code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from PIL import Image def A__ ( __A , __A ): '''simple docstring''' def brightness(__A ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__A ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 lowerCAmelCase : str =change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
705
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A__ ( __A , __A ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _lowerCamelCase : List[str] = torch.permute(__A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__A ): # linear layer _lowerCamelCase : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) _lowerCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Dict = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def A__ ( __A , __A , __A ): '''simple docstring''' if "metadata" in layer: _lowerCamelCase : List[str] = layer.split("""metadata""" ) _lowerCamelCase : List[str] = """""".join(split_layer[0] )[:-1] _lowerCamelCase : Tuple = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _lowerCamelCase : Union[str, Any] = layer.split("""kvstore""" ) _lowerCamelCase : Any = """""".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _lowerCamelCase : Any = layer.split("""/""" ) _lowerCamelCase : Dict = """/""".join(split_layer[:-1] ) _lowerCamelCase : List[str] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : str = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = """file""" else: _lowerCamelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = rename_keys(__A ) _lowerCamelCase : Optional[Any] = {} for k, v in current_block.items(): _lowerCamelCase : Optional[Any] = v _lowerCamelCase : Dict = new_current_block torch.save(__A , __A ) def A__ ( __A , __A , __A , __A , __A = WEIGHTS_NAME ): '''simple docstring''' _lowerCamelCase : List[str] = convert_file_size_to_int(__A ) _lowerCamelCase : List[str] = [] _lowerCamelCase : List[str] = {} _lowerCamelCase : Any = 0 _lowerCamelCase : Tuple = 0 os.makedirs(__A , exist_ok=__A ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _lowerCamelCase : Any = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _lowerCamelCase : Any = flatten_dict(__A , sep="""/""" ) _lowerCamelCase : int = {} for layer in checkpoint_info.keys(): _lowerCamelCase : Union[str, Any] = get_key_and_tensorstore_dict( __A , __A , __A ) if curr_real_layer_name in all_layers: _lowerCamelCase : Tuple = content else: _lowerCamelCase : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : Dict = torch.tensor(__A ) _lowerCamelCase : Optional[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase : Optional[int] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __A ) _lowerCamelCase : List[Any] = """/""".join(__A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : List[str] = os.path.join( __A , weights_name.replace(""".bin""" , F"""-{len(__A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : List[Any] = raw_weights.to(getattr(__A , __A ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : Any = os.path.join(__A , weights_name.replace(""".bin""" , F"""-{len(__A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : int = {} _lowerCamelCase : List[str] = {} for idx, shard in enumerate(__A ): _lowerCamelCase : Optional[Any] = weights_name.replace( """.bin""" , F"""-{idx+1:05d}-of-{len(__A ):05d}.bin""" ) # len(sharded_state_dicts):05d} _lowerCamelCase : Tuple = os.path.join(__A , weights_name.replace(""".bin""" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__A , os.path.join(__A , __A ) ) _lowerCamelCase : Optional[Any] = shard for key in shard: _lowerCamelCase : List[str] = shard_file # Add the metadata _lowerCamelCase : List[str] = {"""total_size""": total_size} _lowerCamelCase : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__A , __A ) , """w""" , encoding="""utf-8""" ) as f: _lowerCamelCase : Optional[int] = json.dumps(__A , indent=2 , sort_keys=__A ) + """\n""" f.write(__A ) return metadata, index if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) lowerCAmelCase : str =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A__ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _lowerCamelCase : Union[str, Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("""t5-small""" ) _lowerCamelCase : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _lowerCamelCase : Tuple = tokenizer(__A , return_tensors="""pt""" ).input_ids _lowerCamelCase : str = model.generate(__A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
706
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
0
lowerCAmelCase : Optional[Any] ="\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase : Union[str, Any] =[{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase : Optional[Any] ={ "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
707
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
708
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : Dict ={ "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'detr' _snake_case = ['past_key_values'] _snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Any=3 , _UpperCamelCase : Optional[Any]=100 , _UpperCamelCase : int=6 , _UpperCamelCase : Optional[Any]=2048 , _UpperCamelCase : Union[str, Any]=8 , _UpperCamelCase : str=6 , _UpperCamelCase : List[str]=2048 , _UpperCamelCase : Optional[int]=8 , _UpperCamelCase : str=0.0 , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : Any=True , _UpperCamelCase : Optional[Any]="relu" , _UpperCamelCase : Tuple=256 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Dict=1.0 , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Dict="sine" , _UpperCamelCase : Dict="resnet50" , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=False , _UpperCamelCase : str=1 , _UpperCamelCase : int=5 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : List[Any]=1 , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : str=5 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : List[str]=0.1 , **_UpperCamelCase : Any , ) ->str: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""") if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""") _lowerCamelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""]) elif isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : Dict = backbone_config.get("""model_type""") _lowerCamelCase : List[str] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Tuple = config_class.from_dict(_UpperCamelCase) # set timm attributes to None _lowerCamelCase : Union[str, Any] = None, None, None _lowerCamelCase : Optional[int] = use_timm_backbone _lowerCamelCase : Union[str, Any] = backbone_config _lowerCamelCase : Dict = num_channels _lowerCamelCase : Optional[int] = num_queries _lowerCamelCase : Tuple = d_model _lowerCamelCase : Union[str, Any] = encoder_ffn_dim _lowerCamelCase : Optional[Any] = encoder_layers _lowerCamelCase : str = encoder_attention_heads _lowerCamelCase : List[Any] = decoder_ffn_dim _lowerCamelCase : List[str] = decoder_layers _lowerCamelCase : Tuple = decoder_attention_heads _lowerCamelCase : List[str] = dropout _lowerCamelCase : Any = attention_dropout _lowerCamelCase : List[str] = activation_dropout _lowerCamelCase : Optional[int] = activation_function _lowerCamelCase : List[Any] = init_std _lowerCamelCase : Optional[Any] = init_xavier_std _lowerCamelCase : Optional[Any] = encoder_layerdrop _lowerCamelCase : Optional[int] = decoder_layerdrop _lowerCamelCase : Union[str, Any] = encoder_layers _lowerCamelCase : List[Any] = auxiliary_loss _lowerCamelCase : int = position_embedding_type _lowerCamelCase : int = backbone _lowerCamelCase : Optional[int] = use_pretrained_backbone _lowerCamelCase : List[str] = dilation # Hungarian matcher _lowerCamelCase : int = class_cost _lowerCamelCase : Optional[Any] = bbox_cost _lowerCamelCase : int = giou_cost # Loss coefficients _lowerCamelCase : str = mask_loss_coefficient _lowerCamelCase : List[str] = dice_loss_coefficient _lowerCamelCase : Dict = bbox_loss_coefficient _lowerCamelCase : Optional[int] = giou_loss_coefficient _lowerCamelCase : int = eos_coefficient super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: """simple docstring""" return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" return self.d_model @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , _UpperCamelCase : PretrainedConfig , **_UpperCamelCase : List[str]) ->List[Any]: """simple docstring""" return cls(backbone_config=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict[str, any]: """simple docstring""" _lowerCamelCase : Tuple = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _lowerCamelCase : List[str] = self.backbone_config.to_dict() _lowerCamelCase : List[Any] = self.__class__.model_type return output class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : int) ->float: """simple docstring""" return 1E-5 @property def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int: """simple docstring""" return 12
709
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" _lowerCamelCase : int = """ylacombe/bark-small""" _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Tuple = """en_speaker_1""" _lowerCamelCase : Tuple = """This is a test string""" _lowerCamelCase : Optional[int] = """speaker_embeddings_path.json""" _lowerCamelCase : int = """speaker_embeddings""" def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : int) ->List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : int = BarkProcessor(tokenizer=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCamelCase : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCamelCase : int = 35 _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Optional[Any] = 8 _lowerCamelCase : str = { """semantic_prompt""": np.ones(_UpperCamelCase), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len)), """fine_prompt""": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset _lowerCamelCase : List[str] = processor(text=self.input_string , voice_preset=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([])).tolist()) # test loading voice preset from npz file _lowerCamelCase : int = os.path.join(self.tmpdirname , """file.npz""") np.savez(_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : str = processor(text=self.input_string , voice_preset=_UpperCamelCase) _lowerCamelCase : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([])).tolist()) # test loading voice preset from the hub _lowerCamelCase : List[str] = processor(text=self.input_string , voice_preset=self.voice_preset) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = BarkProcessor(tokenizer=_UpperCamelCase) _lowerCamelCase : str = processor(text=self.input_string) _lowerCamelCase : Union[str, Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = KandinskyVaaControlnetImgaImgPipeline _snake_case = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _snake_case = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _snake_case = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _snake_case = False @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" return 32 @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->str: """simple docstring""" return 100 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: """simple docstring""" torch.manual_seed(0) _lowerCamelCase : Optional[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCamelCase : List[Any] = UNetaDConditionModel(**_UpperCamelCase) return model @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" torch.manual_seed(0) _lowerCamelCase : List[Any] = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.dummy_unet _lowerCamelCase : Dict = self.dummy_movq _lowerCamelCase : List[str] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCamelCase : Dict = DDIMScheduler(**_UpperCamelCase) _lowerCamelCase : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Any=0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase)).to(_UpperCamelCase) _lowerCamelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( _UpperCamelCase) # create init_image _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] _lowerCamelCase : int = Image.fromarray(np.uinta(_UpperCamelCase)).convert("""RGB""").resize((256, 256)) # create hint _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase)).to(_UpperCamelCase) if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : Any = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : Any = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : List[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" _lowerCamelCase : str = """cpu""" _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = self.pipeline_class(**_UpperCamelCase) _lowerCamelCase : str = pipe.to(_UpperCamelCase) pipe.set_progress_bar_config(disable=_UpperCamelCase) _lowerCamelCase : List[str] = pipe(**self.get_dummy_inputs(_UpperCamelCase)) _lowerCamelCase : Any = output.images _lowerCamelCase : Dict = pipe( **self.get_dummy_inputs(_UpperCamelCase) , return_dict=_UpperCamelCase , )[0] _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : str = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: """simple docstring""" _lowerCamelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""") _lowerCamelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") _lowerCamelCase : Optional[int] = init_image.resize((512, 512)) _lowerCamelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""") _lowerCamelCase : int = torch.from_numpy(np.array(_UpperCamelCase)).float() / 255.0 _lowerCamelCase : Dict = hint.permute(2 , 0 , 1).unsqueeze(0) _lowerCamelCase : Tuple = """A robot, 4k photo""" _lowerCamelCase : Optional[int] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(_UpperCamelCase) _lowerCamelCase : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa) _lowerCamelCase : List[str] = pipeline.to(_UpperCamelCase) pipeline.set_progress_bar_config(disable=_UpperCamelCase) _lowerCamelCase : str = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = pipe_prior( _UpperCamelCase , image=_UpperCamelCase , strength=0.8_5 , generator=_UpperCamelCase , negative_prompt="""""" , ).to_tuple() _lowerCamelCase : Optional[Any] = pipeline( image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , hint=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
712
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
713
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCAmelCase : List[Any] ="hf-internal-testing/tiny-random-bert" lowerCAmelCase : List[Any] =os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") lowerCAmelCase : List[str] ="9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = cached_file(_UpperCamelCase , _UpperCamelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCamelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCamelCase , _UpperCamelCase))) with open(os.path.join(_UpperCamelCase , """refs""" , """main""")) as f: _lowerCamelCase : Optional[int] = f.read() self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , """snapshots""" , _UpperCamelCase , _UpperCamelCase)) self.assertTrue(os.path.isfile(_UpperCamelCase)) # File is cached at the same place the second time. _lowerCamelCase : Optional[int] = cached_file(_UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , _UpperCamelCase) # Using a specific revision to test the full commit hash. _lowerCamelCase : str = cached_file(_UpperCamelCase , _UpperCamelCase , revision="""9b8c223""") self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , """snapshots""" , _UpperCamelCase , _UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" with self.assertRaisesRegex(_UpperCamelCase , """is not a valid model identifier"""): _lowerCamelCase : List[str] = cached_file("""tiny-random-bert""" , _UpperCamelCase) with self.assertRaisesRegex(_UpperCamelCase , """is not a valid git identifier"""): _lowerCamelCase : List[str] = cached_file(_UpperCamelCase , _UpperCamelCase , revision="""aaaa""") with self.assertRaisesRegex(_UpperCamelCase , """does not appear to have a file named"""): _lowerCamelCase : int = cached_file(_UpperCamelCase , """conf""") def _SCREAMING_SNAKE_CASE ( self : int) ->str: """simple docstring""" with self.assertRaisesRegex(_UpperCamelCase , """does not appear to have a file named"""): _lowerCamelCase : List[str] = cached_file(_UpperCamelCase , """conf""") with open(os.path.join(_UpperCamelCase , """refs""" , """main""")) as f: _lowerCamelCase : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCamelCase , """.no_exist""" , _UpperCamelCase , """conf"""))) _lowerCamelCase : List[str] = cached_file(_UpperCamelCase , """conf""" , _raise_exceptions_for_missing_entries=_UpperCamelCase) self.assertIsNone(_UpperCamelCase) _lowerCamelCase : str = cached_file(_UpperCamelCase , """conf""" , local_files_only=_UpperCamelCase , _raise_exceptions_for_missing_entries=_UpperCamelCase) self.assertIsNone(_UpperCamelCase) _lowerCamelCase : List[Any] = mock.Mock() _lowerCamelCase : List[Any] = 500 _lowerCamelCase : Any = {} _lowerCamelCase : List[Any] = HTTPError _lowerCamelCase : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_UpperCamelCase) as mock_head: _lowerCamelCase : Optional[int] = cached_file(_UpperCamelCase , """conf""" , _raise_exceptions_for_connection_errors=_UpperCamelCase) self.assertIsNone(_UpperCamelCase) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCamelCase)) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCamelCase)) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: """simple docstring""" self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""")) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCamelCase , """is not a valid model identifier"""): get_file_from_repo("""bert-base-case""" , _UpperCamelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCamelCase , """is not a valid git identifier"""): get_file_from_repo("""bert-base-cased""" , _UpperCamelCase , revision="""ahaha""") _lowerCamelCase : Union[str, Any] = get_file_from_repo("""bert-base-cased""" , _UpperCamelCase) # The name is the cached name which is not very easy to test, so instead we load the content. _lowerCamelCase : Tuple = json.loads(open(_UpperCamelCase , """r""").read()) self.assertEqual(config["""hidden_size"""] , 768) def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] = Path(_UpperCamelCase) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_UpperCamelCase , """a.txt""") , str(_UpperCamelCase)) self.assertIsNone(get_file_from_repo(_UpperCamelCase , """b.txt"""))
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : int ={ "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
0
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase : Any ="https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase : Union[str, Any] =BASE_URL + "/user" # https://github.com/settings/tokens lowerCAmelCase : Optional[int] =os.environ.get("USER_TOKEN", "") def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Dict = { """Authorization""": F"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(__A , headers=__A ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : List[Any] =get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = PegasusTokenizer _snake_case = PegasusTokenizerFast _snake_case = True _snake_case = True def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : List[Any] = PegasusTokenizer(_UpperCamelCase) tokenizer.save_pretrained(self.tmpdirname) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""") def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Tuple) ->PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[Any]) ->Dict: """simple docstring""" return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[int] = """</s>""" _lowerCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase) , _UpperCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase) , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<pad>""") self.assertEqual(vocab_keys[1] , """</s>""") self.assertEqual(vocab_keys[-1] , """v""") self.assertEqual(len(_UpperCamelCase) , 1103) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" _lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname) _lowerCamelCase : Optional[int] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _lowerCamelCase : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0] _lowerCamelCase : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowerCamelCase : str = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _lowerCamelCase : Optional[int] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _lowerCamelCase : List[Any] = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" _lowerCamelCase : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _lowerCamelCase : Any = """To ensure a smooth flow of bank resolutions.""" _lowerCamelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _lowerCamelCase : Any = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" _lowerCamelCase : Optional[int] = ["""This is going to be way too long.""" * 150, """short example"""] _lowerCamelCase : Dict = ["""not super long but more than 5 tokens""", """tiny"""] _lowerCamelCase : List[Any] = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""") _lowerCamelCase : int = self._large_tokenizer( text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""") assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCamelCase) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = PegasusTokenizer _snake_case = PegasusTokenizerFast _snake_case = True _snake_case = True def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Union[str, Any] = PegasusTokenizer(_UpperCamelCase , offset=0 , mask_token_sent=_UpperCamelCase , mask_token="""[MASK]""") tokenizer.save_pretrained(self.tmpdirname) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""") def _SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCamelCase : List[Any]) ->PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Dict) ->List[Any]: """simple docstring""" return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) _lowerCamelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname) _lowerCamelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _lowerCamelCase : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0] _lowerCamelCase : str = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: """simple docstring""" _lowerCamelCase : List[Any] = ["""This is going to be way too long.""" * 1000, """short example"""] _lowerCamelCase : Tuple = ["""not super long but more than 5 tokens""", """tiny"""] _lowerCamelCase : Optional[int] = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""") _lowerCamelCase : List[str] = self._large_tokenizer( text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""") assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCamelCase) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" _lowerCamelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _lowerCamelCase : int = self._large_tokenizer(_UpperCamelCase).input_ids self.assertListEqual( _UpperCamelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
