerCamelCase ) return conversation def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Conversation ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer.eos_token_id __SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) ) if len(lowerCamelCase ) > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = input_ids[-self.tokenizer.model_max_length :] return input_ids
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' from functools import reduce a = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( __UpperCAmelCase = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __UpperCAmelCase , __UpperCAmelCase : str(int(__UpperCAmelCase ) * int(__UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(__UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' from ....utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): def __init__( self : Tuple ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : Optional[Any]=2048 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = config.__dict__ __SCREAMING_SNAKE_CASE = modal_hidden_size if num_labels: __SCREAMING_SNAKE_CASE = num_labels
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' import torch def __magic_name__ ( ) -> Dict: '''simple docstring''' if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: __SCREAMING_SNAKE_CASE = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __a ( _snake_case ): def __init__( self : List[Any] ,lowerCamelCase : NestedDataStructureLike[PathLike] ,lowerCamelCase : Optional[NamedSplit] = None ,lowerCamelCase : Optional[Features] = None ,lowerCamelCase : str = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : Optional[str] = None ,lowerCamelCase : Optional[int] = None ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' super().__init__( lowerCamelCase ,split=lowerCamelCase ,features=lowerCamelCase ,cache_dir=lowerCamelCase ,keep_in_memory=lowerCamelCase ,streaming=lowerCamelCase ,num_proc=lowerCamelCase ,**lowerCamelCase ,) __SCREAMING_SNAKE_CASE = field __SCREAMING_SNAKE_CASE = path_or_paths if isinstance(lowerCamelCase ,lowerCamelCase ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE = Json( cache_dir=lowerCamelCase ,data_files=lowerCamelCase ,features=lowerCamelCase ,field=lowerCamelCase ,**lowerCamelCase ,) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.streaming: __SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=lowerCamelCase ,download_mode=lowerCamelCase ,verification_mode=lowerCamelCase ,base_path=lowerCamelCase ,num_proc=self.num_proc ,) __SCREAMING_SNAKE_CASE = self.builder.as_dataset( split=self.split ,verification_mode=lowerCamelCase ,in_memory=self.keep_in_memory ) return dataset class __a : def __init__( self : Tuple ,lowerCamelCase : Dataset ,lowerCamelCase : Union[PathLike, BinaryIO] ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Optional[int] = None ,**lowerCamelCase : str ,): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = path_or_buf __SCREAMING_SNAKE_CASE = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = """utf-8""" __SCREAMING_SNAKE_CASE = to_json_kwargs def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""path_or_buf""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""orient""" ,"""records""" ) __SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""lines""" ,True if orient == """records""" else False ) __SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""index""" ,False if orient in ["""split""", """table"""] else True ) __SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("""compression""" ,lowerCamelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf ,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf ,"""wb""" ,compression=lowerCamelCase ) as buffer: __SCREAMING_SNAKE_CASE = self._write(file_obj=lowerCamelCase ,orient=lowerCamelCase ,lines=lowerCamelCase ,index=lowerCamelCase ,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" """ was passed. Please provide a local path instead.""" ) __SCREAMING_SNAKE_CASE = self._write( file_obj=self.path_or_buf ,orient=lowerCamelCase ,lines=lowerCamelCase ,index=lowerCamelCase ,**self.to_json_kwargs ) return written def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = args __SCREAMING_SNAKE_CASE = query_table( table=self.dataset.data ,key=slice(lowerCamelCase ,offset + self.batch_size ) ,indices=self.dataset._indices ,) __SCREAMING_SNAKE_CASE = batch.to_pandas().to_json( path_or_buf=lowerCamelCase ,orient=lowerCamelCase ,lines=lowerCamelCase ,index=lowerCamelCase ,**lowerCamelCase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : BinaryIO ,lowerCamelCase : Optional[int] ,lowerCamelCase : Any ,lowerCamelCase : Union[str, Any] ,**lowerCamelCase : Any ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit="""ba""" ,disable=not logging.is_progress_bar_enabled() ,desc="""Creating json from Arrow format""" ,): __SCREAMING_SNAKE_CASE = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowerCamelCase ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json ,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0 ,lowerCamelCase ,lowerCamelCase )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit="""ba""" ,disable=not logging.is_progress_bar_enabled() ,desc="""Creating json from Arrow format""" ,): written += file_obj.write(lowerCamelCase ) return written
700
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(__UpperCAmelCase ) - np.asarray(__UpperCAmelCase )) ** 2 ) ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: '''simple docstring''' from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
701
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1024 , __UpperCAmelCase=1024 , __UpperCAmelCase=False , **__UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = SeqaSeqDataset(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , type_path="""train""" , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = tok.pad_token_id def get_lens(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = tqdm( DataLoader(__UpperCAmelCase , batch_size=512 , num_workers=8 , shuffle=__UpperCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __SCREAMING_SNAKE_CASE = [] for batch in dl: __SCREAMING_SNAKE_CASE = batch["""input_ids"""].ne(__UpperCAmelCase ).sum(1 ).tolist() __SCREAMING_SNAKE_CASE = batch["""labels"""].ne(__UpperCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__UpperCAmelCase , __UpperCAmelCase ): max_lens.append(max(__UpperCAmelCase , __UpperCAmelCase ) ) else: max_lens.extend(__UpperCAmelCase ) return max_lens __SCREAMING_SNAKE_CASE = get_lens(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = SeqaSeqDataset(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , type_path="""val""" , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = get_lens(__UpperCAmelCase ) pickle_save(__UpperCAmelCase , train_ds.len_file ) pickle_save(__UpperCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