717
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
0
def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' if index == number_of_items: return 0 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : str = 0 _lowerCamelCase : List[Any] = knapsack(__A , __A , __A , __A , index + 1 ) if weights[index] <= max_weight: _lowerCamelCase : Optional[int] = values[index] + knapsack( __A , __A , __A , max_weight - weights[index] , index + 1 ) return max(__A , __A ) if __name__ == "__main__": import doctest doctest.testmod()
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : int ={ "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'roc_bert' def __init__( self : Optional[int] , _UpperCamelCase : Union[str, Any]=3_0522 , _UpperCamelCase : int=768 , _UpperCamelCase : Any=12 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Tuple=3072 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Any=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : List[Any]=512 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : List[Any]=1E-1_2 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : int="absolute" , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Tuple=768 , _UpperCamelCase : int=910 , _UpperCamelCase : Optional[Any]=512 , _UpperCamelCase : List[str]=2_4858 , _UpperCamelCase : Tuple=True , **_UpperCamelCase : Optional[Any] , ) ->List[str]: """simple docstring""" _lowerCamelCase : int = vocab_size _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : List[str] = use_cache _lowerCamelCase : List[Any] = enable_pronunciation _lowerCamelCase : List[str] = enable_shape _lowerCamelCase : Dict = pronunciation_embed_dim _lowerCamelCase : Optional[Any] = pronunciation_vocab_size _lowerCamelCase : str = shape_embed_dim _lowerCamelCase : List[Any] = shape_vocab_size _lowerCamelCase : int = concat_input _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : Tuple = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase)
719
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'decision_transformer' _snake_case = ['past_key_values'] _snake_case = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , _UpperCamelCase : int=17 , _UpperCamelCase : Optional[int]=4 , _UpperCamelCase : Optional[Any]=128 , _UpperCamelCase : Tuple=4096 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : List[str]=1 , _UpperCamelCase : str=1024 , _UpperCamelCase : str=3 , _UpperCamelCase : str=1 , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Dict="relu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Union[str, Any]=1E-5 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : Any=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Tuple=5_0256 , _UpperCamelCase : Optional[Any]=5_0256 , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Union[str, Any]=False , **_UpperCamelCase : Union[str, Any] , ) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = state_dim _lowerCamelCase : str = act_dim _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Any = max_ep_len _lowerCamelCase : Union[str, Any] = action_tanh _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Dict = n_positions _lowerCamelCase : Dict = n_layer _lowerCamelCase : str = n_head _lowerCamelCase : Union[str, Any] = n_inner _lowerCamelCase : Any = activation_function _lowerCamelCase : int = resid_pdrop _lowerCamelCase : int = embd_pdrop _lowerCamelCase : Dict = attn_pdrop _lowerCamelCase : List[str] = layer_norm_epsilon _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Tuple = scale_attn_weights _lowerCamelCase : str = use_cache _lowerCamelCase : str = scale_attn_by_inverse_layer_idx _lowerCamelCase : int = reorder_and_upcast_attn _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Dict = eos_token_id super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase)
720
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
0
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [0] * len(__A ) _lowerCamelCase : int = [] _lowerCamelCase : List[Any] = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: _lowerCamelCase : str = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _lowerCamelCase : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph lowerCAmelCase : Optional[Any] ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 10.0807) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 10.0807) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 124.52_2994_9951_1719) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
700
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case : List[Any] = MgpstrTokenizer _snake_case : Optional[int] = False _snake_case : List[Any] = {} _snake_case : Dict = False def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: """simple docstring""" super().setUp() # fmt: off _lowerCamelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : Optional[int] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") def _SCREAMING_SNAKE_CASE ( self : Any , **_UpperCamelCase : List[Any]) ->int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[str]) ->str: """simple docstring""" _lowerCamelCase : str = """tester""" _lowerCamelCase : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""") def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Any = self.get_tokenizers(do_lower_case=_UpperCamelCase) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): _lowerCamelCase : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token}) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] , add_special_tokens=_UpperCamelCase) self.assertEqual(len(_UpperCamelCase) , 1) _lowerCamelCase : Any = tokenizer.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase) self.assertTrue(special_token not in decoded) def _SCREAMING_SNAKE_CASE ( self : Dict) ->str: """simple docstring""" _lowerCamelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): _lowerCamelCase : List[Any] = self.get_input_output_texts(_UpperCamelCase) _lowerCamelCase : Dict = tokenizer.tokenize(_UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(_UpperCamelCase) _lowerCamelCase : Any = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase) self.assertNotEqual(len(_UpperCamelCase) , 0) _lowerCamelCase : str = tokenizer.decode(_UpperCamelCase) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase) self.assertEqual(text_a.replace(""" """ , """""") , _UpperCamelCase) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""") def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""") def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" pass
701
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
702
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def A__ ( __A ): '''simple docstring''' _lowerCamelCase : str = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__A , __A ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Dict = emb.weight.shape _lowerCamelCase : List[str] = nn.Linear(__A , __A , bias=__A ) _lowerCamelCase : Optional[Any] = emb.weight.data return lin_layer def A__ ( __A , __A="facebook/mbart-large-en-ro" , __A=False , __A=False ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = torch.load(__A , map_location="""cpu""" )["""model"""] remove_ignore_keys_(__A ) _lowerCamelCase : Optional[Any] = state_dict["""encoder.embed_tokens.weight"""].shape[0] _lowerCamelCase : str = MBartConfig.from_pretrained(__A , vocab_size=__A ) if mbart_aa and finetuned: _lowerCamelCase : Union[str, Any] = """relu""" _lowerCamelCase : List[Any] = state_dict["""decoder.embed_tokens.weight"""] _lowerCamelCase : Any = MBartForConditionalGeneration(__A ) model.model.load_state_dict(__A ) if finetuned: _lowerCamelCase : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") lowerCAmelCase : Dict =parser.parse_args() lowerCAmelCase : Any =convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
703
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase : str = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } lowerCAmelCase : Union[str, Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def A__ ( ): '''simple docstring''' _lowerCamelCase : Any = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _lowerCamelCase : int = bs[:] _lowerCamelCase : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 _lowerCamelCase : Any = [chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Any = set() _lowerCamelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : str = char return pairs class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['input_ids', 'attention_mask'] def __init__( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any]="replace" , _UpperCamelCase : Tuple="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Any="</s>" , _UpperCamelCase : Dict="<s>" , _UpperCamelCase : str="<unk>" , _UpperCamelCase : str="<pad>" , _UpperCamelCase : List[str]="<mask>" , _UpperCamelCase : Tuple=False , **_UpperCamelCase : int , ) ->Dict: """simple docstring""" _lowerCamelCase : str = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else bos_token _lowerCamelCase : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else eos_token _lowerCamelCase : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else sep_token _lowerCamelCase : Any = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else cls_token _lowerCamelCase : Optional[int] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else unk_token _lowerCamelCase : List[str] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Any = json.load(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : int = errors # how to handle errors in decoding _lowerCamelCase : Any = bytes_to_unicode() _lowerCamelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding="""utf-8""") as merges_handle: _lowerCamelCase : Optional[int] = merges_handle.read().split("""\n""")[1:-1] _lowerCamelCase : Optional[int] = [tuple(merge.split()) for merge in bpe_merges] _lowerCamelCase : int = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCamelCase : Optional[Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str) ->List[Any]: """simple docstring""" if token in self.cache: return self.cache[token] _lowerCamelCase : List[str] = tuple(_UpperCamelCase) _lowerCamelCase : str = get_pairs(_UpperCamelCase) if not pairs: return token while True: _lowerCamelCase : int = min(_UpperCamelCase , key=lambda _UpperCamelCase: self.bpe_ranks.get(_UpperCamelCase , float("""inf"""))) if bigram not in self.bpe_ranks: break _lowerCamelCase : Optional[Any] = bigram _lowerCamelCase : int = [] _lowerCamelCase : Any = 0 while i < len(_UpperCamelCase): try: _lowerCamelCase : Union[str, Any] = word.index(_UpperCamelCase , _UpperCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowerCamelCase : Optional[int] = j if word[i] == first and i < len(_UpperCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCamelCase : Optional[Any] = tuple(_UpperCamelCase) _lowerCamelCase : List[Any] = new_word if len(_UpperCamelCase) == 1: break else: _lowerCamelCase : Dict = get_pairs(_UpperCamelCase) _lowerCamelCase : List[Any] = """ """.join(_UpperCamelCase) _lowerCamelCase : Optional[Any] = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Any) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = [] for token in re.findall(self.pat , _UpperCamelCase): _lowerCamelCase : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase).split(""" """)) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Union[str, Any]) ->List[Any]: """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : List[Any]) ->List[Any]: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Dict) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[int] = """""".join(_UpperCamelCase) _lowerCamelCase : List[Any] = bytearray([self.byte_decoder[c] for c in text]).decode("""utf-8""" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return _lowerCamelCase : Dict = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Any = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") _lowerCamelCase : Union[str, Any] = 0 with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase: kv[1]): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""") _lowerCamelCase : Dict = token_index writer.write(""" """.join(_UpperCamelCase) + """\n""") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] _lowerCamelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase)) + [1] return [1] + ([0] * len(_UpperCamelCase)) + [1, 1] + ([0] * len(_UpperCamelCase)) + [1] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False , **_UpperCamelCase : str) ->int: """simple docstring""" _lowerCamelCase : str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase) > 0 and not text[0].isspace()): _lowerCamelCase : Dict = """ """ + text return (text, kwargs)
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Dict ={ "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'cvt' def __init__( self : Union[str, Any] , _UpperCamelCase : Any=3 , _UpperCamelCase : List[str]=[7, 3, 3] , _UpperCamelCase : Dict=[4, 2, 2] , _UpperCamelCase : List[Any]=[2, 1, 1] , _UpperCamelCase : Union[str, Any]=[64, 192, 384] , _UpperCamelCase : Optional[int]=[1, 3, 6] , _UpperCamelCase : Dict=[1, 2, 10] , _UpperCamelCase : List[Any]=[4.0, 4.0, 4.0] , _UpperCamelCase : str=[0.0, 0.0, 0.0] , _UpperCamelCase : Any=[0.0, 0.0, 0.0] , _UpperCamelCase : List[str]=[0.0, 0.0, 0.1] , _UpperCamelCase : int=[True, True, True] , _UpperCamelCase : Tuple=[False, False, True] , _UpperCamelCase : str=["dw_bn", "dw_bn", "dw_bn"] , _UpperCamelCase : List[Any]=[3, 3, 3] , _UpperCamelCase : Tuple=[1, 1, 1] , _UpperCamelCase : List[str]=[2, 2, 2] , _UpperCamelCase : List[str]=[1, 1, 1] , _UpperCamelCase : int=[1, 1, 1] , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : int=1E-1_2 , **_UpperCamelCase : List[str] , ) ->List[Any]: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : int = num_channels _lowerCamelCase : Tuple = patch_sizes _lowerCamelCase : List[Any] = patch_stride _lowerCamelCase : List[Any] = patch_padding _lowerCamelCase : int = embed_dim _lowerCamelCase : Dict = num_heads _lowerCamelCase : Tuple = depth _lowerCamelCase : Any = mlp_ratio _lowerCamelCase : Tuple = attention_drop_rate _lowerCamelCase : Dict = drop_rate _lowerCamelCase : Any = drop_path_rate _lowerCamelCase : Dict = qkv_bias _lowerCamelCase : int = cls_token _lowerCamelCase : int = qkv_projection_method _lowerCamelCase : List[Any] = kernel_qkv _lowerCamelCase : List[str] = padding_kv _lowerCamelCase : Dict = stride_kv _lowerCamelCase : Any = padding_q _lowerCamelCase : int = stride_q _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps
705
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase : Optional[int] =re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowerCAmelCase : str =10 lowerCAmelCase : Optional[Any] =256 def A__ ( __A ): '''simple docstring''' if len(__A ) < MIN_NUM_TOKENS: return None _lowerCamelCase : Union[str, Any] = MinHash(num_perm=__A ) for token in set(__A ): min_hash.update(token.encode() ) return min_hash def A__ ( __A ): '''simple docstring''' return {t for t in NON_ALPHA.split(__A ) if len(t.strip() ) > 0} class __snake_case : '''simple docstring''' def __init__( self : Tuple , *, _UpperCamelCase : float = 0.8_5 , ) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = duplication_jaccard_threshold _lowerCamelCase : List[str] = NUM_PERM _lowerCamelCase : Any = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) _lowerCamelCase : Tuple = defaultdict(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : MinHash) ->None: """simple docstring""" _lowerCamelCase : List[str] = self._index.query(_UpperCamelCase) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""") return self._index.insert(_UpperCamelCase , _UpperCamelCase) if len(_UpperCamelCase) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCamelCase) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->List[List[Dict]]: """simple docstring""" _lowerCamelCase : Tuple = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCamelCase : Optional[int] = [base] + list(_UpperCamelCase) # reformat the cluster to be a list of dict _lowerCamelCase : Dict = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(_UpperCamelCase) return duplicate_clusters def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Union[str, Any]) ->None: """simple docstring""" _lowerCamelCase : List[Any] = self.get_duplicate_clusters() with open(_UpperCamelCase , """w""") as f: json.dump(_UpperCamelCase , _UpperCamelCase) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[str] = element _lowerCamelCase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def A__ ( __A ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : List[Any] = DuplicationIndex(duplication_jaccard_threshold=__A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A ) ) , max_queue_size=100 ) ): di.add(__A , __A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = get_tokens(__A ) _lowerCamelCase : Any = get_tokens(__A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase : Optional[int] =None def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = [] for elementa in cluster: _lowerCamelCase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCamelCase : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__A , __A ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCamelCase : str = 1 extremes.append(__A ) return extremes def A__ ( __A , __A , __A ): '''simple docstring''' global _shared_dataset _lowerCamelCase : int = dataset _lowerCamelCase : str = [] _lowerCamelCase : Optional[Any] = partial(_find_cluster_extremes_shared , jaccard_threshold=__A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A ) , ): extremes_list.append(__A ) return extremes_list def A__ ( __A , __A = 0.85 ): '''simple docstring''' _lowerCamelCase : Tuple = make_duplicate_clusters(__A , __A ) _lowerCamelCase : Optional[int] = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = find_extremes(__A , __A , __A ) for extremes in extremes_clusters: for element in extremes: _lowerCamelCase : Optional[Any] = element _lowerCamelCase : Any = duplicate_indices - set(extreme_dict.keys() ) _lowerCamelCase : List[Any] = dataset.filter(lambda __A , __A : idx not in remove_indices , with_indices=__A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCamelCase : str = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCamelCase : List[str] = extreme_dict[element["""base_index"""]]["""copies"""] print(F"""Original dataset size: {len(__A )}""" ) print(F"""Number of duplicate clusters: {len(__A )}""" ) print(F"""Files in duplicate cluster: {len(__A )}""" ) print(F"""Unique files in duplicate cluster: {len(__A )}""" ) print(F"""Filtered dataset size: {len(__A )}""" ) return ds_filter, duplicate_clusters
706
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A__ ( __A , __A=False ): try: _lowerCamelCase : List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowerCamelCase : Optional[int] = default else: # KEY is set, convert it to True or False. try: _lowerCamelCase : List[str] = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value lowerCAmelCase : str =parse_flag_from_env("RUN_SLOW", default=False) def A__ ( __A ): return unittest.skip("""Test was skipped""" )(__A ) def A__ ( __A ): return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__A ) def A__ ( __A ): return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__A ) def A__ ( __A ): return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__A ) def A__ ( __A ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__A ) def A__ ( __A ): return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__A ) def A__ ( __A ): return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__A ) def A__ ( __A ): return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__A ) def A__ ( __A ): return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__A ) def A__ ( __A=None , __A=None ): if test_case is None: return partial(__A , version=__A ) return unittest.skipUnless(is_torch_version(""">=""" , __A ) , F"""test requires torch version >= {version}""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__A ) def A__ ( __A ): return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__A ) lowerCAmelCase : Union[str, Any] =( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A__ ( __A ): return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__A ) class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = True @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = tempfile.mkdtemp() @classmethod def _SCREAMING_SNAKE_CASE ( cls : int) ->List[Any]: """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob("""**/*"""): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[mock.Mock, List[mock.Mock]]) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A__ ( __A ): _lowerCamelCase : Tuple = AcceleratorState() _lowerCamelCase : Tuple = tensor[None].clone().to(state.device ) _lowerCamelCase : int = gather(__A ).cpu() _lowerCamelCase : Optional[int] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __A ): return False return True class __snake_case : '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = returncode _lowerCamelCase : Union[str, Any] = stdout _lowerCamelCase : List[Any] = stderr async def A__ ( __A , __A ): while True: _lowerCamelCase : List[str] = await stream.readline() if line: callback(__A ) else: break async def A__ ( __A , __A=None , __A=None , __A=None , __A=False , __A=False ): if echo: print("""\nRunning: """ , """ """.join(__A ) ) _lowerCamelCase : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowerCamelCase : int = [] _lowerCamelCase : int = [] def tee(__A , __A , __A , __A="" ): _lowerCamelCase : Dict = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A , __A , file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=__A , ) return _RunOutput(await p.wait() , __A , __A ) def A__ ( __A , __A=None , __A=None , __A=180 , __A=False , __A=True ): _lowerCamelCase : List[Any] = asyncio.get_event_loop() _lowerCamelCase : Any = loop.run_until_complete( _stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) ) _lowerCamelCase : Optional[int] = """ """.join(__A ) if result.returncode > 0: _lowerCamelCase : Optional[Any] = """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __snake_case ( __lowerCAmelCase ): '''simple docstring''' pass def A__ ( __A , __A=False ): try: _lowerCamelCase : Optional[Any] = subprocess.check_output(__A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__A , """decode""" ): _lowerCamelCase : List[str] = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{' '.join(__A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