702
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE = cha[1] else: __SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE = sys.stdin.fileno() __SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) assert noofclusters < len(__UpperCAmelCase ) # Find out the dimensionality __SCREAMING_SNAKE_CASE = len(vectors[0] ) # Will help select random centroids from among the available vectors __SCREAMING_SNAKE_CASE = list(range(len(__UpperCAmelCase ) ) ) shuffle(__UpperCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __SCREAMING_SNAKE_CASE = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __SCREAMING_SNAKE_CASE = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __SCREAMING_SNAKE_CASE = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values __SCREAMING_SNAKE_CASE = tf.placeholder("""float64""" , [dim] ) __SCREAMING_SNAKE_CASE = [] for centroid in centroids: cent_assigns.append(tf.assign(__UpperCAmelCase , __UpperCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __SCREAMING_SNAKE_CASE = [tf.Variable(0 ) for i in range(len(__UpperCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value __SCREAMING_SNAKE_CASE = tf.placeholder("""int32""" ) __SCREAMING_SNAKE_CASE = [] for assignment in assignments: cluster_assigns.append(tf.assign(__UpperCAmelCase , __UpperCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __SCREAMING_SNAKE_CASE = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __SCREAMING_SNAKE_CASE = tf.reduce_mean(__UpperCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input __SCREAMING_SNAKE_CASE = tf.placeholder("""float""" , [dim] ) __SCREAMING_SNAKE_CASE = tf.placeholder("""float""" , [dim] ) __SCREAMING_SNAKE_CASE = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCAmelCase , __UpperCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __SCREAMING_SNAKE_CASE = tf.placeholder("""float""" , [noofclusters] ) __SCREAMING_SNAKE_CASE = tf.argmin(__UpperCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __SCREAMING_SNAKE_CASE = tf.initialize_all_variables() # Initialize all variables sess.run(__UpperCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __SCREAMING_SNAKE_CASE = 100 for _ in range(__UpperCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __SCREAMING_SNAKE_CASE = [ sess.run(__UpperCAmelCase , feed_dict={va: vect, va: sess.run(__UpperCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __SCREAMING_SNAKE_CASE = sess.run( __UpperCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__UpperCAmelCase ): # Collect all the vectors assigned to this cluster __SCREAMING_SNAKE_CASE = [ vectors[i] for i in range(len(__UpperCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __SCREAMING_SNAKE_CASE = sess.run( __UpperCAmelCase , feed_dict={mean_input: array(__UpperCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __SCREAMING_SNAKE_CASE = sess.run(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sess.run(__UpperCAmelCase ) return centroids, assignments
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
'''simple docstring''' import sys from collections import defaultdict class __a : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(lowerCamelCase ,range(len(lowerCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,lowerCamelCase ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,**lowerCamelCase : List[str] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname ,pad_token="""!""" ,**lowerCamelCase ) def UpperCAmelCase__ ( self : int ,**lowerCamelCase : List[str] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,pad_token="""!""" ,**lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ,**lowerCamelCase : Tuple ): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(self.tmpdirname ,use_fast=lowerCamelCase ) __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer ,lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCamelCase ) __SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase ,return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ,return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase ,return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() ,encoded_processor[key][0].tolist() ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ,images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """google/owlvit-base-patch32""" __SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = ["""cat""", """nasa badge"""] __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 16 self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape ,(2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """google/owlvit-base-patch32""" __SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = [["""cat""", """nasa badge"""], ["""person"""]] __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) __SCREAMING_SNAKE_CASE = max([len(lowerCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape ,(batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """google/owlvit-base-patch32""" __SCREAMING_SNAKE_CASE = OwlViTProcessor.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = ["""cat""", """nasa badge"""] __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = inputs["""input_ids"""] __SCREAMING_SNAKE_CASE = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape ,(2, seq_length) ) self.assertListEqual(list(input_ids[0] ) ,predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) ,predicted_ids[1] ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,query_images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) ,["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = OwlViTProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase )
706
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : List[Any] = 'rwkv' __UpperCamelCase : List[str] = {'max_position_embeddings': 'context_length'} def __init__( self : Union[str, Any] ,lowerCamelCase : Optional[Any]=5_0277 ,lowerCamelCase : int=1024 ,lowerCamelCase : Any=4096 ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Optional[int]=1E-5 ,lowerCamelCase : List[Any]=0 ,lowerCamelCase : str=0 ,lowerCamelCase : List[Any]=6 ,lowerCamelCase : List[str]=False ,lowerCamelCase : Dict=True ,**lowerCamelCase : List[Any] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = context_length __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = attention_hidden_size if attention_hidden_size is not None else hidden_size __SCREAMING_SNAKE_CASE = intermediate_size if intermediate_size is not None else 4 * hidden_size __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = rescale_every __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__( tie_word_embeddings=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase )
707