707
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Union[str, Any] ={ "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
708
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
0
import doctest from collections import deque import numpy as np class __snake_case : '''simple docstring''' def __init__( self : Any) ->None: """simple docstring""" _lowerCamelCase : int = [2, 1, 2, -1] _lowerCamelCase : Union[str, Any] = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : int) ->list[float]: """simple docstring""" _lowerCamelCase : Tuple = len(self.first_signal) _lowerCamelCase : Tuple = len(self.second_signal) _lowerCamelCase : Dict = max(_UpperCamelCase , _UpperCamelCase) # create a zero matrix of max_length x max_length _lowerCamelCase : Tuple = [[0] * max_length for i in range(_UpperCamelCase)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCamelCase): _lowerCamelCase : Tuple = deque(self.second_signal) rotated_signal.rotate(_UpperCamelCase) for j, item in enumerate(_UpperCamelCase): matrix[i][j] += item # multiply the matrix with the first signal _lowerCamelCase : Dict = np.matmul(np.transpose(_UpperCamelCase) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(_UpperCamelCase , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
709
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
lowerCAmelCase : str =[ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : str = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Union[str, Any] = 0 while place < len(__A ): if (place + 1 < len(__A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[Any] = [] for arabic, roman in ROMAN: (_lowerCamelCase) : List[str] = divmod(__A , __A ) result.append(roman * factor ) if number == 0: break return "".join(__A ) if __name__ == "__main__": import doctest doctest.testmod()
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
import numpy as np import qiskit def A__ ( __A = 8 , __A = None ): '''simple docstring''' _lowerCamelCase : Any = np.random.default_rng(seed=__A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCamelCase : Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. _lowerCamelCase : Dict = rng.integers(2 , size=__A ) # The set of states Alice will prepare. _lowerCamelCase : Optional[int] = rng.integers(2 , size=__A ) # Measurement basis for Bob's qubits. _lowerCamelCase : Dict = rng.integers(2 , size=__A ) # Quantum Circuit to simulate BB84 _lowerCamelCase : List[Any] = qiskit.QuantumCircuit(__A , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__A ): if alice_state[index] == 1: bbaa_circ.x(__A ) if alice_basis[index] == 1: bbaa_circ.h(__A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__A ): if bob_basis[index] == 1: bbaa_circ.h(__A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCamelCase : str = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCamelCase : int = qiskit.execute(__A , __A , shots=1 , seed_simulator=__A ) # Returns the result of measurement. _lowerCamelCase : Optional[Any] = job.result().get_counts(__A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCamelCase : str = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __A , __A , __A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCamelCase : Any = gen_key[:key_len] if len(__A ) >= key_len else gen_key.ljust(__A , """0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
712
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : int ={ "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'data2vec-audio' def __init__( self : Optional[int] , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : Optional[Any]=768 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Optional[int]=12 , _UpperCamelCase : List[Any]=3072 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : int=1E-5 , _UpperCamelCase : str="gelu" , _UpperCamelCase : List[str]=(512, 512, 512, 512, 512, 512, 512) , _UpperCamelCase : Any=(5, 2, 2, 2, 2, 2, 2) , _UpperCamelCase : Dict=(10, 3, 3, 3, 3, 2, 2) , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Optional[int]=16 , _UpperCamelCase : List[str]=19 , _UpperCamelCase : List[Any]=5 , _UpperCamelCase : str=0.0_5 , _UpperCamelCase : Union[str, Any]=10 , _UpperCamelCase : Dict=2 , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : str=10 , _UpperCamelCase : Any=0 , _UpperCamelCase : Any="sum" , _UpperCamelCase : str=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : List[Any]=256 , _UpperCamelCase : List[str]=(512, 512, 512, 512, 1500) , _UpperCamelCase : Optional[Any]=(5, 3, 3, 1, 1) , _UpperCamelCase : Optional[int]=(1, 2, 3, 1, 1) , _UpperCamelCase : List[str]=512 , _UpperCamelCase : Tuple=0 , _UpperCamelCase : int=1 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : str=False , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : str=None , **_UpperCamelCase : List[Any] , ) ->str: """simple docstring""" super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : List[str] = feat_extract_activation _lowerCamelCase : Union[str, Any] = list(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = list(_UpperCamelCase) _lowerCamelCase : Dict = list(_UpperCamelCase) _lowerCamelCase : int = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[str] = num_conv_pos_embedding_groups _lowerCamelCase : int = conv_pos_kernel_size _lowerCamelCase : Dict = len(self.conv_dim) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Optional[int] = hidden_dropout _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : Dict = activation_dropout _lowerCamelCase : Tuple = feat_proj_dropout _lowerCamelCase : Optional[Any] = final_dropout _lowerCamelCase : str = layerdrop _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : Any = mask_time_length _lowerCamelCase : str = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : str = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : Union[str, Any] = ctc_zero_infinity # adapter _lowerCamelCase : List[str] = add_adapter _lowerCamelCase : Dict = adapter_kernel_size _lowerCamelCase : str = adapter_stride _lowerCamelCase : Union[str, Any] = num_adapter_layers _lowerCamelCase : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(_UpperCamelCase) _lowerCamelCase : List[Any] = list(_UpperCamelCase) _lowerCamelCase : Optional[int] = list(_UpperCamelCase) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" return math.prod(self.conv_stride)
713
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
0
def A__ ( __A , __A , __A , __A ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _lowerCamelCase : List[str] = mf_knapsack(i - 1 , __A , __A , __A ) else: _lowerCamelCase : Any = max( mf_knapsack(i - 1 , __A , __A , __A ) , mf_knapsack(i - 1 , __A , __A , j - wt[i - 1] ) + val[i - 1] , ) _lowerCamelCase : Tuple = val return f[i][j] def A__ ( __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _lowerCamelCase : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _lowerCamelCase : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def A__ ( __A , __A , __A ): '''simple docstring''' if not (isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) _lowerCamelCase : List[str] = len(__A ) if num_items != len(__A ): _lowerCamelCase : Union[str, Any] = ( """The number of weights must be the same as the number of values.\n""" F"""But got {num_items} weights and {len(__A )} values""" ) raise ValueError(__A ) for i in range(__A ): if not isinstance(wt[i] , __A ): _lowerCamelCase : Tuple = ( """All weights must be integers but got weight of """ F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(__A ) _lowerCamelCase : Union[str, Any] = knapsack(__A , __A , __A , __A ) _lowerCamelCase : set = set() _construct_solution(__A , __A , __A , __A , __A ) return optimal_val, example_optional_set def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__A , __A , i - 1 , __A , __A ) else: optimal_set.add(__A ) _construct_solution(__A , __A , i - 1 , j - wt[i - 1] , __A ) if __name__ == "__main__": lowerCAmelCase : Any =[3, 2, 4, 4] lowerCAmelCase : str =[4, 3, 2, 3] lowerCAmelCase : Dict =4 lowerCAmelCase : str =6 lowerCAmelCase : List[str] =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCAmelCase : Union[str, Any] =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCAmelCase : Optional[Any] =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
0
from __future__ import annotations def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Any = list(range(len(__A ) ) ) _lowerCamelCase : List[Any] = [v / w for v, w in zip(__A , __A )] index.sort(key=lambda __A : ratio[i] , reverse=__A ) _lowerCamelCase : float = 0 _lowerCamelCase : list[float] = [0] * len(__A ) for i in index: if weight[i] <= capacity: _lowerCamelCase : Dict = 1 max_value += value[i] capacity -= weight[i] else: _lowerCamelCase : str = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
715
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase : Tuple =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[Any] = os.path.dirname(os.path.realpath(__A ) ) _lowerCamelCase : Tuple = os.path.join(__A , """words.txt""" ) _lowerCamelCase : int = """""" with open(__A ) as f: _lowerCamelCase : Union[str, Any] = f.readline() _lowerCamelCase : Tuple = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _lowerCamelCase : Optional[Any] = [ word for word in [sum(ord(__A ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__A ) if __name__ == "__main__": print(solution())
717
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *_UpperCamelCase : List[str] , **_UpperCamelCase : List[Any]) ->Dict: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Optional[int]) ->str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : Any) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Any , **_UpperCamelCase : str) ->List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : int) ->Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Optional[Any]) ->int: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *_UpperCamelCase : List[str] , **_UpperCamelCase : Optional[int]) ->List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , *_UpperCamelCase : str , **_UpperCamelCase : Any) ->List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : Optional[int]) ->str: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , *_UpperCamelCase : List[str] , **_UpperCamelCase : Dict) ->Optional[int]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : List[Any]) ->Any: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : List[str]) ->str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Dict) ->Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_UpperCamelCase : Any , **_UpperCamelCase : str) ->List[str]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Tuple , **_UpperCamelCase : int) ->List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *_UpperCamelCase : Dict , **_UpperCamelCase : int) ->int: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""])
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : int =logging.get_logger(__name__) def A__ ( __A ): '''simple docstring''' # initialize config if "resnet-50" in model_name: _lowerCamelCase : List[Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _lowerCamelCase : str = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _lowerCamelCase : Optional[Any] = DetrConfig(use_timm_backbone=__A , backbone_config=__A ) # set label attributes _lowerCamelCase : Dict = """panoptic""" in model_name if is_panoptic: _lowerCamelCase : Any = 250 else: _lowerCamelCase : List[str] = 91 _lowerCamelCase : Optional[int] = """huggingface/label-files""" _lowerCamelCase : int = """coco-detection-id2label.json""" _lowerCamelCase : int = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) _lowerCamelCase : Any = {int(__A ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[str] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[int] = state_dict.pop(__A ) _lowerCamelCase : Dict = val def A__ ( __A , __A=False ): '''simple docstring''' _lowerCamelCase : Tuple = """""" if is_panoptic: _lowerCamelCase : Tuple = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCamelCase : List[str] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCamelCase : Union[str, Any] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[:256, :] _lowerCamelCase : int = in_proj_bias[:256] _lowerCamelCase : Optional[Any] = in_proj_weight[256:512, :] _lowerCamelCase : Tuple = in_proj_bias[256:512] _lowerCamelCase : List[Any] = in_proj_weight[-256:, :] _lowerCamelCase : Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCamelCase : Tuple = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCamelCase : Tuple = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[:256, :] _lowerCamelCase : List[str] = in_proj_bias[:256] _lowerCamelCase : Dict = in_proj_weight[256:512, :] _lowerCamelCase : Union[str, Any] = in_proj_bias[256:512] _lowerCamelCase : Optional[Any] = in_proj_weight[-256:, :] _lowerCamelCase : Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowerCamelCase : Union[str, Any] = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _lowerCamelCase : Any = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCamelCase : int = in_proj_weight_cross_attn[:256, :] _lowerCamelCase : Any = in_proj_bias_cross_attn[:256] _lowerCamelCase : List[str] = in_proj_weight_cross_attn[256:512, :] _lowerCamelCase : Any = in_proj_bias_cross_attn[256:512] _lowerCamelCase : Any = in_proj_weight_cross_attn[-256:, :] _lowerCamelCase : Optional[int] = in_proj_bias_cross_attn[-256:] def A__ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCamelCase : str = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A__ ( __A , __A=None , __A=False ): '''simple docstring''' _lowerCamelCase : List[str] = get_detr_config(__A ) # load original model from torch hub _lowerCamelCase : Any = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F"""Converting model {model_name}...""" ) _lowerCamelCase : Optional[int] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=__A ).eval() _lowerCamelCase : Optional[Any] = detr.state_dict() # rename keys for src, dest in create_rename_keys(__A ): if is_panoptic: _lowerCamelCase : Optional[int] = """detr.""" + src rename_key(__A , __A , __A ) # query, key and value matrices need special treatment read_in_q_k_v(__A , is_panoptic=__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCamelCase : str = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _lowerCamelCase : Tuple = state_dict.pop(__A ) _lowerCamelCase : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCamelCase : int = state_dict.pop(__A ) _lowerCamelCase : Union[str, Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _lowerCamelCase : List[str] = state_dict.pop(__A ) _lowerCamelCase : Optional[Any] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _lowerCamelCase : Any = state_dict.pop(__A ) _lowerCamelCase : Any = val # finally, create HuggingFace model and load state dict _lowerCamelCase : List[str] = DetrForSegmentation(__A ) if is_panoptic else DetrForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() # verify our conversion on an image _lowerCamelCase : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _lowerCamelCase : List[Any] = DetrImageProcessor(format=__A ) _lowerCamelCase : Optional[int] = processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCamelCase : Optional[int] = encoding["""pixel_values"""] _lowerCamelCase : List[Any] = detr(__A ) _lowerCamelCase : Tuple = model(__A ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") lowerCAmelCase : int =parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
719
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase : Optional[Any] =["small", "medium", "large"] lowerCAmelCase : Dict ="lm_head.decoder.weight" lowerCAmelCase : str ="lm_head.weight" def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : List[Any] = torch.load(__A ) _lowerCamelCase : Tuple = d.pop(__A ) os.makedirs(__A , exist_ok=__A ) torch.save(__A , os.path.join(__A , __A ) ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) lowerCAmelCase : Optional[int] =parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase : Union[str, Any] =os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") lowerCAmelCase : str =F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
720
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int=0.0 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "geglu" , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True , _UpperCamelCase : str = "layer_norm" , _UpperCamelCase : bool = False , ) ->Tuple: """simple docstring""" super().__init__() _lowerCamelCase : int = only_cross_attention _lowerCamelCase : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" _lowerCamelCase : str = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""") # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _lowerCamelCase : Any = AdaLayerNorm(_UpperCamelCase , _UpperCamelCase) elif self.use_ada_layer_norm_zero: _lowerCamelCase : int = AdaLayerNormZero(_UpperCamelCase , _UpperCamelCase) else: _lowerCamelCase : Dict = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase) _lowerCamelCase : Tuple = Attention( query_dim=_UpperCamelCase , heads=_UpperCamelCase , dim_head=_UpperCamelCase , dropout=_UpperCamelCase , bias=_UpperCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_UpperCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _lowerCamelCase : Tuple = ( AdaLayerNorm(_UpperCamelCase , _UpperCamelCase) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase) ) _lowerCamelCase : Dict = Attention( query_dim=_UpperCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_UpperCamelCase , dim_head=_UpperCamelCase , dropout=_UpperCamelCase , bias=_UpperCamelCase , upcast_attention=_UpperCamelCase , ) # is self-attn if encoder_hidden_states is none else: _lowerCamelCase : Dict = None _lowerCamelCase : Any = None # 3. Feed-forward _lowerCamelCase : Dict = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase) _lowerCamelCase : List[str] = FeedForward(_UpperCamelCase , dropout=_UpperCamelCase , activation_fn=_UpperCamelCase , final_dropout=_UpperCamelCase) # let chunk size default to None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[Any] = 0 def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : int) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = chunk_size _lowerCamelCase : List[Any] = dim def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : torch.FloatTensor , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[torch.LongTensor] = None , _UpperCamelCase : Dict[str, Any] = None , _UpperCamelCase : Optional[torch.LongTensor] = None , ) ->Optional[int]: """simple docstring""" if self.use_ada_layer_norm: _lowerCamelCase : List[Any] = self.norma(_UpperCamelCase , _UpperCamelCase) elif self.use_ada_layer_norm_zero: _lowerCamelCase : str = self.norma( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hidden_dtype=hidden_states.dtype) else: _lowerCamelCase : List[str] = self.norma(_UpperCamelCase) _lowerCamelCase : List[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} _lowerCamelCase : List[str] = self.attna( _UpperCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_UpperCamelCase , **_UpperCamelCase , ) if self.use_ada_layer_norm_zero: _lowerCamelCase : List[str] = gate_msa.unsqueeze(1) * attn_output _lowerCamelCase : Optional[Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _lowerCamelCase : List[Any] = ( self.norma(_UpperCamelCase , _UpperCamelCase) if self.use_ada_layer_norm else self.norma(_UpperCamelCase) ) _lowerCamelCase : List[Any] = self.attna( _UpperCamelCase , encoder_hidden_states=_UpperCamelCase , attention_mask=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : Tuple = attn_output + hidden_states # 3. Feed-forward _lowerCamelCase : List[str] = self.norma(_UpperCamelCase) if self.use_ada_layer_norm_zero: _lowerCamelCase : Optional[int] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""") _lowerCamelCase : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _lowerCamelCase : List[str] = torch.cat( [self.ff(_UpperCamelCase) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: _lowerCamelCase : List[Any] = self.ff(_UpperCamelCase) if self.use_ada_layer_norm_zero: _lowerCamelCase : str = gate_mlp.unsqueeze(1) * ff_output _lowerCamelCase : int = ff_output + hidden_states return hidden_states class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : int , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 4 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : str = "geglu" , _UpperCamelCase : bool = False , ) ->int: """simple docstring""" super().__init__() _lowerCamelCase : List[str] = int(dim * mult) _lowerCamelCase : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": _lowerCamelCase : int = GELU(_UpperCamelCase , _UpperCamelCase) if activation_fn == "gelu-approximate": _lowerCamelCase : Any = GELU(_UpperCamelCase , _UpperCamelCase , approximate="""tanh""") elif activation_fn == "geglu": _lowerCamelCase : Union[str, Any] = GEGLU(_UpperCamelCase , _UpperCamelCase) elif activation_fn == "geglu-approximate": _lowerCamelCase : Optional[Any] = ApproximateGELU(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = nn.ModuleList([]) # project in self.net.append(_UpperCamelCase) # project dropout self.net.append(nn.Dropout(_UpperCamelCase)) # project out self.net.append(nn.Linear(_UpperCamelCase , _UpperCamelCase)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Tuple) ->Optional[Any]: """simple docstring""" for module in self.net: _lowerCamelCase : Optional[int] = module(_UpperCamelCase) return hidden_states class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : str = "none") ->Any: """simple docstring""" super().__init__() _lowerCamelCase : int = nn.Linear(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[Any] = approximate def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Optional[int]) ->List[str]: """simple docstring""" if gate.device.type != "mps": return F.gelu(_UpperCamelCase , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = self.proj(_UpperCamelCase) _lowerCamelCase : List[str] = self.gelu(_UpperCamelCase) return hidden_states class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : int , _UpperCamelCase : int) ->Any: """simple docstring""" super().__init__() _lowerCamelCase : Tuple = nn.Linear(_UpperCamelCase , dim_out * 2) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : int) ->List[str]: """simple docstring""" if gate.device.type != "mps": return F.gelu(_UpperCamelCase) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str) ->int: """simple docstring""" _lowerCamelCase : Dict = self.proj(_UpperCamelCase).chunk(2 , dim=-1) return hidden_states * self.gelu(_UpperCamelCase) class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int) ->List[str]: """simple docstring""" super().__init__() _lowerCamelCase : Any = nn.Linear(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = self.proj(_UpperCamelCase) return x * torch.sigmoid(1.7_0_2 * x) class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict) ->Any: """simple docstring""" super().__init__() _lowerCamelCase : Dict = nn.Embedding(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = nn.SiLU() _lowerCamelCase : Union[str, Any] = nn.Linear(_UpperCamelCase , embedding_dim * 2) _lowerCamelCase : Optional[Any] = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Any , _UpperCamelCase : List[Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = self.linear(self.silu(self.emb(_UpperCamelCase))) _lowerCamelCase : Optional[int] = torch.chunk(_UpperCamelCase , 2) _lowerCamelCase : Dict = self.norm(_UpperCamelCase) * (1 + scale) + shift return x class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]) ->Dict: """simple docstring""" super().__init__() _lowerCamelCase : str = CombinedTimestepLabelEmbeddings(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = nn.SiLU() _lowerCamelCase : Optional[Any] = nn.Linear(_UpperCamelCase , 6 * embedding_dim , bias=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase , eps=1E-6) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict=None) ->int: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase , _UpperCamelCase , hidden_dtype=_UpperCamelCase))) _lowerCamelCase : int = emb.chunk(6 , dim=1) _lowerCamelCase : List[Any] = self.norm(_UpperCamelCase) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : float = 1E-5) ->List[str]: """simple docstring""" super().__init__() _lowerCamelCase : int = num_groups _lowerCamelCase : List[Any] = eps if act_fn is None: _lowerCamelCase : str = None else: _lowerCamelCase : List[Any] = get_activation(_UpperCamelCase) _lowerCamelCase : Any = nn.Linear(_UpperCamelCase , out_dim * 2) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : Dict) ->Dict: """simple docstring""" if self.act: _lowerCamelCase : Optional[Any] = self.act(_UpperCamelCase) _lowerCamelCase : Any = self.linear(_UpperCamelCase) _lowerCamelCase : str = emb[:, :, None, None] _lowerCamelCase : List[Any] = emb.chunk(2 , dim=1) _lowerCamelCase : str = F.group_norm(_UpperCamelCase , self.num_groups , eps=self.eps) _lowerCamelCase : List[Any] = x * (1 + scale) + shift return x
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _lowerCAmelCase = datasets.utils.logging.get_logger(__name__) _lowerCAmelCase = ["""names""", """prefix"""] _lowerCAmelCase = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] _lowerCAmelCase = ["""encoding_errors""", """on_bad_lines"""] _lowerCAmelCase = ["""date_format"""] @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): _UpperCAmelCase = "," _UpperCAmelCase = None _UpperCAmelCase = "infer" _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = False _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = "." _UpperCAmelCase = None _UpperCAmelCase = '"' _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0 _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = None _UpperCAmelCase = 1_00_00 _UpperCAmelCase = None _UpperCAmelCase = "strict" _UpperCAmelCase = "error" _UpperCAmelCase = None def __lowerCamelCase ( self ): '''simple docstring''' if self.delimiter is not None: _lowerCAmelCase : str = self.delimiter if self.column_names is not None: _lowerCAmelCase : Dict = self.column_names @property def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,_A ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __UpperCamelCase ( datasets.ArrowBasedBuilder ): _UpperCAmelCase = CsvConfig def __lowerCamelCase ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A ,(str, list, tuple) ): _lowerCAmelCase : int = data_files if isinstance(_A ,_A ): _lowerCAmelCase : Optional[int] = [files] _lowerCAmelCase : Dict = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] _lowerCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(_A ,_A ): _lowerCAmelCase : List[Any] = [files] _lowerCAmelCase : Dict = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A ,gen_kwargs={'files': files} ) ) return splits def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.config.features is not None: _lowerCAmelCase : Any = self.config.features.arrow_schema if all(not require_storage_cast(_A ) for feature in self.config.features.values() ): # cheaper cast _lowerCAmelCase : str = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=_A ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCAmelCase : List[str] = table_cast(_A ,_A ) return pa_table def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCAmelCase : Dict = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_A ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): _lowerCAmelCase : Any = pd.read_csv(_A ,iterator=_A ,dtype=_A ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_A ): _lowerCAmelCase : Union[str, Any] = pa.Table.from_pandas(_A ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(_A )}: {e}""" ) raise
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" from math import factorial def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _lowerCAmelCase : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _lowerCAmelCase : Union[str, Any] = float(factorial(_lowerCamelCase ) ) coefficient /= factorial(_lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""MaskFormerFeatureExtractor"""] _lowerCAmelCase = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowerCAmelCase = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' if components is None: _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Dict = list(_A ) def __len__( self ): '''simple docstring''' return len(self.__components ) def __str__( self ): '''simple docstring''' return "(" + ",".join(map(_A ,self.__components ) ) + ")" def __add__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self ) if size == len(_A ): _lowerCAmelCase : List[Any] = [self.__components[i] + other.component(_A ) for i in range(_A )] return Vector(_A ) else: raise Exception('must have the same size' ) def __sub__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self ) if size == len(_A ): _lowerCAmelCase : int = [self.__components[i] - other.component(_A ) for i in range(_A )] return Vector(_A ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self ,_A ): '''simple docstring''' ... @overload def __mul__( self ,_A ): '''simple docstring''' ... def __mul__( self ,_A ): '''simple docstring''' if isinstance(_A ,(float, int) ): _lowerCAmelCase : Tuple = [c * other for c in self.__components] return Vector(_A ) elif isinstance(_A ,_A ) and len(self ) == len(_A ): _lowerCAmelCase : List[Any] = len(self ) _lowerCAmelCase : Union[str, Any] = [self.__components[i] * other.component(_A ) for i in range(_A )] return sum(_A ) else: # error case raise Exception('invalid operand!' ) def __lowerCamelCase ( self ): '''simple docstring''' return Vector(self.__components ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if isinstance(_A ,_A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _lowerCAmelCase : List[Any] = value def __lowerCamelCase ( self ): '''simple docstring''' if len(self.__components ) == 0: raise Exception('Vector is empty' ) _lowerCAmelCase : Optional[int] = [c**2 for c in self.__components] return math.sqrt(sum(_A ) ) def __lowerCamelCase ( self ,_A ,_A = False ): '''simple docstring''' _lowerCAmelCase : int = self * other _lowerCAmelCase : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) return Vector([0] * dimension ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , _lowerCamelCase )) _lowerCAmelCase : Any = [0] * dimension _lowerCAmelCase : Dict = 1 return Vector(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , (int, float) )) ) return x * scalar + y def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' random.seed(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) class __UpperCamelCase : def __init__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = matrix _lowerCAmelCase : List[Any] = w _lowerCAmelCase : Tuple = h def __str__( self ): '''simple docstring''' _lowerCAmelCase : Tuple = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self ,_A ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _lowerCAmelCase : str = [] for i in range(self.__height ): _lowerCAmelCase : str = [ self.__matrix[i][j] + other.component(_A ,_A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A ,self.__width ,self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self ,_A ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _lowerCAmelCase : str = [] for i in range(self.__height ): _lowerCAmelCase : Tuple = [ self.__matrix[i][j] - other.component(_A ,_A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A ,self.__width ,self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self ,_A ): '''simple docstring''' ... @overload def __mul__( self ,_A ): '''simple docstring''' ... def __mul__( self ,_A ): '''simple docstring''' if isinstance(_A ,_A ): # matrix-vector if len(_A ) == self.__width: _lowerCAmelCase : List[Any] = zero_vector(self.__height ) for i in range(self.__height ): _lowerCAmelCase : Dict = [ self.__matrix[i][j] * other.component(_A ) for j in range(self.__width ) ] ans.change_component(_A ,sum(_A ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_A ,(int, float) ): # matrix-scalar _lowerCAmelCase : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_A ,self.__width ,self.__height ) return None def __lowerCamelCase ( self ): '''simple docstring''' return self.__height def __lowerCamelCase ( self ): '''simple docstring''' return self.__width def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _lowerCAmelCase : Union[str, Any] = value else: raise Exception('change_component: indices out of bounds' ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) _lowerCAmelCase : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_A ) ): _lowerCAmelCase : int = minor[i][:y] + minor[i][y + 1 :] return Matrix(_A ,self.__width - 1 ,self.__height - 1 ).determinant() def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_A ,_A ) else: raise Exception('Indices out of bounds' ) def __lowerCamelCase ( self ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _lowerCAmelCase : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 ,_A ) for y in range(self.__width ) ] return sum(_A ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list[float]] = [[0] * n for _ in range(_lowerCamelCase )] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' random.seed(_lowerCamelCase ) _lowerCAmelCase : list[list[float]] = [ [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase ) ] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _lowerCAmelCase = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "facebook/nllb-200-distilled-600M" _UpperCAmelCase = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) _UpperCAmelCase = "translator" _UpperCAmelCase = AutoTokenizer _UpperCAmelCase = AutoModelForSeqaSeqLM _UpperCAmelCase = LANGUAGE_CODES _UpperCAmelCase = ["text", "text", "text"] _UpperCAmelCase = ["text"] def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase : Tuple = self.lang_to_code[src_lang] _lowerCAmelCase : Any = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _A ,return_tensors='pt' ,src_lang=_A ,tgt_lang=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.model.generate(**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=_A )
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for param in module.parameters(): _lowerCAmelCase : Any = False def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : str = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCAmelCase : Any = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = plt.imshow(_lowerCamelCase ) fig.axes.get_xaxis().set_visible(_lowerCamelCase ) fig.axes.get_yaxis().set_visible(_lowerCamelCase ) plt.show() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = datetime.now() _lowerCAmelCase : List[str] = current_time.strftime('%H:%M:%S' ) return timestamp
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} _lowerCAmelCase = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } _lowerCAmelCase = { """abeja/gpt-neox-japanese-2.7b""": 2_0_4_8, } def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : Tuple = json.loads(f.read() ) _lowerCAmelCase : Tuple = collections.OrderedDict() _lowerCAmelCase : List[str] = collections.OrderedDict() _lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : Tuple = f.readlines() _lowerCAmelCase : int = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = b _lowerCAmelCase : Dict = idx for wd in b: _lowerCAmelCase : Dict = idx return vocab, raw_vocab, ids_to_tokens, emoji class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A ,_A="<|endoftext|>" ,_A="<|endoftext|>" ,_A="<|startoftext|>" ,_A="<|endoftext|>" ,_A=False ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,pad_token=_A ,bos_token=_A ,eos_token=_A ,do_clean_text=_A ,**_A ,) if not os.path.isfile(_A ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(_A ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) _lowerCAmelCase : Tuple = do_clean_text _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : str = load_vocab_and_emoji(_A ,_A ) _lowerCAmelCase : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.raw_vocab ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.raw_vocab ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.subword_tokenizer.tokenize(_A ,clean=self.do_clean_text ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.vocab.get(_A ,self.vocab.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = ''.join(_A ).strip() return out_string def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A ,add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: _lowerCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Tuple = 0 if os.path.isdir(_A ): _lowerCAmelCase : int = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : Optional[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: _lowerCAmelCase : Dict = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) _lowerCAmelCase : Optional[int] = token_index writer.write(','.join(_A ) + '\n' ) index += 1 with open(_A ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,_A ) return vocab_file, emoji_file class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = vocab # same as swe _lowerCAmelCase : int = ids_to_tokens # same as bpe _lowerCAmelCase : List[Any] = emoji _lowerCAmelCase : Tuple = np.max([len(_A ) for w in self.vocab.keys()] ) _lowerCAmelCase : Dict = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) _lowerCAmelCase : int = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) _lowerCAmelCase : Optional[int] = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) _lowerCAmelCase : Optional[int] = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _lowerCAmelCase : Optional[int] = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _lowerCAmelCase : Dict = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) _lowerCAmelCase : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _lowerCAmelCase : List[str] = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _lowerCAmelCase : Union[str, Any] = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): '''simple docstring''' return len(self.ids_to_tokens ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.content_repattera.sub('<URL>' ,_A ) _lowerCAmelCase : int = self.content_repattera.sub('<EMAIL>' ,_A ) _lowerCAmelCase : List[Any] = self.content_repattera.sub('<TEL>' ,_A ) _lowerCAmelCase : str = self.content_repattera.sub('<DATE>' ,_A ) _lowerCAmelCase : Union[str, Any] = self.content_repattera.sub('<DATE>' ,_A ) _lowerCAmelCase : Any = self.content_repattera.sub('<PRICE>' ,_A ) _lowerCAmelCase : Union[str, Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _lowerCAmelCase : int = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def __lowerCamelCase ( self ,_A ,_A=False ): '''simple docstring''' _lowerCAmelCase : Tuple = text.replace(' ' ,'<SP>' ) _lowerCAmelCase : Optional[Any] = text.replace(' ' ,'<SP>' ) _lowerCAmelCase : List[str] = text.replace('\r\n' ,'<BR>' ) _lowerCAmelCase : Dict = text.replace('\n' ,'<BR>' ) _lowerCAmelCase : int = text.replace('\r' ,'<BR>' ) _lowerCAmelCase : int = text.replace('\t' ,'<TAB>' ) _lowerCAmelCase : Optional[Any] = text.replace('—' ,'ー' ) _lowerCAmelCase : List[str] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: _lowerCAmelCase : List[Any] = text.replace(_A ,_A ) if clean: _lowerCAmelCase : Any = self.clean_text(_A ) def check_simbol(_A ): _lowerCAmelCase : Tuple = x.encode() if len(_A ) == 1 and len(_A ) == 2: _lowerCAmelCase : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checkuae(_A ): _lowerCAmelCase : Optional[Any] = x.encode() if len(_A ) == 1 and len(_A ) == 3: _lowerCAmelCase : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_8080 and c <= 0xE2_B07F: return True return False _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : int = [] while pos < len(_A ): _lowerCAmelCase : Tuple = min(len(_A ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _lowerCAmelCase : int = [] # (token_id, token, pos) for e in range(_A ,_A ,-1 ): _lowerCAmelCase : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_A ) > 2: _lowerCAmelCase : Optional[int] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_A ) > 0: # the smallest token_id is adopted _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = sorted(_A ,key=lambda _A : x[0] )[0] result.append(_A ) _lowerCAmelCase : List[str] = e else: _lowerCAmelCase : Dict = pos + 1 _lowerCAmelCase : Tuple = text[pos:end] if check_simbol(_A ): result.append('<KIGOU>' ) elif checkuae(_A ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) _lowerCAmelCase : str = end return result def __lowerCamelCase ( self ,_A ,_A="\n" ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_A ) > 0: words.append(bytearray(_A ).decode('utf-8' ,errors='replace' ) ) _lowerCAmelCase : int = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(_A ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(_A ) if len(_A ) > 0: words.append(bytearray(_A ).decode('utf-8' ,errors='replace' ) ) _lowerCAmelCase : Tuple = ''.join(_A ) return text
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } _lowerCAmelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = {} with open(_lowerCamelCase , 'r' ) as file: for line_number, line in enumerate(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = line.strip() if line: _lowerCAmelCase : Dict = line.split() _lowerCAmelCase : Union[str, Any] = line_number _lowerCAmelCase : Dict = words[0] _lowerCAmelCase : Any = value return result def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split('.' ): _lowerCAmelCase : Any = getattr(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] _lowerCAmelCase : Dict = 'param' if weight_type is not None and weight_type != "param": _lowerCAmelCase : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": _lowerCAmelCase : Any = hf_pointer for attribute in hf_param_name.split('.' ): _lowerCAmelCase : Dict = getattr(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = shape_pointer.shape # let's reduce dimension _lowerCAmelCase : List[str] = value[0] else: _lowerCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCAmelCase : Any = value elif weight_type == "weight_g": _lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": _lowerCAmelCase : Any = value elif weight_type == "bias": _lowerCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): _lowerCAmelCase : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = value else: _lowerCAmelCase : Optional[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): _lowerCAmelCase : List[Any] = PARAM_MAPPING[full_name.split('.' )[-1]] _lowerCAmelCase : List[Any] = 'param' if weight_type is not None and weight_type != "param": _lowerCAmelCase : List[str] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _lowerCAmelCase : List[str] = '.'