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a = logging.get_logger(__name__) # pylint: disable=invalid-name class __a ( _snake_case ): def __init__( self : str ,lowerCamelCase : AutoencoderKL ,lowerCamelCase : CLIPTextModel ,lowerCamelCase : CLIPTokenizer ,lowerCamelCase : UNetaDConditionModel ,lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,lowerCamelCase : StableDiffusionSafetyChecker ,lowerCamelCase : CLIPImageProcessor ,): '''simple docstring''' super().__init__() self.register_modules( vae=lowerCamelCase ,text_encoder=lowerCamelCase ,tokenizer=lowerCamelCase ,unet=lowerCamelCase ,scheduler=lowerCamelCase ,safety_checker=lowerCamelCase ,feature_extractor=lowerCamelCase ,) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def __call__( self : Optional[Any] ,lowerCamelCase : Union[str, List[str]] ,lowerCamelCase : int = 512 ,lowerCamelCase : int = 512 ,lowerCamelCase : int = 50 ,lowerCamelCase : float = 7.5 ,lowerCamelCase : Optional[Union[str, List[str]]] = None ,lowerCamelCase : Optional[int] = 1 ,lowerCamelCase : float = 0.0 ,lowerCamelCase : Optional[torch.Generator] = None ,lowerCamelCase : Optional[torch.FloatTensor] = None ,lowerCamelCase : Optional[str] = "pil" ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,lowerCamelCase : int = 1 ,lowerCamelCase : Optional[torch.FloatTensor] = None ,**lowerCamelCase : Any ,): '''simple docstring''' if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = 1 elif isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase ,lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCamelCase )}.""" ) # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCamelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) __SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text_embeddings.shape __SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 ,lowerCamelCase ,1 ) __SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt ,lowerCamelCase ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""""""] elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=""" f""" {type(lowerCamelCase )}.""" ) elif isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCamelCase ,padding="""max_length""" ,max_length=lowerCamelCase ,truncation=lowerCamelCase ,return_tensors="""pt""" ,) __SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(lowerCamelCase ,lowerCamelCase ,1 ) __SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt ,lowerCamelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE = torch.randn( lowerCamelCase ,generator=lowerCamelCase ,device="""cpu""" ,dtype=lowerCamelCase ).to(self.device ) __SCREAMING_SNAKE_CASE = torch.randn(lowerCamelCase ,generator=lowerCamelCase ,device="""cpu""" ,dtype=lowerCamelCase ).to( self.device ) else: __SCREAMING_SNAKE_CASE = torch.randn( lowerCamelCase ,generator=lowerCamelCase ,device=self.device ,dtype=lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.randn(lowerCamelCase ,generator=lowerCamelCase ,device=self.device ,dtype=lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __SCREAMING_SNAKE_CASE = latents_reference.to(self.device ) __SCREAMING_SNAKE_CASE = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __SCREAMING_SNAKE_CASE = (latents_shape[3] - latents_shape_reference[3]) // 2 __SCREAMING_SNAKE_CASE = (latents_shape[2] - latents_shape_reference[2]) // 2 __SCREAMING_SNAKE_CASE = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __SCREAMING_SNAKE_CASE = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __SCREAMING_SNAKE_CASE = 0 if dx < 0 else dx __SCREAMING_SNAKE_CASE = 0 if dy < 0 else dy __SCREAMING_SNAKE_CASE = max(-dx ,0 ) __SCREAMING_SNAKE_CASE = max(-dy ,0 ) # import pdb # pdb.set_trace() __SCREAMING_SNAKE_CASE = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE = {} if accepts_eta: __SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(lowerCamelCase ,lowerCamelCase ) # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(lowerCamelCase ,lowerCamelCase ,encoder_hidden_states=lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,**lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = 1 / 0.18_215 * latents __SCREAMING_SNAKE_CASE = self.vae.decode(lowerCamelCase ).sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(self.numpy_to_pil(lowerCamelCase ) ,return_tensors="""pt""" ).to( self.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.safety_checker( images=lowerCamelCase ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __SCREAMING_SNAKE_CASE = None if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCamelCase ,nsfw_content_detected=lowerCamelCase )
708
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
13
0
'''simple docstring''' from statistics import mean import numpy as np def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 # Number of processes finished __SCREAMING_SNAKE_CASE = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __SCREAMING_SNAKE_CASE = [0] * no_of_process # List to include calculation results __SCREAMING_SNAKE_CASE = [0] * no_of_process # Sort by arrival time. __SCREAMING_SNAKE_CASE = [burst_time[i] for i in np.argsort(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [process_name[i] for i in np.argsort(__UpperCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: __SCREAMING_SNAKE_CASE = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __SCREAMING_SNAKE_CASE = arrival_time[i] __SCREAMING_SNAKE_CASE = 0 # Index showing the location of the process being performed __SCREAMING_SNAKE_CASE = 0 # Saves the current response ratio. __SCREAMING_SNAKE_CASE = 0 for i in range(0 , __UpperCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __SCREAMING_SNAKE_CASE = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __SCREAMING_SNAKE_CASE = temp __SCREAMING_SNAKE_CASE = i # Calculate the turn around time __SCREAMING_SNAKE_CASE = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __SCREAMING_SNAKE_CASE = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: '''simple docstring''' __SCREAMING_SNAKE_CASE = [0] * no_of_process for i in range(0 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": a = 5 a = ["A", "B", "C", "D", "E"] a = [1, 2, 3, 4, 5] a = [1, 2, 3, 4, 5] a = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) a = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self : Optional[int] ,lowerCamelCase : Dict ,lowerCamelCase : Optional[int]=13 ,lowerCamelCase : Union[str, Any]=32 ,lowerCamelCase : str=2 ,lowerCamelCase : str=3 ,lowerCamelCase : List[str]=16 ,lowerCamelCase : Tuple=[1, 2, 1] ,lowerCamelCase : List[Any]=[2, 2, 4] ,lowerCamelCase : Tuple=2 ,lowerCamelCase : int=2.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Union[str, Any]=0.0 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : List[str]="gelu" ,lowerCamelCase : Dict=False ,lowerCamelCase : str=True ,lowerCamelCase : Any=0.02 ,lowerCamelCase : Tuple=1E-5 ,lowerCamelCase : str=True ,lowerCamelCase : Any=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : List[Any]=10 ,lowerCamelCase : Union[str, Any]=8 ,lowerCamelCase : str=["stage1", "stage2", "stage3"] ,lowerCamelCase : int=[1, 2, 3] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = patch_norm __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = encoder_stride __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : str ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MaskFormerSwinModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) __SCREAMING_SNAKE_CASE = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __SCREAMING_SNAKE_CASE = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MaskFormerSwinBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,[16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCamelCase ): __SCREAMING_SNAKE_CASE = ["""stem"""] __SCREAMING_SNAKE_CASE = MaskFormerSwinBackbone(config=lowerCamelCase ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( _snake_case, _snake_case, unittest.TestCase ): __UpperCamelCase : Dict = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __UpperCamelCase : Optional[int] = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __UpperCamelCase : Dict = False __UpperCamelCase : str = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MaskFormerSwinModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip("""Swin does not support feedforward chunking""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase ,nn.Linear ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[Any] ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = outputs.hidden_states __SCREAMING_SNAKE_CASE = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase ) ,lowerCamelCase ) # Swin has a different seq_length __SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __SCREAMING_SNAKE_CASE = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,(padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase : Union[str, Any] ): __SCREAMING_SNAKE_CASE = 0 return t def check_equivalence(lowerCamelCase : Any ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : str={} ): with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCamelCase ,return_dict=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(**lowerCamelCase ,return_dict=lowerCamelCase ,**lowerCamelCase ).to_tuple() def recursive_check(lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any] ): if isinstance(lowerCamelCase ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase ,lowerCamelCase ): recursive_check(lowerCamelCase ,lowerCamelCase ) elif isinstance(lowerCamelCase ,lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() ,dict_object.values() ): recursive_check(lowerCamelCase ,lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCamelCase ) ,set_nan_tensor_to_zero(lowerCamelCase ) ,atol=1E-5 ) ,msg=( """Tuple and dict output are not equal. Difference:""" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(lowerCamelCase ).any()} and `inf`: {torch.isinf(lowerCamelCase )}. Dict has""" f""" `nan`: {torch.isnan(lowerCamelCase ).any()} and `inf`: {torch.isinf(lowerCamelCase )}.""" ) ,) recursive_check(lowerCamelCase ,lowerCamelCase ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) check_equivalence(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ,return_labels=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ,return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) check_equivalence(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,{"""output_hidden_states""": True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ,return_labels=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ,return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,{"""output_hidden_states""": True} ) @require_torch class __a ( unittest.TestCase, _snake_case ): __UpperCamelCase : Optional[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () __UpperCamelCase : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = backbone_class(lowerCamelCase ) backbone.to(lowerCamelCase ) backbone.eval() __SCREAMING_SNAKE_CASE = backbone(**lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps ,lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps ,backbone.channels ): self.assertTrue(feature_map.shape[:2] ,(batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __SCREAMING_SNAKE_CASE = backbone(**lowerCamelCase ,output_hidden_states=lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) ,len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] ,backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) ,(batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __SCREAMING_SNAKE_CASE = backbone(**lowerCamelCase ,output_attentions=lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
0
'''simple docstring''' a = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } a = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __SCREAMING_SNAKE_CASE = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {', '.join(__UpperCAmelCase )}""" ) raise ValueError(__UpperCAmelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = ( first_str_length if first_str_length > second_str_length else second_str_length ) __SCREAMING_SNAKE_CASE = [] for char_count in range(__UpperCAmelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__UpperCAmelCase ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,lowerCamelCase ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : str ,**lowerCamelCase : Any ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ,**lowerCamelCase : List[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCamelCase ,padding_value=1.0 ) __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=lowerCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase ,return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ,images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(lowerCamelCase ): processor() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase ,image_processor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase ,images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a = random.Random() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' if rng is None: __SCREAMING_SNAKE_CASE = global_rng __SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any]=7 ,lowerCamelCase : Union[str, Any]=400 ,lowerCamelCase : Any=2000 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : Any=128 ,lowerCamelCase : List[Any]=1 ,lowerCamelCase : str=512 ,lowerCamelCase : Any=30 ,lowerCamelCase : List[str]=4_4100 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = min_seq_length __SCREAMING_SNAKE_CASE = max_seq_length __SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = num_audio_channels __SCREAMING_SNAKE_CASE = hop_length __SCREAMING_SNAKE_CASE = chunk_length __SCREAMING_SNAKE_CASE = sampling_rate def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase__ ( self : str ,lowerCamelCase : str=False ,lowerCamelCase : Any=False ): '''simple docstring''' def _flatten(lowerCamelCase : Optional[int] ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = TvltFeatureExtractor def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TvltFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""sampling_rate""" ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(lowerCamelCase )[0] check_json_file_has_correct_format(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) __SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase ,lowerCamelCase ) ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,"""feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(lowerCamelCase ) __SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) __SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase ,lowerCamelCase ) ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] __SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ,sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase ,return_tensors="""np""" ,sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __SCREAMING_SNAKE_CASE = feature_extractor( lowerCamelCase ,return_tensors="""np""" ,sampling_rate=4_4100 ,mask_audio=lowerCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] __SCREAMING_SNAKE_CASE = np.asarray(lowerCamelCase ) __SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase ,return_tensors="""np""" ,sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(lowerCamelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE = TvltFeatureExtractor() __SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase ,return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) __SCREAMING_SNAKE_CASE = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,lowerCamelCase ,atol=1E-4 ) )
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging a = logging.get_logger(__name__) a = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __a ( _snake_case ): __UpperCamelCase : List[Any] = 'gpt_neo' __UpperCamelCase : Tuple = ['past_key_values'] __UpperCamelCase : Optional[int] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : List[Any] ,lowerCamelCase : Optional[Any]=5_0257 ,lowerCamelCase : List[str]=2048 ,lowerCamelCase : Optional[int]=2048 ,lowerCamelCase : Optional[Any]=24 ,lowerCamelCase : str=[[["global", "local"], 12]] ,lowerCamelCase : int=16 ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Optional[Any]=256 ,lowerCamelCase : Union[str, Any]="gelu_new" ,lowerCamelCase : List[str]=0.0 ,lowerCamelCase : List[Any]=0.0 ,lowerCamelCase : int=0.0 ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=1E-5 ,lowerCamelCase : Optional[int]=0.02 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Dict=5_0256 ,lowerCamelCase : Tuple=5_0256 ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : str = window_size __SCREAMING_SNAKE_CASE : str = activation_function __SCREAMING_SNAKE_CASE : Dict = resid_dropout __SCREAMING_SNAKE_CASE : Dict = embed_dropout __SCREAMING_SNAKE_CASE : Dict = attention_dropout __SCREAMING_SNAKE_CASE : Optional[int] = classifier_dropout __SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Tuple = use_cache __SCREAMING_SNAKE_CASE : Dict = bos_token_id __SCREAMING_SNAKE_CASE : Tuple = eos_token_id __SCREAMING_SNAKE_CASE : str = attention_types __SCREAMING_SNAKE_CASE : str = self.expand_attention_types_params(lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) @staticmethod def UpperCAmelCase__ ( lowerCamelCase : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' import torch __SCREAMING_SNAKE_CASE : Optional[Any] = input.size() __SCREAMING_SNAKE_CASE : Optional[Any] = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = shape[dimension] __SCREAMING_SNAKE_CASE : List[str] = torch.arange(0 , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = torch.div(sizedim - size , __UpperCAmelCase , rounding_mode="""floor""" ) + 1 __SCREAMING_SNAKE_CASE : List[str] = torch.arange(__UpperCAmelCase ) + low_indices[:min_length][:, None] __SCREAMING_SNAKE_CASE : int = [slice(__UpperCAmelCase )] * rank __SCREAMING_SNAKE_CASE : Dict = indices __SCREAMING_SNAKE_CASE : List[str] = input[s] __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch __SCREAMING_SNAKE_CASE : Optional[int] = torch.arange(1 , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = torch.remainder(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE : str = remainders == 0 __SCREAMING_SNAKE_CASE : str = candidates[divisor_indices] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(__UpperCAmelCase ) return largest_divisor, torch.div(__UpperCAmelCase , __UpperCAmelCase , rounding_mode="""floor""" ) class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE : int = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase ,direction="""inputs""" ) __SCREAMING_SNAKE_CASE : List[str] = {0: """batch""", 1: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self._config.num_heads def UpperCAmelCase__ ( self : str ,lowerCamelCase : PreTrainedTokenizer ,lowerCamelCase : int = -1 ,lowerCamelCase : int = -1 ,lowerCamelCase : bool = False ,lowerCamelCase : Optional[TensorType] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = super(lowerCamelCase ,self ).generate_dummy_inputs( lowerCamelCase ,batch_size=lowerCamelCase ,seq_length=lowerCamelCase ,is_pair=lowerCamelCase ,framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE : Any = seqlen + 2 __SCREAMING_SNAKE_CASE : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE : Tuple = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE : Dict = common_inputs["""attention_mask"""] if self.use_past: __SCREAMING_SNAKE_CASE : Optional[Any] = ordered_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase ,lowerCamelCase ,dtype=lowerCamelCase )] ,dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return 13
716