.join([key, hf_param_name] ) else: _lowerCAmelCase : str = key _lowerCAmelCase : List[Any] = value if 'lm_head' in full_key else value[0] _lowerCAmelCase = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = False for key, mapped_key in MAPPING.items(): _lowerCAmelCase : str = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowerCAmelCase : Optional[Any] = True if "*" in mapped_key: _lowerCAmelCase : Tuple = name.split(_lowerCamelCase )[0].split('.' )[-2] _lowerCAmelCase : List[Any] = mapped_key.replace('*' , _lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : List[str] = 'weight_g' elif "weight_v" in name: _lowerCAmelCase : str = 'weight_v' elif "bias" in name: _lowerCAmelCase : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : List[Any] = 'weight' else: _lowerCAmelCase : Tuple = None if hf_dict is not None: rename_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return is_used return is_used def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : Any = fairseq_model.state_dict() _lowerCAmelCase : int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) _lowerCAmelCase : List[Any] = True else: _lowerCAmelCase : Union[str, Any] = load_wavaveca_layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = full_name.split('conv_layers.' )[-1] _lowerCAmelCase : Optional[Any] = name.split('.' ) _lowerCAmelCase : Union[str, Any] = int(items[0] ) _lowerCAmelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCAmelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCAmelCase : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCAmelCase : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=False ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : int = WavaVecaConfig() if is_seq_class: _lowerCAmelCase : List[Any] = read_txt_into_dict(_lowerCamelCase ) _lowerCAmelCase : List[str] = idalabel _lowerCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCamelCase ) _lowerCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) feature_extractor.save_pretrained(_lowerCamelCase ) elif is_finetuned: if dict_path: _lowerCAmelCase : Union[str, Any] = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase : int = target_dict.pad_index _lowerCAmelCase : Union[str, Any] = target_dict.bos_index _lowerCAmelCase : Union[str, Any] = target_dict.eos_index _lowerCAmelCase : Any = len(target_dict.symbols ) _lowerCAmelCase : Union[str, Any] = os.path.join(_lowerCamelCase , 'vocab.json' ) if not os.path.isdir(_lowerCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCAmelCase : Dict = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : str = 1 with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowerCamelCase , ) _lowerCAmelCase : List[str] = True if config.feat_extract_norm == 'layer' else False _lowerCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCAmelCase : Dict = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : Any = WavaVecaForCTC(_lowerCamelCase ) else: _lowerCAmelCase : Optional[Any] = WavaVecaForPreTraining(_lowerCamelCase ) if is_finetuned or is_seq_class: _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowerCAmelCase : Tuple = argparse.Namespace(task='audio_pretraining' ) _lowerCAmelCase : str = fairseq.tasks.setup_task(_lowerCamelCase ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) _lowerCAmelCase : List[str] = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "BlipImageProcessor" _UpperCAmelCase = "AutoTokenizer" def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__(_A ,_A ) # add QFormer tokenizer _lowerCAmelCase : str = qformer_tokenizer def __call__( self ,_A = None ,_A = None ,_A = True ,_A = False ,_A = None ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A = False ,_A = False ,_A = False ,_A = False ,_A = False ,_A = True ,_A = None ,**_A ,): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _lowerCAmelCase : List[str] = BatchFeature() if text is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer( text=_A ,add_special_tokens=_A ,padding=_A ,truncation=_A ,max_length=_A ,stride=_A ,pad_to_multiple_of=_A ,return_attention_mask=_A ,return_overflowing_tokens=_A ,return_special_tokens_mask=_A ,return_offsets_mapping=_A ,return_token_type_ids=_A ,return_length=_A ,verbose=_A ,return_tensors=_A ,**_A ,) encoding.update(_A ) _lowerCAmelCase : Any = self.qformer_tokenizer( text=_A ,add_special_tokens=_A ,padding=_A ,truncation=_A ,max_length=_A ,stride=_A ,pad_to_multiple_of=_A ,return_attention_mask=_A ,return_overflowing_tokens=_A ,return_special_tokens_mask=_A ,return_offsets_mapping=_A ,return_token_type_ids=_A ,return_length=_A ,verbose=_A ,return_tensors=_A ,**_A ,) _lowerCAmelCase : List[str] = qformer_text_encoding.pop('input_ids' ) _lowerCAmelCase : Optional[int] = qformer_text_encoding.pop('attention_mask' ) if images is not None: _lowerCAmelCase : Optional[Any] = self.image_processor(_A ,return_tensors=_A ) encoding.update(_A ) return encoding def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A ,**_A ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.tokenizer.decode(*_A ,**_A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.model_input_names _lowerCAmelCase : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __lowerCamelCase ( self ,_A ,**_A ): '''simple docstring''' if os.path.isfile(_A ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_A ,exist_ok=_A ) _lowerCAmelCase : Union[str, Any] = os.path.join(_A ,'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(_A ) return super().save_pretrained(_A ,**_A ) @classmethod def __lowerCamelCase ( cls ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ,subfolder='qformer_tokenizer' ) _lowerCAmelCase : Dict = cls._get_arguments_from_pretrained(_A ,**_A ) args.append(_A ) return cls(*_A )
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] ) class __UpperCamelCase ( metaclass=a__ ): _UpperCAmelCase = ["sentencepiece"] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['sentencepiece'] )
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class __UpperCamelCase ( a__ ): _UpperCAmelCase = "ctrl" _UpperCAmelCase = ["past_key_values"] _UpperCAmelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,_A=24_6534 ,_A=256 ,_A=1280 ,_A=8192 ,_A=48 ,_A=16 ,_A=0.1 ,_A=0.1 ,_A=1E-6 ,_A=0.0_2 ,_A=True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Optional[Any] = n_positions _lowerCAmelCase : Dict = n_embd _lowerCAmelCase : Dict = n_layer _lowerCAmelCase : List[str] = n_head _lowerCAmelCase : Tuple = dff _lowerCAmelCase : List[Any] = resid_pdrop _lowerCAmelCase : Dict = embd_pdrop _lowerCAmelCase : Any = layer_norm_epsilon _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Union[str, Any] = use_cache super().__init__(**_A )
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=10 ,_A=3 ,_A=2 ,_A=2 ,_A=True ,_A=True ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=10 ,_A=0.0_2 ,_A="divided_space_time" ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Dict = patch_size _lowerCAmelCase : int = num_frames _lowerCAmelCase : Any = is_training _lowerCAmelCase : str = use_labels _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_type _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : Any = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowerCAmelCase : str = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = TimesformerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,) _lowerCAmelCase : List[str] = self.num_labels return config def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = TimesformerModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = TimesformerForVideoClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model(_A ) # verify the logits shape _lowerCAmelCase : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCAmelCase = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TimesformerModelTester(self ) _lowerCAmelCase : Optional[int] = ConfigTester( self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def __lowerCamelCase ( self ,_A ,_A ,_A=False ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = copy.deepcopy(_A ) if return_labels: if model_class in get_values(_A ): _lowerCAmelCase : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_A ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(_A ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = TimesformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: _lowerCAmelCase, _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[str] = True for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = self.model_tester.seq_length _lowerCAmelCase : Union[str, Any] = self.model_tester.num_frames _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : str = False _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : List[Any] = True _lowerCAmelCase : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : str = outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) _lowerCAmelCase : Optional[Any] = len(_A ) # Check attention is always last and order is fine _lowerCAmelCase : int = True _lowerCAmelCase : List[str] = True _lowerCAmelCase : Dict = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : str = model(**self._prepare_for_class(_A ,_A ) ) self.assertEqual(out_len + 1 ,len(_A ) ) _lowerCAmelCase : Tuple = outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : List[Any] = outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_A ) ,_A ) _lowerCAmelCase : Any = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) _lowerCAmelCase, _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : str = True check_hidden_states_output(_A ,_A ,_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowerCAmelCase : Any = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( _A ) _lowerCAmelCase : List[Any] = self.default_image_processor _lowerCAmelCase : Tuple = prepare_video() _lowerCAmelCase : int = image_processor(video[:8] ,return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**_A ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Optional[Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_A ,atol=1E-4 ) )
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( a__ ): _UpperCAmelCase = "new-model" if is_tf_available(): class __UpperCamelCase ( a__ ): _UpperCAmelCase = NewModelConfig @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 'bert-base-cased' _lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'bert-base-cased' _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Optional[int] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Dict = TFAutoModelForCausalLM.from_pretrained(_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained(_A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(_A ) _lowerCAmelCase, _lowerCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(_A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) _lowerCAmelCase, _lowerCAmelCase : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : Dict = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Union[str, Any] = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) @slow @require_tensorflow_probability def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : str = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) _lowerCAmelCase, _lowerCAmelCase : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) ,1_4410 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) ,1_4410 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Optional[int] = copy.deepcopy(model.config ) _lowerCAmelCase : Union[str, Any] = ['FunnelBaseModel'] _lowerCAmelCase : List[str] = TFAutoModel.from_config(_A ) self.assertIsInstance(_A ,_A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) _lowerCAmelCase : List[Any] = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' try: AutoConfig.register('new-model' ,_A ) _lowerCAmelCase : Any = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A ,_A ) auto_class.register(_A ,_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A ,_A ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase : Optional[Any] = BertModelTester(self ).get_config() _lowerCAmelCase : Optional[int] = NewModelConfig(**tiny_config.to_dict() ) _lowerCAmelCase : str = auto_class.from_config(_A ) self.assertIsInstance(_A ,_A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) _lowerCAmelCase : Union[str, Any] = auto_class.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( _A ,'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained('bert-base' ) def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( _A ,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase : List[Any] = TFAutoModel.from_pretrained(_A ,revision='aaaaaa' ) def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( _A ,'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' ,): _lowerCAmelCase : Any = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex(_A ,'Use `from_pt=True` to load this model' ): _lowerCAmelCase : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: _lowerCAmelCase : List[Any] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 ) # With a sharded checkpoint _lowerCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: _lowerCAmelCase : List[str] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __UpperCamelCase ( a__ ): def __init__( self ,_A=0.0_1 ,_A=1000 ): '''simple docstring''' _lowerCAmelCase : Tuple = p_stop _lowerCAmelCase : str = max_length def __iter__( self ): '''simple docstring''' _lowerCAmelCase : str = 0 _lowerCAmelCase : List[Any] = False while not stop and count < self.max_length: yield count count += 1 _lowerCAmelCase : Any = random.random() < self.p_stop class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ,_A ,_A ,_A=False ,_A=True ): '''simple docstring''' _lowerCAmelCase : Tuple = [ BatchSamplerShard(_A ,2 ,_A ,split_batches=_A ,even_batches=_A ) for i in range(2 ) ] _lowerCAmelCase : Optional[int] = [list(_A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_A ) for shard in batch_sampler_shards] ,[len(_A ) for e in expected] ) self.assertListEqual(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A ,_A ) _lowerCAmelCase : int = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A ,_A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : Union[str, Any] = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_A ,_A ) _lowerCAmelCase : Dict = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : Dict = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_A ,_A ) _lowerCAmelCase : int = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : List[str] = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_A ,_A ) _lowerCAmelCase : str = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ) # Check the shards when the dataset is very small. _lowerCAmelCase : int = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_A ,_A ) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : List[str] = [[], []] self.check_batch_sampler_shards(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) _lowerCAmelCase : List[Any] = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : Tuple = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) _lowerCAmelCase : Optional[Any] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : Tuple = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) _lowerCAmelCase : int = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) # Check the shards when the dataset is very small. _lowerCAmelCase : Tuple = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : List[str] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) _lowerCAmelCase : List[str] = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) _lowerCAmelCase : Dict = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : Tuple = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) _lowerCAmelCase : Optional[int] = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : str = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : Tuple = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) _lowerCAmelCase : List[Any] = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) # Check the shards when the dataset is very small. _lowerCAmelCase : int = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) _lowerCAmelCase : str = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=_A ) _lowerCAmelCase : str = [[], []] self.check_batch_sampler_shards(_A ,_A ,even_batches=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) _lowerCAmelCase : str = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : List[str] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : int = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) _lowerCAmelCase : Any = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) # Check the shards when the dataset is very small. _lowerCAmelCase : Dict = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : int = [[[0, 1]], []] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) _lowerCAmelCase : Dict = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : Tuple = [[], []] self.check_batch_sampler_shards(_A ,_A ,split_batches=_A ,even_batches=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _lowerCAmelCase : Tuple = [BatchSamplerShard(_A ,2 ,_A ,even_batches=_A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) ,3 ) self.assertEqual(len(batch_sampler_shards[1] ) ,2 ) self.assertListEqual(list(batch_sampler_shards[0] ) ,[[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) ,[[3, 4], [9, 10, 11]] ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=False ,_A=2 ,_A=False ): '''simple docstring''' random.seed(_A ) _lowerCAmelCase : Tuple = list(_A ) _lowerCAmelCase : List[str] = [ IterableDatasetShard( _A ,batch_size=_A ,drop_last=_A ,num_processes=_A ,process_index=_A ,split_batches=_A ,) for i in range(_A ) ] _lowerCAmelCase : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_A ) iterable_dataset_lists.append(list(_A ) ) _lowerCAmelCase : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCAmelCase : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_A ) ,len(_A ) ) self.assertTrue(len(_A ) % shard_batch_size == 0 ) _lowerCAmelCase : Union[str, Any] = [] for idx in range(0 ,len(_A ) ,_A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_A ) < len(_A ): reference += reference self.assertListEqual(_A ,reference[: len(_A )] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 42 _lowerCAmelCase : Union[str, Any] = RandomIterableDataset() self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) # Edge case with a very small dataset _lowerCAmelCase : Optional[int] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) self.check_iterable_dataset_shards(_A ,_A ,batch_size=4 ,drop_last=_A ,split_batches=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = BatchSampler(range(16 ) ,batch_size=4 ,drop_last=_A ) _lowerCAmelCase : int = SkipBatchSampler(_A ,2 ) self.assertListEqual(list(_A ) ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = SkipDataLoader(list(range(16 ) ) ,batch_size=4 ,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = DataLoader(list(range(16 ) ) ,batch_size=4 ) _lowerCAmelCase : int = skip_first_batches(_A ,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = DataLoaderShard(list(range(16 ) ) ,batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) def __lowerCamelCase ( self ): '''simple docstring''' Accelerator() _lowerCAmelCase : Tuple = DataLoaderDispatcher(range(16 ) ,batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _lowerCAmelCase = get_logger(__name__) _lowerCAmelCase = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class __UpperCamelCase : @add_start_docstrings(_A ) def __call__( self ,_A ,_A ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __UpperCamelCase : @add_start_docstrings(_A ) def __call__( self ,_A ,_A ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __UpperCamelCase ( a__ ): @add_start_docstrings(_A ) def __call__( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' for processor in self: _lowerCAmelCase : List[Any] = inspect.signature(processor.__call__ ).parameters if len(_A ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) _lowerCAmelCase : Tuple = processor(_A ,_A ,_A ,**_A ) else: _lowerCAmelCase : Optional[int] = processor(_A ,_A ,_A ) return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' if not isinstance(_A ,_A ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) _lowerCAmelCase : List[Any] = temperature def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = scores / self.temperature return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A = -float('Inf' ) ,_A = 1 ): '''simple docstring''' if not isinstance(_A ,_A ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(_A ,_A ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) _lowerCAmelCase : List[Any] = top_p _lowerCAmelCase : str = filter_value _lowerCAmelCase : Union[str, Any] = min_tokens_to_keep def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = lax.top_k(_A ,scores.shape[-1] ) _lowerCAmelCase : Union[str, Any] = jnp.full_like(_A ,self.filter_value ) _lowerCAmelCase : Optional[int] = jax.nn.softmax(_A ,axis=-1 ).cumsum(axis=-1 ) _lowerCAmelCase : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _lowerCAmelCase : Optional[Any] = jnp.roll(_A ,1 ) score_mask |= score_mask.at[:, 0].set(_A ) # min tokens to keep _lowerCAmelCase : List[str] = score_mask.at[:, : self.min_tokens_to_keep].set(_A ) _lowerCAmelCase : List[str] = jnp.where(_A ,_A ,_A ) _lowerCAmelCase : Tuple = jax.lax.sort_key_val(_A ,_A )[-1] return next_scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A = -float('Inf' ) ,_A = 1 ): '''simple docstring''' if not isinstance(_A ,_A ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) _lowerCAmelCase : Dict = max(_A ,_A ) _lowerCAmelCase : Dict = filter_value def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = scores.shape _lowerCAmelCase : Union[str, Any] = jnp.full(batch_size * vocab_size ,self.filter_value ) _lowerCAmelCase : str = min(self.top_k ,scores.shape[-1] ) # Safety check _lowerCAmelCase, _lowerCAmelCase : int = lax.top_k(_A ,_A ) _lowerCAmelCase : Union[str, Any] = jnp.broadcast_to((jnp.arange(_A ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() _lowerCAmelCase : Optional[int] = topk_scores.flatten() _lowerCAmelCase : Optional[int] = topk_indices.flatten() + shift _lowerCAmelCase : List[Any] = next_scores_flat.at[topk_indices_flat].set(_A ) _lowerCAmelCase : Union[str, Any] = next_scores_flat.reshape(_A ,_A ) return next_scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = bos_token_id def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = jnp.full(scores.shape ,-float('inf' ) ) _lowerCAmelCase : Any = 1 - jnp.bool_(cur_len - 1 ) _lowerCAmelCase : Optional[Any] = jnp.where(_A ,new_scores.at[:, self.bos_token_id].set(0 ) ,_A ) return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = max_length _lowerCAmelCase : Dict = eos_token_id def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = jnp.full(scores.shape ,-float('inf' ) ) _lowerCAmelCase : Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _lowerCAmelCase : Any = jnp.where(_A ,new_scores.at[:, self.eos_token_id].set(0 ) ,_A ) return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ): '''simple docstring''' if not isinstance(_A ,_A ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(_A ,_A ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) _lowerCAmelCase : Union[str, Any] = min_length _lowerCAmelCase : Dict = eos_token_id def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) _lowerCAmelCase : int = jnp.where(_A ,scores.at[:, self.eos_token_id].set(-float('inf' ) ) ,_A ) return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = list(_A ) _lowerCAmelCase : str = begin_index def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) _lowerCAmelCase : List[Any] = jnp.where(_A ,scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) ,_A ) return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = list(_A ) def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(_A ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _lowerCAmelCase : int = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _lowerCAmelCase : Optional[int] = force_token_array.at[index].set(_A ) _lowerCAmelCase : str = jnp.intaa(_A ) def __call__( self ,_A ,_A ,_A ): '''simple docstring''' def _force_token(_A ): _lowerCAmelCase : List[str] = scores.shape[0] _lowerCAmelCase : Tuple = self.force_token_array[generation_idx] _lowerCAmelCase : int = jnp.ones_like(_A ,dtype=scores.dtype ) * -float('inf' ) _lowerCAmelCase : List[Any] = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) _lowerCAmelCase : Optional[Any] = lax.dynamic_update_slice(_A ,_A ,(0, current_token) ) return new_scores _lowerCAmelCase : Optional[int] = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(_A ) ,lambda: scores ,) ,) return scores class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = generate_config.eos_token_id _lowerCAmelCase : Union[str, Any] = generate_config.no_timestamps_token_id _lowerCAmelCase : List[str] = generate_config.no_timestamps_token_id + 1 _lowerCAmelCase : Optional[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_A ,'max_initial_timestamp_index' ): _lowerCAmelCase : Optional[Any] = generate_config.max_initial_timestamp_index else: _lowerCAmelCase : Optional[int] = model_config.vocab_size if self.max_initial_timestamp_index is None: _lowerCAmelCase : str = model_config.vocab_size def __call__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(_A ,_A ): _lowerCAmelCase : str = jnp.where((cur_len - self.begin_index) >= 1 ,_A ,_A ) _lowerCAmelCase : Union[str, Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,_A ,) _lowerCAmelCase : Any = jnp.where((cur_len - self.begin_index) < 2 ,_A ,_A ) _lowerCAmelCase : int = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,_A ,_A ,) return jnp.where( _A ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) ,scores_k.at[: self.eos_token_id].set(-float('inf' ) ) ,) ,_A ,) _lowerCAmelCase : Dict = jax.vmap(_A )(_A ,_A ) _lowerCAmelCase : Tuple = jnp.where(cur_len == self.begin_index ,_A ,_A ) _lowerCAmelCase : List[str] = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,_A ,) _lowerCAmelCase : Dict = self.timestamp_begin + self.max_initial_timestamp_index _lowerCAmelCase : Dict = jnp.where( _A ,scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) ,_A ,) # if sum of probability over timestamps is above any other token, sample timestamp _lowerCAmelCase : Dict = jax.nn.log_softmax(_A ,axis=-1 ) def handle_cumulative_probs(_A ,_A ): _lowerCAmelCase : Tuple = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) _lowerCAmelCase : Tuple = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) ,_A ,) _lowerCAmelCase : Any = jax.vmap(_A )(_A ,_A ) return scores