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __SCREAMING_SNAKE_CASE = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE = max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' def __magic_name__ ( ) -> int: '''simple docstring''' return 1 def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase = 200 ) -> int: '''simple docstring''' return two_pound(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated a = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ a = "https://storage.googleapis.com/cvdf-datasets/mnist/" def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__UpperCAmelCase )[0] @deprecated(__UpperCAmelCase , """Please use tf.data to implement this functionality.""" ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: __SCREAMING_SNAKE_CASE = _readaa(__UpperCAmelCase ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) __SCREAMING_SNAKE_CASE = _readaa(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = _readaa(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = _readaa(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = bytestream.read(rows * cols * num_images ) __SCREAMING_SNAKE_CASE = numpy.frombuffer(__UpperCAmelCase , dtype=numpy.uinta ) __SCREAMING_SNAKE_CASE = data.reshape(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 1 ) return data @deprecated(__UpperCAmelCase , """Please use tf.one_hot on tensors.""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = labels_dense.shape[0] __SCREAMING_SNAKE_CASE = numpy.arange(__UpperCAmelCase ) * num_classes __SCREAMING_SNAKE_CASE = numpy.zeros((num_labels, num_classes) ) __SCREAMING_SNAKE_CASE = 1 return labels_one_hot @deprecated(__UpperCAmelCase , """Please use tf.data to implement this functionality.""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=10 ) -> Optional[Any]: '''simple docstring''' print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream: __SCREAMING_SNAKE_CASE = _readaa(__UpperCAmelCase ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) __SCREAMING_SNAKE_CASE = _readaa(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = bytestream.read(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = numpy.frombuffer(__UpperCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__UpperCAmelCase , __UpperCAmelCase ) return labels class __a : @deprecated( lowerCamelCase ,"""Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" ,) def __init__( self : int ,lowerCamelCase : List[str] ,lowerCamelCase : int ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : List[str]=dtypes.floataa ,lowerCamelCase : Tuple=True ,lowerCamelCase : List[Any]=None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = random_seed.get_seed(lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __SCREAMING_SNAKE_CASE = dtypes.as_dtype(lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: __SCREAMING_SNAKE_CASE = 1_0000 __SCREAMING_SNAKE_CASE = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" __SCREAMING_SNAKE_CASE = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __SCREAMING_SNAKE_CASE = images.reshape( images.shape[0] ,images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __SCREAMING_SNAKE_CASE = images.astype(numpy.floataa ) __SCREAMING_SNAKE_CASE = numpy.multiply(lowerCamelCase ,1.0 / 255.0 ) __SCREAMING_SNAKE_CASE = images __SCREAMING_SNAKE_CASE = labels __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self._images @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self._labels @property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return self._num_examples @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self._epochs_completed def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ,lowerCamelCase : Any=False ,lowerCamelCase : Dict=True ): '''simple docstring''' if fake_data: __SCREAMING_SNAKE_CASE = [1] * 784 __SCREAMING_SNAKE_CASE = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase )], [fake_label for _ in range(lowerCamelCase )], ) __SCREAMING_SNAKE_CASE = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __SCREAMING_SNAKE_CASE = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.images[perma] __SCREAMING_SNAKE_CASE = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __SCREAMING_SNAKE_CASE = self._num_examples - start __SCREAMING_SNAKE_CASE = self._images[start : self._num_examples] __SCREAMING_SNAKE_CASE = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __SCREAMING_SNAKE_CASE = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.images[perm] __SCREAMING_SNAKE_CASE = self.labels[perm] # Start next epoch __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = batch_size - rest_num_examples __SCREAMING_SNAKE_CASE = self._index_in_epoch __SCREAMING_SNAKE_CASE = self._images[start:end] __SCREAMING_SNAKE_CASE = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) ,axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) ,axis=0 ), ) else: self._index_in_epoch += batch_size __SCREAMING_SNAKE_CASE = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__UpperCAmelCase , """Please write your own downloading logic.""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not gfile.Exists(__UpperCAmelCase ): gfile.MakeDirs(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if not gfile.Exists(__UpperCAmelCase ): urllib.request.urlretrieve(__UpperCAmelCase , __UpperCAmelCase ) # noqa: S310 with gfile.GFile(__UpperCAmelCase ) as f: __SCREAMING_SNAKE_CASE = f.size() print("""Successfully downloaded""" , __UpperCAmelCase , __UpperCAmelCase , """bytes.""" ) return filepath @deprecated( __UpperCAmelCase , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=5000 , __UpperCAmelCase=None , __UpperCAmelCase=DEFAULT_SOURCE_URL , ) -> int: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__UpperCAmelCase , one_hot=__UpperCAmelCase , dtype=__UpperCAmelCase , seed=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = fake() __SCREAMING_SNAKE_CASE = fake() __SCREAMING_SNAKE_CASE = fake() return _Datasets(train=__UpperCAmelCase , validation=__UpperCAmelCase , test=__UpperCAmelCase ) if not source_url: # empty string check __SCREAMING_SNAKE_CASE = DEFAULT_SOURCE_URL __SCREAMING_SNAKE_CASE = """train-images-idx3-ubyte.gz""" __SCREAMING_SNAKE_CASE = """train-labels-idx1-ubyte.gz""" __SCREAMING_SNAKE_CASE = """t10k-images-idx3-ubyte.gz""" __SCREAMING_SNAKE_CASE = """t10k-labels-idx1-ubyte.gz""" __SCREAMING_SNAKE_CASE = _maybe_download( __UpperCAmelCase , __UpperCAmelCase , source_url + train_images_file ) with gfile.Open(__UpperCAmelCase , """rb""" ) as f: __SCREAMING_SNAKE_CASE = _extract_images(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = _maybe_download( __UpperCAmelCase , __UpperCAmelCase , source_url + train_labels_file ) with gfile.Open(__UpperCAmelCase , """rb""" ) as f: __SCREAMING_SNAKE_CASE = _extract_labels(__UpperCAmelCase , one_hot=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = _maybe_download( __UpperCAmelCase , __UpperCAmelCase , source_url + test_images_file ) with gfile.Open(__UpperCAmelCase , """rb""" ) as f: __SCREAMING_SNAKE_CASE = _extract_images(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = _maybe_download( __UpperCAmelCase , __UpperCAmelCase , source_url + test_labels_file ) with gfile.Open(__UpperCAmelCase , """rb""" ) as f: __SCREAMING_SNAKE_CASE = _extract_labels(__UpperCAmelCase , one_hot=__UpperCAmelCase ) if not 0 <= validation_size <= len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = ( """Validation size should be between 0 and """ f"""{len(__UpperCAmelCase )}. Received: {validation_size}.""" ) raise ValueError(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_images[:validation_size] __SCREAMING_SNAKE_CASE = train_labels[:validation_size] __SCREAMING_SNAKE_CASE = train_images[validation_size:] __SCREAMING_SNAKE_CASE = train_labels[validation_size:] __SCREAMING_SNAKE_CASE = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} __SCREAMING_SNAKE_CASE = _DataSet(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = _DataSet(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = _DataSet(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) return _Datasets(train=__UpperCAmelCase , validation=__UpperCAmelCase , test=__UpperCAmelCase )
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __magic_name__ ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 for i in range(2 , max_n + 1 ): __SCREAMING_SNAKE_CASE = pre_numerator __SCREAMING_SNAKE_CASE = 2 * i // 3 if i % 3 == 0 else 1 __SCREAMING_SNAKE_CASE = cur_numerator __SCREAMING_SNAKE_CASE = e_cont * pre_numerator + temp return sum_digits(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
from ..utils import DummyObject, requires_backends class __a ( metaclass=_snake_case ): __UpperCamelCase : Tuple = ['note_seq'] def __init__( self : Optional[Any] ,*lowerCamelCase : Tuple ,**lowerCamelCase : Any ): '''simple docstring''' requires_backends(self ,["""note_seq"""] ) @classmethod def UpperCAmelCase__ ( cls : Dict ,*lowerCamelCase : Tuple ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls ,["""note_seq"""] ) @classmethod def UpperCAmelCase__ ( cls : List[str] ,*lowerCamelCase : Optional[Any] ,**lowerCamelCase : str ): '''simple docstring''' requires_backends(cls ,["""note_seq"""] )
700
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(__UpperCAmelCase , 0 , __UpperCAmelCase , args=(__UpperCAmelCase) )[0] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return math.pow(__UpperCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
701
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("""RGB""" ) return image def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = dct.pop(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = val def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(__UpperCAmelCase , requires_grad=__UpperCAmelCase ), v_bias) ) __SCREAMING_SNAKE_CASE = qkv_bias def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = 364 if """coco""" in model_name else 224 __SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=__UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=__UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=__UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=__UpperCAmelCase , text_config=__UpperCAmelCase ) return config, image_size @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) __SCREAMING_SNAKE_CASE = tokenizer("""\n""" , add_special_tokens=__UpperCAmelCase ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_blipa_config(__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(__UpperCAmelCase ).eval() __SCREAMING_SNAKE_CASE = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __SCREAMING_SNAKE_CASE = """cuda""" if torch.cuda.is_available() else """cpu""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = load_model_and_preprocess( name=__UpperCAmelCase , model_type=__UpperCAmelCase , is_eval=__UpperCAmelCase , device=__UpperCAmelCase ) original_model.eval() print("""Done!""" ) # update state dict keys __SCREAMING_SNAKE_CASE = original_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE = state_dict.pop(__UpperCAmelCase ) if key.startswith("""Qformer.bert""" ): __SCREAMING_SNAKE_CASE = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __SCREAMING_SNAKE_CASE = key.replace("""self""" , """attention""" ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): __SCREAMING_SNAKE_CASE = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): __SCREAMING_SNAKE_CASE = key.replace("""t5""" , """language""" ) __SCREAMING_SNAKE_CASE = val # read in qv biases read_in_q_v_bias(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hf_model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE = load_demo_image() __SCREAMING_SNAKE_CASE = vis_processors["""eval"""](__UpperCAmelCase ).unsqueeze(0 ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(__UpperCAmelCase ) # create processor __SCREAMING_SNAKE_CASE = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = processor(images=__UpperCAmelCase , return_tensors="""pt""" ).pixel_values.to(__UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) original_model.to(__UpperCAmelCase ) hf_model.to(__UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits __SCREAMING_SNAKE_CASE = hf_model(__UpperCAmelCase , __UpperCAmelCase ).logits else: __SCREAMING_SNAKE_CASE = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits __SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __SCREAMING_SNAKE_CASE = hf_model(__UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE = torch.tensor( [[-41.5850, -4.4_4_4_0, -8.9_9_2_2], [-47.4322, -5.9_1_4_3, -1.7_3_4_0]] , device=__UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE = torch.tensor( [[-57.0109, -9.8_9_6_7, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=__UpperCAmelCase ) else: # cast to same type __SCREAMING_SNAKE_CASE = logits.dtype assert torch.allclose(original_logits.to(__UpperCAmelCase ) , __UpperCAmelCase , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , return_tensors="""pt""" ).input_ids.to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = original_model.generate({"""image""": original_pixel_values} ) __SCREAMING_SNAKE_CASE = hf_model.generate( __UpperCAmelCase , __UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = input_ids.shape[1] __SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [text.strip() for text in output_text] print("""HF generation:""" , __UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() a = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) a = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
702
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE = cha[1] else: __SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE = sys.stdin.fileno() __SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : Any = ['input_values', 'padding_mask'] def __init__( self : str ,lowerCamelCase : int = 1 ,lowerCamelCase : int = 2_4000 ,lowerCamelCase : float = 0.0 ,lowerCamelCase : float = None ,lowerCamelCase : float = None ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(feature_size=lowerCamelCase ,sampling_rate=lowerCamelCase ,padding_value=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = chunk_length_s __SCREAMING_SNAKE_CASE = overlap @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Tuple ,lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None ,lowerCamelCase : Optional[bool] = False ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Optional[Union[str, TensorType]] = None ,lowerCamelCase : Optional[int] = None ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = bool( isinstance(lowerCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase ,dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCamelCase ,np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(lowerCamelCase ,dtype=np.floataa ) elif isinstance(lowerCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(lowerCamelCase ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __SCREAMING_SNAKE_CASE = min(array.shape[0] for array in raw_audio ) __SCREAMING_SNAKE_CASE = int(np.floor(max_length / self.chunk_stride ) ) __SCREAMING_SNAKE_CASE = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __SCREAMING_SNAKE_CASE = max(array.shape[0] for array in raw_audio ) __SCREAMING_SNAKE_CASE = int(np.ceil(max_length / self.chunk_stride ) ) __SCREAMING_SNAKE_CASE = (nb_step - 1) * self.chunk_stride + self.chunk_length __SCREAMING_SNAKE_CASE = """max_length""" else: __SCREAMING_SNAKE_CASE = input_values # normal padding on batch if padded_inputs is None: __SCREAMING_SNAKE_CASE = self.pad( lowerCamelCase ,max_length=lowerCamelCase ,truncation=lowerCamelCase ,padding=lowerCamelCase ,return_attention_mask=lowerCamelCase ,) if padding: __SCREAMING_SNAKE_CASE = padded_inputs.pop("""attention_mask""" ) __SCREAMING_SNAKE_CASE = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: __SCREAMING_SNAKE_CASE = example[..., None] input_values.append(example.T ) __SCREAMING_SNAKE_CASE = input_values if return_tensors is not None: __SCREAMING_SNAKE_CASE = padded_inputs.convert_to_tensors(lowerCamelCase ) return padded_inputs
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a = TypeVar("T") def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return (position - 1) // 2 def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return (2 * position) + 1 def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return (2 * position) + 2 class __a ( Generic[T] ): '''simple docstring''' def __init__( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Union[str, Any] ): '''simple docstring''' return self.elements def __repr__( self : Dict ): '''simple docstring''' return str(self.heap ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.elements == 0 def UpperCAmelCase__ ( self : int ,lowerCamelCase : T ,lowerCamelCase : int ): '''simple docstring''' self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.elements > 1: self._swap_nodes(0 ,self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(lowerCamelCase ) return elem def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : T ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowerCamelCase ) else: self._bubble_down(lowerCamelCase ) else: self._bubble_down(lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : T ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowerCamelCase ,lowerCamelCase ) return self._bubble_up(lowerCamelCase ) return None def UpperCAmelCase__ ( self : int ,lowerCamelCase : T ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(lowerCamelCase ) __SCREAMING_SNAKE_CASE = get_child_right_position(lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowerCamelCase ,lowerCamelCase ) return self._bubble_down(lowerCamelCase ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowerCamelCase ,lowerCamelCase ) return self._bubble_down(lowerCamelCase ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowerCamelCase ,lowerCamelCase ) return self._bubble_down(lowerCamelCase ) return None def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : int ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class __a ( Generic[T] ): '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Optional[int] ): '''simple docstring''' return str(self.connections ) def __len__( self : List[str] ): '''simple docstring''' return self.nodes def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : T ): '''simple docstring''' if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : str ,lowerCamelCase : T ,lowerCamelCase : T ,lowerCamelCase : int ): '''simple docstring''' self.add_node(lowerCamelCase ) self.add_node(lowerCamelCase ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def __magic_name__ ( __UpperCAmelCase , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCAmelCase , __UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCAmelCase , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCAmelCase , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if train_file is not None: __SCREAMING_SNAKE_CASE = [train_file] if eval_file is not None: __SCREAMING_SNAKE_CASE = [eval_file] if test_file is not None: __SCREAMING_SNAKE_CASE = [test_file] __SCREAMING_SNAKE_CASE = datasets.load_dataset("""csv""" , data_files=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = list(ds[list(files.keys() )[0]].features.keys() ) __SCREAMING_SNAKE_CASE = features_name.pop(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = list(set(ds[list(files.keys() )[0]][label_name] ) ) __SCREAMING_SNAKE_CASE = {label: i for i, label in enumerate(__UpperCAmelCase )} __SCREAMING_SNAKE_CASE = tokenizer.model_input_names __SCREAMING_SNAKE_CASE = {} if len(__UpperCAmelCase ) == 1: for k in files.keys(): __SCREAMING_SNAKE_CASE = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding="""max_length""" ) , batched=__UpperCAmelCase , ) elif len(__UpperCAmelCase ) == 2: for k in files.keys(): __SCREAMING_SNAKE_CASE = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding="""max_length""" , ) , batched=__UpperCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) __SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __SCREAMING_SNAKE_CASE = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __SCREAMING_SNAKE_CASE = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __SCREAMING_SNAKE_CASE = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : int = field(metadata={'help': 'Which column contains the label'} ) __UpperCamelCase : str = field(default=_snake_case, metadata={'help': 'The path of the training file'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'The path of the development file'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'The path of the test file'} ) __UpperCamelCase : int = field( default=128, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class __a : __UpperCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : bool = field(default=_snake_case, metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) def __magic_name__ ( ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCAmelCase ) , labelaid=__UpperCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase ) -> Dict: __SCREAMING_SNAKE_CASE = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __SCREAMING_SNAKE_CASE = TFTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate() __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(__UpperCAmelCase ) return results if __name__ == "__main__": main()
706
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
0