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "trocr" _UpperCAmelCase = ["past_key_values"] _UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self ,_A=5_0265 ,_A=1024 ,_A=12 ,_A=16 ,_A=4096 ,_A="gelu" ,_A=512 ,_A=0.1 ,_A=0.0 ,_A=0.0 ,_A=2 ,_A=0.0_2 ,_A=0.0 ,_A=True ,_A=False ,_A=True ,_A=True ,_A=1 ,_A=0 ,_A=2 ,**_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Tuple = d_model _lowerCAmelCase : List[str] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Optional[int] = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Tuple = dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : str = activation_dropout _lowerCAmelCase : int = init_std _lowerCAmelCase : Dict = decoder_layerdrop _lowerCAmelCase : List[str] = use_cache _lowerCAmelCase : int = scale_embedding _lowerCAmelCase : Optional[Any] = use_learned_position_embeddings _lowerCAmelCase : List[Any] = layernorm_embedding super().__init__( pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,decoder_start_token_id=_A ,**_A ,)
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: _lowerCAmelCase : Optional[Any] = os.path.abspath(_lowerCamelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) _lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location='cpu' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) _lowerCAmelCase : Optional[Any] = convert_pytorch_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _lowerCAmelCase : List[str] = convert_pytorch_sharded_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase ) return flax_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(_lowerCamelCase ) -> bool: return len(set(_lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _lowerCAmelCase : int = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _lowerCAmelCase : int = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _lowerCAmelCase : Dict = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _lowerCAmelCase : List[str] = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase : List[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase : Any = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ): _lowerCAmelCase : List[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase : int = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _lowerCAmelCase : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _lowerCAmelCase : Union[str, Any] = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _lowerCAmelCase : List[str] = pt_tuple_key[-2] + '_v' if name is not None: _lowerCAmelCase : Any = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _lowerCAmelCase : Optional[int] = flax_model.params['params'] else: _lowerCAmelCase : Union[str, Any] = flax_model.params _lowerCAmelCase : str = flatten_dict(_lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase : List[Any] = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_lowerCamelCase ) _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Any = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase : Any = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary _lowerCAmelCase : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary _lowerCAmelCase : List[str] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _lowerCAmelCase : Tuple = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase : str = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase : int = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' import torch # Load the index _lowerCAmelCase : Optional[int] = {} for shard_file in shard_filenames: # load using msgpack utils _lowerCAmelCase : List[str] = torch.load(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase : Optional[Any] = flax_model.params['params'] _lowerCAmelCase : Union[str, Any] = flatten_dict(_lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: _lowerCAmelCase : Optional[Any] = flax_model.params _lowerCAmelCase : str = flatten_dict(_lowerCamelCase ) _lowerCAmelCase : str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase : Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase : Tuple = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary _lowerCAmelCase : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : List[Any] = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase, _lowerCAmelCase : int = rename_key_and_reshape_tensor( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # add model prefix if necessary _lowerCAmelCase : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _lowerCAmelCase : str = jnp.asarray(_lowerCamelCase ) continue if "var" in flax_key[-1]: _lowerCAmelCase : Optional[Any] = jnp.asarray(_lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase : Union[str, Any] = jnp.asarray(_lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase : List[str] = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = os.path.abspath(_lowerCamelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class _lowerCAmelCase : Union[str, Any] = getattr(_lowerCamelCase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_lowerCamelCase , 'rb' ) as state_f: try: _lowerCAmelCase : Any = from_bytes(_lowerCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights _lowerCAmelCase : Tuple = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) _lowerCAmelCase : List[Any] = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = flatten_dict(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = pt_model.state_dict() _lowerCAmelCase : Any = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) _lowerCAmelCase : List[str] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _lowerCAmelCase : Tuple = [] _lowerCAmelCase : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCAmelCase : List[str] = flax_key_tuple[0] == pt_model.base_model_prefix _lowerCAmelCase : List[Any] = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCamelCase ) not in pt_model_dict: # conv layer _lowerCAmelCase : Tuple = flax_key_tuple[:-1] + ('weight',) _lowerCAmelCase : Tuple = jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ) not in pt_model_dict: # linear layer _lowerCAmelCase : List[Any] = flax_key_tuple[:-1] + ('weight',) _lowerCAmelCase : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCAmelCase : int = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _lowerCAmelCase : List[Any] = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: _lowerCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: _lowerCAmelCase : Any = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _lowerCAmelCase : Tuple = '.'.join(_lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _lowerCAmelCase : Any = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _lowerCAmelCase : Optional[Any] = key.split('.' ) _lowerCAmelCase : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: _lowerCAmelCase : List[Any] = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: _lowerCAmelCase : Tuple = key_components[-2] + '_v' if name is not None: _lowerCAmelCase : int = key_components[:-3] + [name] _lowerCAmelCase : Optional[Any] = '.'.join(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = key if flax_key in special_pt_names: _lowerCAmelCase : Tuple = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _lowerCAmelCase : Union[str, Any] = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor _lowerCAmelCase : Optional[int] = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list _lowerCAmelCase : Dict = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_lowerCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" 'If your task is similar to the task the model of the checkpoint was trained on, ' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" from math import isqrt def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(_lowerCamelCase ) + 1 ) ) def lowerCamelCase__ ( _lowerCamelCase = 10**6 ): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(_lowerCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ,_A = None ,): '''simple docstring''' super().__init__() self.register_modules(transformer=_A ,vae=_A ,scheduler=_A ) # create a imagenet -> id dictionary for easier use _lowerCAmelCase : Union[str, Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): _lowerCAmelCase : Tuple = int(_A ) _lowerCAmelCase : Dict = dict(sorted(self.labels.items() ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if not isinstance(_A ,_A ): _lowerCAmelCase : Tuple = list(_A ) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self ,_A ,_A = 4.0 ,_A = None ,_A = 50 ,_A = "pil" ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = len(_A ) _lowerCAmelCase : List[Any] = self.transformer.config.sample_size _lowerCAmelCase : Dict = self.transformer.config.in_channels _lowerCAmelCase : str = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) ,generator=_A ,device=self.device ,dtype=self.transformer.dtype ,) _lowerCAmelCase : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _lowerCAmelCase : Optional[Any] = torch.tensor(_A ,device=self.device ).reshape(-1 ) _lowerCAmelCase : str = torch.tensor([1000] * batch_size ,device=self.device ) _lowerCAmelCase : Dict = torch.cat([class_labels, class_null] ,0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _lowerCAmelCase : int = latent_model_input[: len(_A ) // 2] _lowerCAmelCase : int = torch.cat([half, half] ,dim=0 ) _lowerCAmelCase : Union[str, Any] = self.scheduler.scale_model_input(_A ,_A ) _lowerCAmelCase : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCAmelCase : Union[str, Any] = latent_model_input.device.type == 'mps' if isinstance(_A ,_A ): _lowerCAmelCase : List[str] = torch.floataa if is_mps else torch.floataa else: _lowerCAmelCase : Union[str, Any] = torch.intaa if is_mps else torch.intaa _lowerCAmelCase : Optional[Any] = torch.tensor([timesteps] ,dtype=_A ,device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _lowerCAmelCase : Any = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _lowerCAmelCase : Optional[int] = self.transformer( _A ,timestep=_A ,class_labels=_A ).sample # perform guidance if guidance_scale > 1: _lowerCAmelCase, _lowerCAmelCase : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = torch.split(_A ,len(_A ) // 2 ,dim=0 ) _lowerCAmelCase : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCAmelCase : int = torch.cat([half_eps, half_eps] ,dim=0 ) _lowerCAmelCase : List[Any] = torch.cat([eps, rest] ,dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCAmelCase, _lowerCAmelCase : Any = torch.split(_A ,_A ,dim=1 ) else: _lowerCAmelCase : Optional[int] = noise_pred # compute previous image: x_t -> x_t-1 _lowerCAmelCase : Tuple = self.scheduler.step(_A ,_A ,_A ).prev_sample if guidance_scale > 1: _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = latent_model_input.chunk(2 ,dim=0 ) else: _lowerCAmelCase : int = latent_model_input _lowerCAmelCase : List[str] = 1 / self.vae.config.scaling_factor * latents _lowerCAmelCase : Dict = self.vae.decode(_A ).sample _lowerCAmelCase : int = (samples / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : List[str] = samples.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = CodeGenTokenizer _UpperCAmelCase = CodeGenTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = {"add_prefix_space": True} _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _lowerCAmelCase : Dict = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase : Union[str, Any] = {'unk_token': '<unk>'} _lowerCAmelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**_A ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'lower newer' _lowerCAmelCase : int = 'lower newer' return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowerCAmelCase : List[Any] = 'lower newer' _lowerCAmelCase : Optional[int] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCAmelCase : Any = tokenizer.tokenize(_A ,add_prefix_space=_A ) self.assertListEqual(_A ,_A ) _lowerCAmelCase : Any = tokens + [tokenizer.unk_token] _lowerCAmelCase : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return _lowerCAmelCase : str = self.get_tokenizer() _lowerCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=_A ) _lowerCAmelCase : Dict = 'lower newer' # Testing tokenization _lowerCAmelCase : Any = tokenizer.tokenize(_A ,add_prefix_space=_A ) _lowerCAmelCase : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A ,_A ) # Testing conversion to ids without special tokens _lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A ,add_prefix_space=_A ) _lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(_A ,add_special_tokens=_A ) self.assertListEqual(_A ,_A ) # Testing conversion to ids with special tokens _lowerCAmelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=_A ) _lowerCAmelCase : Optional[int] = tokenizer.encode(_A ,add_prefix_space=_A ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A ,_A ) # Testing the unknown token _lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_A ) ,_A ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' pass def __lowerCamelCase ( self ,_A=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_A ,**_A ) # Simple input _lowerCAmelCase : Dict = 'This is a simple input' _lowerCAmelCase : Dict = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase : Any = ('This is a simple input', 'This is a pair') _lowerCAmelCase : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_A ,tokenizer_r.encode ,_A ,max_length=_A ,padding='max_length' ) # Simple input self.assertRaises(_A ,tokenizer_r.encode_plus ,_A ,max_length=_A ,padding='max_length' ) # Simple input self.assertRaises( _A ,tokenizer_r.batch_encode_plus ,_A ,max_length=_A ,padding='max_length' ,) # Pair input self.assertRaises(_A ,tokenizer_r.encode ,_A ,max_length=_A ,padding='max_length' ) # Pair input self.assertRaises(_A ,tokenizer_r.encode_plus ,_A ,max_length=_A ,padding='max_length' ) # Pair input self.assertRaises( _A ,tokenizer_r.batch_encode_plus ,_A ,max_length=_A ,padding='max_length' ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token='<pad>' ) # Simple input _lowerCAmelCase : str = 'This is a simple input' _lowerCAmelCase : List[Any] = ['This is a simple input looooooooong', 'This is a simple input'] _lowerCAmelCase : Optional[Any] = ('This is a simple input', 'This is a pair') _lowerCAmelCase : List[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _lowerCAmelCase : Optional[int] = tokenizer.pad_token_id _lowerCAmelCase : List[str] = tokenizer(_A ,padding='max_length' ,max_length=30 ,return_tensors='np' ) _lowerCAmelCase : Optional[int] = tokenizer(_A ,padding=_A ,truncate=_A ,return_tensors='np' ) _lowerCAmelCase : Dict = tokenizer(*_A ,padding='max_length' ,max_length=60 ,return_tensors='np' ) _lowerCAmelCase : Optional[Any] = tokenizer(_A ,padding=_A ,truncate=_A ,return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = '$$$' _lowerCAmelCase : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=_A ,add_bos_token=_A ) _lowerCAmelCase : List[Any] = 'This is a simple input' _lowerCAmelCase : int = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase : Dict = tokenizer.bos_token_id _lowerCAmelCase : Any = tokenizer(_A ) _lowerCAmelCase : List[Any] = tokenizer(_A ) self.assertEqual(out_s.input_ids[0] ,_A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase : Any = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,_A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) _lowerCAmelCase : Union[str, Any] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _lowerCAmelCase : str = '\nif len_a > len_b: result = a\nelse: result = b' _lowerCAmelCase : Optional[Any] = tokenizer.encode(_A ) _lowerCAmelCase : str = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] _lowerCAmelCase : List[Any] = tokenizer.decode(_A ,truncate_before_pattern=_A ) self.assertEqual(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' pass
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowerCAmelCase = get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCAmelCase : Any = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCAmelCase : str = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCAmelCase : Optional[int] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCAmelCase : int = os.path.join(_lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) logger.info(f"""Saving model to {ckpt_dir}""" ) _lowerCAmelCase : List[Any] = {'model': state_dict} dist_cp.save_state_dict( state_dict=_lowerCamelCase , storage_writer=dist_cp.FileSystemWriter(_lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_lowerCamelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return _lowerCAmelCase : Optional[Any] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) _lowerCAmelCase : List[Any] = torch.load(_lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCAmelCase : Any = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCAmelCase : Optional[Any] = ( os.path.join(_lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) _lowerCAmelCase : Any = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=_lowerCamelCase , storage_reader=dist_cp.FileSystemReader(_lowerCamelCase ) , planner=DefaultLoadPlanner() , ) _lowerCAmelCase : List[str] = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCAmelCase : int = FSDP.optim_state_dict(_lowerCamelCase , _lowerCamelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _lowerCAmelCase : Any = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) _lowerCAmelCase : Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(_lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCAmelCase : Optional[int] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _lowerCAmelCase : int = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: _lowerCAmelCase : str = ( os.path.join(_lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) _lowerCAmelCase : List[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(_lowerCamelCase ) , ) _lowerCAmelCase : int = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) _lowerCAmelCase : str = FSDP.optim_state_dict_to_load(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) optimizer.load_state_dict(_lowerCamelCase )
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if num <= 0: raise ValueError('Input must be a positive integer' ) _lowerCAmelCase : List[str] = [True] * (num + 1) _lowerCAmelCase : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _lowerCamelCase ): _lowerCAmelCase : Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import random def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' _lowerCAmelCase : dict = {i: [] for i in range(_lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase ): for j in range(i + 1 , _lowerCamelCase ): if random.random() < probability: graph[i].append(_lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase ) return graph def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return { i: [j for j in range(_lowerCamelCase ) if i != j] for i in range(_lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if num <= 0: _lowerCAmelCase : int = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = [True] * (num + 1) _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Dict = 2 _lowerCAmelCase : str = int(math.sqrt(_lowerCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowerCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _lowerCamelCase ): if sieve[i] is True: _lowerCAmelCase : List[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_lowerCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" import re def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = re.compile(R'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(_lowerCamelCase , _lowerCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = CanineTokenizer _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : str = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return CanineTokenizer.from_pretrained('google/canine-s' ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ,**_A ) _lowerCAmelCase : List[Any] = 1024 return tokenizer @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.canine_tokenizer _lowerCAmelCase : Tuple = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off _lowerCAmelCase : int = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on _lowerCAmelCase : str = tokenizer(_A ,padding=_A ,return_tensors='pt' ) self.assertIsInstance(_A ,_A ) _lowerCAmelCase : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A ,_A ) self.assertEqual((2, 39) ,batch.input_ids.shape ) self.assertEqual((2, 39) ,batch.attention_mask.shape ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.canine_tokenizer _lowerCAmelCase : Optional[int] = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] _lowerCAmelCase : Dict = tokenizer(_A ,padding=_A ,return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' ,_A ) self.assertIn('attention_mask' ,_A ) self.assertIn('token_type_ids' ,_A ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.canine_tokenizer _lowerCAmelCase : Dict = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] _lowerCAmelCase : Optional[int] = tokenizer( text_target=_A ,max_length=32 ,padding='max_length' ,truncation=_A ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test _lowerCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : str = tempfile.mkdtemp() _lowerCAmelCase : int = ' He is very happy, UNwant\u00E9d,running' _lowerCAmelCase : Tuple = tokenizer.encode(_A ,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) _lowerCAmelCase : str = tokenizer.__class__.from_pretrained(_A ) _lowerCAmelCase : int = after_tokenizer.encode(_A ,add_special_tokens=_A ) self.assertListEqual(_A ,_A ) shutil.rmtree(_A ) _lowerCAmelCase : int = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : str = ' He is very happy, UNwant\u00E9d,running' _lowerCAmelCase : List[str] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _lowerCAmelCase : Optional[int] = chr(0xE007 ) additional_special_tokens.append(_A ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowerCAmelCase : Any = tokenizer.encode(_A ,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) _lowerCAmelCase : int = tokenizer.__class__.from_pretrained(_A ) _lowerCAmelCase : str = after_tokenizer.encode(_A ,add_special_tokens=_A ) self.assertListEqual(_A ,_A ) self.assertIn(_A ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) _lowerCAmelCase : str = tokenizer.__class__.from_pretrained(_A ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase, _lowerCAmelCase : Dict = self.get_clean_sequence(_A ) # a special token for Canine can be defined as follows: _lowerCAmelCase : List[Any] = 0xE005 _lowerCAmelCase : Dict = chr(_A ) tokenizer.add_special_tokens({'cls_token': special_token} ) _lowerCAmelCase : Any = tokenizer.encode(_A ,add_special_tokens=_A ) self.assertEqual(len(_A ) ,1 ) _lowerCAmelCase : Tuple = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=_A ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A ) _lowerCAmelCase : List[Any] = tokenizer.encode(_A ,add_special_tokens=_A ) _lowerCAmelCase : Optional[Any] = tokenizer.encode(_A ,add_special_tokens=_A ) self.assertEqual(_A ,input_encoded + special_token_id ) _lowerCAmelCase : List[Any] = tokenizer.decode(_A ,skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase : Union[str, Any] = chr(0xE005 ) _lowerCAmelCase : Tuple = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=_A ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) _lowerCAmelCase : str = tokenizer.tokenize(_A ) _lowerCAmelCase : Tuple = tokenizer.tokenize(_A ) self.assertEqual(len(_A ) ,1 ) self.assertEqual(len(_A ) ,1 ) self.assertEqual(token_a[0] ,_A ) self.assertEqual(token_a[0] ,_A ) @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: _lowerCAmelCase : Optional[int] = 0xE006 _lowerCAmelCase : List[Any] = chr(_A ) _lowerCAmelCase : Union[str, Any] = AddedToken(_A ,lstrip=_A ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_A ) tokenizer.from_pretrained(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A ,'special_tokens_map.json' ) ,encoding='utf-8' ) as json_file: _lowerCAmelCase : List[Any] = json.load(_A ) with open(os.path.join(_A ,'tokenizer_config.json' ) ,encoding='utf-8' ) as json_file: _lowerCAmelCase : Optional[Any] = json.load(_A ) # a special token for Canine can be defined as follows: _lowerCAmelCase : str = 0xE006 _lowerCAmelCase : List[str] = chr(_A ) _lowerCAmelCase : Dict = [new_token_a] _lowerCAmelCase : Optional[Any] = [new_token_a] with open(os.path.join(_A ,'special_tokens_map.json' ) ,'w' ,encoding='utf-8' ) as outfile: json.dump(_A ,_A ) with open(os.path.join(_A ,'tokenizer_config.json' ) ,'w' ,encoding='utf-8' ) as outfile: json.dump(_A ,_A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained(_A ,extra_ids=0 ) self.assertIn(_A ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) _lowerCAmelCase : List[Any] = 0xE007 _lowerCAmelCase : List[str] = chr(_A ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase : Optional[Any] = [AddedToken(_A ,lstrip=_A )] _lowerCAmelCase : str = tokenizer_class.from_pretrained( _A ,additional_special_tokens=_A ,extra_ids=0 ) self.assertIn(_A ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase : str = 'hello world' if self.space_between_special_tokens: _lowerCAmelCase : Optional[Any] = '[CLS] hello world [SEP]' else: _lowerCAmelCase : Optional[Any] = input _lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A ) _lowerCAmelCase : Tuple = tokenizer.decode(_A ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_A ,[output, output.lower()] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase : Any = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowerCAmelCase : Union[str, Any] = 'a' _lowerCAmelCase : List[str] = ord(_A ) for attr in attributes_list: setattr(_A ,attr + '_id' ,_A ) self.assertEqual(getattr(_A ,_A ) ,_A ) self.assertEqual(getattr(_A ,attr + '_id' ) ,_A ) setattr(_A ,attr + '_id' ,_A ) self.assertEqual(getattr(_A ,_A ) ,_A ) self.assertEqual(getattr(_A ,attr + '_id' ) ,_A ) setattr(_A ,'additional_special_tokens_ids' ,[] ) self.assertListEqual(getattr(_A ,'additional_special_tokens' ) ,[] ) self.assertListEqual(getattr(_A ,'additional_special_tokens_ids' ) ,[] ) _lowerCAmelCase : List[Any] = 0xE006 _lowerCAmelCase : Any = chr(_A ) setattr(_A ,'additional_special_tokens_ids' ,[additional_special_token_id] ) self.assertListEqual(getattr(_A ,'additional_special_tokens' ) ,[additional_special_token] ) self.assertListEqual(getattr(_A ,'additional_special_tokens_ids' ) ,[additional_special_token_id] ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[str] = TransformeraDModel( sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=_A ,activation_fn='gelu-approximate' ,num_embeds_ada_norm=1000 ,norm_type='ada_norm_zero' ,norm_elementwise_affine=_A ,) _lowerCAmelCase : Union[str, Any] = AutoencoderKL() _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : Tuple = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : Dict = torch.manual_seed(_A ) else: _lowerCAmelCase : int = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : Tuple = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Tuple = self.get_dummy_inputs(_A ) _lowerCAmelCase : Dict = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 16, 16, 3) ) _lowerCAmelCase : List[str] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _lowerCAmelCase : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A ,1E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_A ,expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowerCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = torch.manual_seed(0 ) _lowerCAmelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _lowerCAmelCase : List[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] _lowerCAmelCase : str = pipe.get_label_ids(_A ) _lowerCAmelCase : Dict = pipe(_A ,generator=_A ,num_inference_steps=40 ,output_type='np' ).images for word, image in zip(_A ,_A ): _lowerCAmelCase : Any = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _lowerCAmelCase : str = ['vase', 'umbrella'] _lowerCAmelCase : Any = pipe.get_label_ids(_A ) _lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe(_A ,generator=_A ,num_inference_steps=25 ,output_type='np' ).images for word, image in zip(_A ,_A ): _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCAmelCase = logging.get_logger(__name__) @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self ,**_A ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCAmelCase : str = deprecated_arg[3:] _lowerCAmelCase : List[Any] = not kwargs.pop(_A ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) _lowerCAmelCase : Tuple = kwargs.pop('tpu_name' ,self.tpu_name ) _lowerCAmelCase : Any = kwargs.pop('device_idx' ,self.device_idx ) _lowerCAmelCase : List[Any] = kwargs.pop('eager_mode' ,self.eager_mode ) _lowerCAmelCase : List[str] = kwargs.pop('use_xla' ,self.use_xla ) super().__init__(**_A ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Name of TPU"} , ) _UpperCAmelCase = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _UpperCAmelCase = field(default=a__ , metadata={"help": "Benchmark models in eager model."} ) _UpperCAmelCase = field( default=a__ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) _lowerCAmelCase : Optional[Any] = None if self.tpu: try: if self.tpu_name: _lowerCAmelCase : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCAmelCase : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCAmelCase : Union[str, Any] = None return tpu @cached_property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCAmelCase : Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'GPU' ) _lowerCAmelCase : str = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] ,'GPU' ) # disable GPU _lowerCAmelCase : List[str] = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) return self._setup_tpu is not None @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) return self._setup_strategy @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowerCamelCase ( self ): '''simple docstring''' return self.n_gpu > 0
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [1] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = 0, 0, 0 _lowerCAmelCase : Union[str, Any] = ugly_nums[ia] * 2 _lowerCAmelCase : Union[str, Any] = ugly_nums[ia] * 3 _lowerCAmelCase : Optional[Any] = ugly_nums[ia] * 5 for _ in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ugly_nums.append(_lowerCamelCase ) if next_num == next_a: ia += 1 _lowerCAmelCase : Optional[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _lowerCAmelCase : Optional[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _lowerCAmelCase : Union[str, Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(2_0_0) = }''')
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" from __future__ import annotations import math _lowerCAmelCase = """2020.9.26""" _lowerCAmelCase = """xcodz-dot, cclaus, dhruvmanila""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not all(isinstance(_lowerCamelCase , (float, int) ) for val in locals().values() ): _lowerCAmelCase : Any = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(_lowerCamelCase ) _lowerCAmelCase : Any = ((x * distance) / (z + distance)) * scale _lowerCAmelCase : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('Axis must be a str' ) _lowerCAmelCase : Union[str, Any] = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int) ) for val in input_variables.values() ): _lowerCAmelCase : List[str] = ( 'Input values except axis must either be float or int: ' f"""{list(input_variables.values() )}""" ) raise TypeError(_lowerCamelCase ) _lowerCAmelCase : Tuple = (angle % 360) / 450 * 180 / math.pi if axis == "z": _lowerCAmelCase : Tuple = x * math.cos(_lowerCamelCase ) - y * math.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = y * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) _lowerCAmelCase : List[Any] = z elif axis == "x": _lowerCAmelCase : str = y * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) _lowerCAmelCase : List[Any] = z * math.cos(_lowerCamelCase ) + y * math.sin(_lowerCamelCase ) _lowerCAmelCase : Dict = x elif axis == "y": _lowerCAmelCase : Optional[Any] = x * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = z * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = val def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCAmelCase : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _lowerCAmelCase : Any = value else: _lowerCAmelCase : Any = value return new_state_dict def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCAmelCase : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : List[Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[:256] _lowerCAmelCase : int = in_proj_weight[256:512, :] _lowerCAmelCase : str = in_proj_bias[256:512] _lowerCAmelCase : str = in_proj_weight[-256:, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCAmelCase : str = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[:256] _lowerCAmelCase : List[str] = in_proj_weight[256:512, :] _lowerCAmelCase : int = in_proj_bias[256:512] _lowerCAmelCase : Any = in_proj_weight[-256:, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowerCAmelCase : List[Any] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCAmelCase : Union[str, Any] = in_proj_weight_cross_attn[:256, :] _lowerCAmelCase : str = in_proj_bias_cross_attn[:256] _lowerCAmelCase : Tuple = in_proj_weight_cross_attn[256:512, :] _lowerCAmelCase : Union[str, Any] = in_proj_bias_cross_attn[256:512] _lowerCAmelCase : List[str] = in_proj_weight_cross_attn[-256:, :] _lowerCAmelCase : List[Any] = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : str = image.size _lowerCAmelCase : Optional[Any] = max(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = 800 if 'detection' in checkpoint_url else 1000 _lowerCAmelCase : int = target_max_size / current_max_size _lowerCAmelCase : List[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = F.to_tensor(_lowerCamelCase ) _lowerCAmelCase : Dict = F.normalize(_lowerCamelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logger.info('Converting model...' ) # load original state dict _lowerCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = rename_backbone_keys(_lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCAmelCase : Optional[Any] = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _lowerCAmelCase : List[str] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val # create HuggingFace model and load state dict _lowerCAmelCase : Union[str, Any] = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _lowerCAmelCase : int = 15 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Union[str, Any] = {0: 'table', 1: 'table rotated'} _lowerCAmelCase : Optional[Any] = idalabel _lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} else: _lowerCAmelCase : Any = 125 _lowerCAmelCase : Any = 6 _lowerCAmelCase : int = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } _lowerCAmelCase : Any = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} _lowerCAmelCase : int = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) _lowerCAmelCase : List[Any] = TableTransformerForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # verify our conversion _lowerCAmelCase : Dict = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' _lowerCAmelCase : Optional[Any] = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=_lowerCamelCase ) _lowerCAmelCase : List[str] = Image.open(_lowerCamelCase ).convert('RGB' ) _lowerCAmelCase : Tuple = normalize(resize(_lowerCamelCase , _lowerCamelCase ) ).unsqueeze(0 ) _lowerCAmelCase : str = model(_lowerCamelCase ) if "detection" in checkpoint_url: _lowerCAmelCase : List[Any] = (1, 15, 3) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _lowerCAmelCase : Optional[int] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _lowerCAmelCase : Tuple = (1, 125, 7) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _lowerCAmelCase : List[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) _lowerCAmelCase : str = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(_lowerCamelCase ) image_processor.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCAmelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """▁""" _lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowerCAmelCase = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } _lowerCAmelCase = { """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off _lowerCAmelCase = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = ["input_ids", "attention_mask"] _UpperCAmelCase = [] _UpperCAmelCase = [] def __init__( self ,_A ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=None ,_A=None ,_A=None ,_A = None ,_A=None ,_A=False ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : int = legacy_behaviour super().__init__( bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,tokenizer_file=_A ,src_lang=_A ,tgt_lang=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=_A ,**_A ,) _lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _lowerCAmelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : Union[str, Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Any = len(self.sp_model ) _lowerCAmelCase : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : Tuple = self.lang_code_to_id[self._src_lang] _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.__dict__.copy() _lowerCAmelCase : Dict = None _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Tuple = {} _lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCamelCase ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) _lowerCAmelCase : Any = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,**_A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Any = src_lang _lowerCAmelCase : Union[str, Any] = self(_A ,add_special_tokens=_A ,return_tensors=_A ,**_A ) _lowerCAmelCase : str = self.convert_tokens_to_ids(_A ) _lowerCAmelCase : Union[str, Any] = tgt_lang_id return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.encode(_A ,out_type=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : int = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCamelCase ( self ,_A ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Any = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __lowerCamelCase ( self ,_A ,_A = "eng_Latn" ,_A = None ,_A = "fra_Latn" ,**_A ,): '''simple docstring''' _lowerCAmelCase : Tuple = src_lang _lowerCAmelCase : int = tgt_lang return super().prepare_seqaseq_batch(_A ,_A ,**_A ) def __lowerCamelCase ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : Any = [self.cur_lang_code] _lowerCAmelCase : Optional[Any] = [self.eos_token_id] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : List[Any] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : List[str] = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id]
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = SwinConfig() _lowerCAmelCase : Union[str, Any] = swin_name.split('_' ) _lowerCAmelCase : Dict = name_split[1] _lowerCAmelCase : Optional[Any] = int(name_split[4] ) _lowerCAmelCase : Union[str, Any] = int(name_split[3][-1] ) if model_size == "tiny": _lowerCAmelCase : str = 96 _lowerCAmelCase : List[Any] = (2, 2, 6, 2) _lowerCAmelCase : str = (3, 6, 12, 24) elif model_size == "small": _lowerCAmelCase : Optional[Any] = 96 _lowerCAmelCase : Dict = (2, 2, 18, 2) _lowerCAmelCase : Tuple = (3, 6, 12, 24) elif model_size == "base": _lowerCAmelCase : Union[str, Any] = 128 _lowerCAmelCase : List[str] = (2, 2, 18, 2) _lowerCAmelCase : int = (4, 8, 16, 32) else: _lowerCAmelCase : Any = 192 _lowerCAmelCase : str = (2, 2, 18, 2) _lowerCAmelCase : Any = (6, 12, 24, 48) if "in22k" in swin_name: _lowerCAmelCase : Dict = 21841 else: _lowerCAmelCase : Optional[int] = 1000 _lowerCAmelCase : Dict = 'huggingface/label-files' _lowerCAmelCase : Any = 'imagenet-1k-id2label.json' _lowerCAmelCase : int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : Dict = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Dict = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : Any = img_size _lowerCAmelCase : Dict = num_classes _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Dict = depths _lowerCAmelCase : Optional[Any] = num_heads _lowerCAmelCase : Tuple = window_size return config def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if "patch_embed.proj" in name: _lowerCAmelCase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCAmelCase : Optional[Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowerCAmelCase : List[Any] = 'encoder.' + name if "attn.proj" in name: _lowerCAmelCase : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCAmelCase : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCAmelCase : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCAmelCase : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCAmelCase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCAmelCase : Tuple = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _lowerCAmelCase : Any = 'layernorm.weight' if name == "norm.bias": _lowerCAmelCase : Union[str, Any] = 'layernorm.bias' if "head" in name: _lowerCAmelCase : int = name.replace('head' , 'classifier' ) else: _lowerCAmelCase : str = 'swin.' + name return name def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : Any = orig_state_dict.pop(_lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: _lowerCAmelCase : str = key.split('.' ) _lowerCAmelCase : List[str] = int(key_split[1] ) _lowerCAmelCase : Union[str, Any] = int(key_split[3] ) _lowerCAmelCase : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCAmelCase : str = val[:dim, :] _lowerCAmelCase : int = val[ dim : dim * 2, : ] _lowerCAmelCase : str = val[-dim:, :] else: _lowerCAmelCase : Any = val[ :dim ] _lowerCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] _lowerCAmelCase : str = val[ -dim: ] else: _lowerCAmelCase : List[Any] = val return orig_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() _lowerCAmelCase : Optional[int] = get_swin_config(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = SwinForImageClassification(_lowerCamelCase ) model.eval() _lowerCAmelCase : List[str] = convert_state_dict(timm_model.state_dict() , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _lowerCAmelCase : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) _lowerCAmelCase : Optional[int] = image_processor(images=_lowerCamelCase , return_tensors='pt' ) _lowerCAmelCase : List[Any] = timm_model(inputs['pixel_values'] ) _lowerCAmelCase : int = model(**_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = """MobileNetV1Config""" # Base docstring _lowerCAmelCase = """google/mobilenet_v1_1.0_224""" _lowerCAmelCase = [1, 1_0_2_4, 7, 7] # Image classification docstring _lowerCAmelCase = """google/mobilenet_v1_1.0_224""" _lowerCAmelCase = """tabby, tabby cat""" _lowerCAmelCase = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Tuple = model.mobilenet_va else: _lowerCAmelCase : Dict = model _lowerCAmelCase : Optional[int] = 'MobilenetV1/Conv2d_0/' _lowerCAmelCase : Optional[int] = backbone.conv_stem.convolution.weight _lowerCAmelCase : Any = backbone.conv_stem.normalization.bias _lowerCAmelCase : List[Any] = backbone.conv_stem.normalization.weight _lowerCAmelCase : int = backbone.conv_stem.normalization.running_mean _lowerCAmelCase : Union[str, Any] = backbone.conv_stem.normalization.running_var for i in range(13 ): _lowerCAmelCase : int = i + 1 _lowerCAmelCase : Optional[Any] = i * 2 _lowerCAmelCase : Optional[Any] = backbone.layer[pt_index] _lowerCAmelCase : int = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" _lowerCAmelCase : str = pointer.convolution.weight _lowerCAmelCase : Optional[Any] = pointer.normalization.bias _lowerCAmelCase : Union[str, Any] = pointer.normalization.weight _lowerCAmelCase : int = pointer.normalization.running_mean _lowerCAmelCase : int = pointer.normalization.running_var _lowerCAmelCase : Optional[int] = backbone.layer[pt_index + 1] _lowerCAmelCase : str = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" _lowerCAmelCase : List[Any] = pointer.convolution.weight _lowerCAmelCase : List[Any] = pointer.normalization.bias _lowerCAmelCase : str = pointer.normalization.weight _lowerCAmelCase : Optional[Any] = pointer.normalization.running_mean _lowerCAmelCase : Optional[int] = pointer.normalization.running_var if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = 'MobilenetV1/Logits/Conv2d_1c_1x1/' _lowerCAmelCase : Tuple = model.classifier.weight _lowerCAmelCase : Dict = model.classifier.bias return tf_to_pt_map def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model _lowerCAmelCase : int = tf.train.list_variables(_lowerCamelCase ) _lowerCAmelCase : Dict = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) _lowerCAmelCase : Any = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = array # Build TF to PyTorch weights loading map _lowerCAmelCase : str = _build_tf_to_pytorch_map(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue _lowerCAmelCase : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) _lowerCAmelCase : str = np.transpose(_lowerCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer _lowerCAmelCase : Dict = array.squeeze().transpose() else: _lowerCAmelCase : List[str] = np.transpose(_lowerCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) _lowerCAmelCase : Any = torch.from_numpy(_lowerCamelCase ) tf_weights.pop(_lowerCamelCase , _lowerCamelCase ) tf_weights.pop(name + '/RMSProp' , _lowerCamelCase ) tf_weights.pop(name + '/RMSProp_1' , _lowerCamelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , _lowerCamelCase ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = features.shape[-2:] _lowerCAmelCase, _lowerCAmelCase : List[Any] = conv_layer.stride _lowerCAmelCase, _lowerCAmelCase : List[Any] = conv_layer.kernel_size if in_height % stride_height == 0: _lowerCAmelCase : Dict = max(kernel_height - stride_height , 0 ) else: _lowerCAmelCase : Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _lowerCAmelCase : List[str] = max(kernel_width - stride_width , 0 ) else: _lowerCAmelCase : Optional[Any] = max(kernel_width - (in_width % stride_width) , 0 ) _lowerCAmelCase : Union[str, Any] = pad_along_width // 2 _lowerCAmelCase : str = pad_along_width - pad_left _lowerCAmelCase : List[str] = pad_along_height // 2 _lowerCAmelCase : Optional[int] = pad_along_height - pad_top _lowerCAmelCase : int = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowerCamelCase , _lowerCamelCase , 'constant' , 0.0 ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A = 1 ,_A = 1 ,_A = False ,_A = True ,_A = True ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) _lowerCAmelCase : Union[str, Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _lowerCAmelCase : Optional[Any] = nn.Convad( in_channels=_A ,out_channels=_A ,kernel_size=_A ,stride=_A ,padding=_A ,groups=_A ,bias=_A ,padding_mode='zeros' ,) if use_normalization: _lowerCAmelCase : Union[str, Any] = nn.BatchNormad( num_features=_A ,eps=config.layer_norm_eps ,momentum=0.9_9_9_7 ,affine=_A ,track_running_stats=_A ,) else: _lowerCAmelCase : Dict = None if use_activation: if isinstance(_A ,_A ): _lowerCAmelCase : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act ,_A ): _lowerCAmelCase : List[Any] = ACTaFN[config.hidden_act] else: _lowerCAmelCase : Dict = config.hidden_act else: _lowerCAmelCase : Any = None def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.config.tf_padding: _lowerCAmelCase : Any = apply_tf_padding(_A ,self.convolution ) _lowerCAmelCase : int = self.convolution(_A ) if self.normalization is not None: _lowerCAmelCase : Tuple = self.normalization(_A ) if self.activation is not None: _lowerCAmelCase : Optional[int] = self.activation(_A ) return features class __UpperCamelCase ( a__ ): _UpperCAmelCase = MobileNetVaConfig _UpperCAmelCase = load_tf_weights_in_mobilenet_va _UpperCAmelCase = "mobilenet_v1" _UpperCAmelCase = "pixel_values" _UpperCAmelCase = False def __lowerCamelCase ( self ,_A ): '''simple docstring''' if isinstance(_A ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _lowerCAmelCase = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A = True ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : Optional[Any] = config _lowerCAmelCase : Any = 32 _lowerCAmelCase : List[Any] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) _lowerCAmelCase : Any = MobileNetVaConvLayer( _A ,in_channels=config.num_channels ,out_channels=_A ,kernel_size=3 ,stride=2 ,) _lowerCAmelCase : List[str] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _lowerCAmelCase : Tuple = nn.ModuleList() for i in range(13 ): _lowerCAmelCase : Any = out_channels if strides[i] == 2 or i == 0: depth *= 2 _lowerCAmelCase : str = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( _A ,in_channels=_A ,out_channels=_A ,kernel_size=3 ,stride=strides[i] ,groups=_A ,) ) self.layer.append( MobileNetVaConvLayer( _A ,in_channels=_A ,out_channels=_A ,kernel_size=1 ,) ) _lowerCAmelCase : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCamelCase ( self ,_A ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _lowerCAmelCase : Any = self.conv_stem(_A ) _lowerCAmelCase : Optional[int] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _lowerCAmelCase : Tuple = layer_module(_A ) if output_hidden_states: _lowerCAmelCase : int = all_hidden_states + (hidden_states,) _lowerCAmelCase : Dict = hidden_states if self.pooler is not None: _lowerCAmelCase : Union[str, Any] = torch.flatten(self.pooler(_A ) ,start_dim=1 ) else: _lowerCAmelCase : Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A ,pooler_output=_A ,hidden_states=_A ,) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : Dict = config.num_labels _lowerCAmelCase : List[str] = MobileNetVaModel(_A ) _lowerCAmelCase : List[str] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _lowerCAmelCase : Dict = nn.Dropout(config.classifier_dropout_prob ,inplace=_A ) _lowerCAmelCase : List[str] = nn.Linear(_A ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Any = self.mobilenet_va(_A ,output_hidden_states=_A ,return_dict=_A ) _lowerCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : Optional[int] = self.classifier(self.dropout(_A ) ) _lowerCAmelCase : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : int = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : List[Any] = 'single_label_classification' else: _lowerCAmelCase : Tuple = 'multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase : Optional[Any] = MSELoss() if self.num_labels == 1: _lowerCAmelCase : Optional[int] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: _lowerCAmelCase : Union[str, Any] = loss_fct(_A ,_A ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : Union[str, Any] = CrossEntropyLoss() _lowerCAmelCase : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : Any = BCEWithLogitsLoss() _lowerCAmelCase : int = loss_fct(_A ,_A ) if not return_dict: _lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_A ,logits=_A ,hidden_states=outputs.hidden_states ,)
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not sentence: return "" _lowerCAmelCase : List[str] = dict(zip(_lowerCamelCase , _lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = AlbertConfig.from_json_file(_lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) _lowerCAmelCase : List[Any] = AlbertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" from __future__ import annotations from random import choice def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return choice(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = random_pivot(_lowerCamelCase ) # partition based on pivot # linear time _lowerCAmelCase : List[str] = [e for e in lst if e < pivot] _lowerCAmelCase : int = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCamelCase ) < k - 1: return kth_number(_lowerCamelCase , k - len(_lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(_lowerCamelCase ) if number < 0: return False _lowerCAmelCase : str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import os def lowerCamelCase__ ( ): '''simple docstring''' with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: _lowerCAmelCase : List[str] = str(file.readlines()[0] ) _lowerCAmelCase : Optional[Any] = names.replace('"' , '' ).split(',' ) names.sort() _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Union[str, Any] = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score _lowerCAmelCase : Dict = 0 return total_score if __name__ == "__main__": print(solution())
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "data2vec-vision" def __init__( self ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1E-12 ,_A=224 ,_A=16 ,_A=3 ,_A=False ,_A=False ,_A=False ,_A=False ,_A=0.1 ,_A=0.1 ,_A=True ,_A=[3, 5, 7, 11] ,_A=[1, 2, 3, 6] ,_A=True ,_A=0.4 ,_A=256 ,_A=1 ,_A=False ,_A=255 ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Optional[Any] = use_mask_token _lowerCAmelCase : List[str] = use_absolute_position_embeddings _lowerCAmelCase : int = use_relative_position_bias _lowerCAmelCase : int = use_shared_relative_position_bias _lowerCAmelCase : Optional[Any] = layer_scale_init_value _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : int = out_indices _lowerCAmelCase : Optional[Any] = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Any = auxiliary_loss_weight _lowerCAmelCase : Union[str, Any] = auxiliary_channels _lowerCAmelCase : Optional[Any] = auxiliary_num_convs _lowerCAmelCase : Tuple = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = """PoolFormerConfig""" # Base docstring _lowerCAmelCase = """sail/poolformer_s12""" _lowerCAmelCase = [1, 5_1_2, 7, 7] # Image classification docstring _lowerCAmelCase = """sail/poolformer_s12""" _lowerCAmelCase = """tabby, tabby cat""" _lowerCAmelCase = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input _lowerCAmelCase : List[str] = 1 - drop_prob _lowerCAmelCase : List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _lowerCAmelCase : str = keep_prob + torch.rand(_lowerCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _lowerCAmelCase : Any = input.div(_lowerCamelCase ) * random_tensor return output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A = None ): '''simple docstring''' super().__init__() _lowerCAmelCase : int = drop_prob def __lowerCamelCase ( self ,_A ): '''simple docstring''' return drop_path(_A ,self.drop_prob ,self.training ) def __lowerCamelCase ( self ): '''simple docstring''' return "p={}".format(self.drop_prob ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=None ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = patch_size if isinstance(_A ,collections.abc.Iterable ) else (patch_size, patch_size) _lowerCAmelCase : Union[str, Any] = stride if isinstance(_A ,collections.abc.Iterable ) else (stride, stride) _lowerCAmelCase : Optional[Any] = padding if isinstance(_A ,collections.abc.Iterable ) else (padding, padding) _lowerCAmelCase : List[Any] = nn.Convad(_A ,_A ,kernel_size=_A ,stride=_A ,padding=_A ) _lowerCAmelCase : Any = norm_layer(_A ) if norm_layer else nn.Identity() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = self.projection(_A ) _lowerCAmelCase : Union[str, Any] = self.norm(_A ) return embeddings class __UpperCamelCase ( nn.GroupNorm ): def __init__( self ,_A ,**_A ): '''simple docstring''' super().__init__(1 ,_A ,**_A ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.AvgPoolad(_A ,stride=1 ,padding=pool_size // 2 ,count_include_pad=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.pool(_A ) - hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : str = nn.Convad(_A ,_A ,1 ) _lowerCAmelCase : Optional[Any] = nn.Convad(_A ,_A ,1 ) _lowerCAmelCase : Union[str, Any] = PoolFormerDropPath(_A ) if isinstance(config.hidden_act ,_A ): _lowerCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: _lowerCAmelCase : str = config.hidden_act def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.conva(_A ) _lowerCAmelCase : Optional[Any] = self.act_fn(_A ) _lowerCAmelCase : List[str] = self.drop(_A ) _lowerCAmelCase : Union[str, Any] = self.conva(_A ) _lowerCAmelCase : Any = self.drop(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : int = PoolFormerPooling(_A ) _lowerCAmelCase : int = PoolFormerOutput(_A ,_A ,_A ,_A ) _lowerCAmelCase : List[Any] = PoolFormerGroupNorm(_A ) _lowerCAmelCase : Dict = PoolFormerGroupNorm(_A ) # Useful for training neural nets _lowerCAmelCase : Optional[Any] = PoolFormerDropPath(_A ) if drop_path > 0.0 else nn.Identity() _lowerCAmelCase : Any = config.use_layer_scale if config.use_layer_scale: _lowerCAmelCase : List[str] = nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) ,requires_grad=_A ) _lowerCAmelCase : Optional[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) ,requires_grad=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.use_layer_scale: _lowerCAmelCase : Optional[int] = self.pooling(self.before_norm(_A ) ) _lowerCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _lowerCAmelCase : Union[str, Any] = hidden_states + self.drop_path(_A ) _lowerCAmelCase : Union[str, Any] = () _lowerCAmelCase : Optional[int] = self.output(self.after_norm(_A ) ) _lowerCAmelCase : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _lowerCAmelCase : int = hidden_states + self.drop_path(_A ) _lowerCAmelCase : int = (output,) + outputs return outputs else: _lowerCAmelCase : List[Any] = self.drop_path(self.pooling(self.before_norm(_A ) ) ) # First residual connection _lowerCAmelCase : int = pooling_output + hidden_states _lowerCAmelCase : List[str] = () # Second residual connection inside the PoolFormerOutput block _lowerCAmelCase : Tuple = self.drop_path(self.output(self.after_norm(_A ) ) ) _lowerCAmelCase : str = hidden_states + layer_output _lowerCAmelCase : Union[str, Any] = (output,) + outputs return outputs class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = config # stochastic depth decay rule _lowerCAmelCase : str = [x.item() for x in torch.linspace(0 ,config.drop_path_rate ,sum(config.depths ) )] # patch embeddings _lowerCAmelCase : Optional[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] ,stride=config.strides[i] ,padding=config.padding[i] ,num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] ,hidden_size=config.hidden_sizes[i] ,) ) _lowerCAmelCase : Dict = nn.ModuleList(_A ) # Transformer blocks _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Tuple = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _lowerCAmelCase : int = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _A ,num_channels=config.hidden_sizes[i] ,pool_size=config.pool_size ,hidden_size=config.hidden_sizes[i] ,intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) ,drop_path=dpr[cur + j] ,) ) blocks.append(nn.ModuleList(_A ) ) _lowerCAmelCase : Tuple = nn.ModuleList(_A ) def __lowerCamelCase ( self ,_A ,_A=False ,_A=True ): '''simple docstring''' _lowerCAmelCase : Dict = () if output_hidden_states else None _lowerCAmelCase : str = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings ,self.block ) ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = layers # Get patch embeddings from hidden_states _lowerCAmelCase : Dict = embedding_layer(_A ) # Send the embeddings through the blocks for _, blk in enumerate(_A ): _lowerCAmelCase : Optional[int] = blk(_A ) _lowerCAmelCase : int = layer_outputs[0] if output_hidden_states: _lowerCAmelCase : List[str] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_A ,hidden_states=_A ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = PoolFormerConfig _UpperCAmelCase = "poolformer" _UpperCAmelCase = "pixel_values" _UpperCAmelCase = True def __lowerCamelCase ( self ,_A ): '''simple docstring''' if isinstance(_A ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A ,nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __lowerCamelCase ( self ,_A ,_A=False ): '''simple docstring''' if isinstance(_A ,_A ): _lowerCAmelCase : Any = value _lowerCAmelCase = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : List[Any] = config _lowerCAmelCase : int = PoolFormerEncoder(_A ) # Initialize weights and apply final processing self.post_init() def __lowerCamelCase ( self ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _lowerCAmelCase : List[Any] = self.encoder( _A ,output_hidden_states=_A ,return_dict=_A ,) _lowerCAmelCase : Optional[int] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_A ,hidden_states=encoder_outputs.hidden_states ,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = nn.Linear(config.hidden_size ,config.hidden_size ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.dense(_A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : Optional[int] = config.num_labels _lowerCAmelCase : Optional[int] = PoolFormerModel(_A ) # Final norm _lowerCAmelCase : Tuple = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _lowerCAmelCase : Tuple = ( nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Dict = self.poolformer( _A ,output_hidden_states=_A ,return_dict=_A ,) _lowerCAmelCase : Tuple = outputs[0] _lowerCAmelCase : Any = self.classifier(self.norm(_A ).mean([-2, -1] ) ) _lowerCAmelCase : List[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : int = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : str = 'single_label_classification' else: _lowerCAmelCase : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase : Tuple = MSELoss() if self.num_labels == 1: _lowerCAmelCase : Union[str, Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: _lowerCAmelCase : List[str] = loss_fct(_A ,_A ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : List[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : List[str] = BCEWithLogitsLoss() _lowerCAmelCase : Any = loss_fct(_A ,_A ) if not return_dict: _lowerCAmelCase : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_A ,logits=_A ,hidden_states=outputs.hidden_states )
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _lowerCAmelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _lowerCAmelCase = """main""" # Default branch name _lowerCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _lowerCAmelCase = """aaaaaaa""" # This commit does not exist, so we should 404. _lowerCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _lowerCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def lowerCamelCase__ ( ): '''simple docstring''' print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def lowerCamelCase__ ( ): '''simple docstring''' print('Bonjour!' ) yield print('Au revoir!' ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class __UpperCamelCase ( unittest.TestCase ): @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(find_labels(_A ) ,['labels'] ) self.assertEqual(find_labels(_A ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(_A ) ,['start_positions', 'end_positions'] ) class __UpperCamelCase ( a__ ): pass self.assertEqual(find_labels(_A ) ,['labels'] ) @require_tf def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(find_labels(_A ) ,['labels'] ) self.assertEqual(find_labels(_A ) ,['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(_A ) ,['start_positions', 'end_positions'] ) class __UpperCamelCase ( a__ ): pass self.assertEqual(find_labels(_A ) ,['labels'] ) @require_flax def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(find_labels(_A ) ,[] ) self.assertEqual(find_labels(_A ) ,[] ) self.assertEqual(find_labels(_A ) ,[] ) class __UpperCamelCase ( a__ ): pass self.assertEqual(find_labels(_A ) ,[] )
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class __UpperCamelCase ( nn.Module ): _UpperCAmelCase = 42 _UpperCAmelCase = jnp.floataa def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = hidden_states.shape _lowerCAmelCase : List[str] = jax.image.resize( _A ,shape=(batch, height * 2, width * 2, channels) ,method='nearest' ,) _lowerCAmelCase : Tuple = self.conv(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): _UpperCAmelCase = 42 _UpperCAmelCase = jnp.floataa def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.conv(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = 0.0 _UpperCAmelCase = None _UpperCAmelCase = jnp.floataa def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.in_channels if self.out_channels is None else self.out_channels _lowerCAmelCase : List[str] = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) _lowerCAmelCase : Union[str, Any] = nn.Conv( _A ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _lowerCAmelCase : Tuple = nn.Dense(_A ,dtype=self.dtype ) _lowerCAmelCase : str = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) _lowerCAmelCase : List[str] = nn.Dropout(self.dropout_prob ) _lowerCAmelCase : str = nn.Conv( _A ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) _lowerCAmelCase : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowerCAmelCase : Tuple = None if use_nin_shortcut: _lowerCAmelCase : List[str] = nn.Conv( _A ,kernel_size=(1, 1) ,strides=(1, 1) ,padding='VALID' ,dtype=self.dtype ,) def __call__( self ,_A ,_A ,_A=True ): '''simple docstring''' _lowerCAmelCase : Dict = hidden_states _lowerCAmelCase : Optional[Any] = self.norma(_A ) _lowerCAmelCase : Optional[Any] = nn.swish(_A ) _lowerCAmelCase : str = self.conva(_A ) _lowerCAmelCase : List[str] = self.time_emb_proj(nn.swish(_A ) ) _lowerCAmelCase : List[Any] = jnp.expand_dims(jnp.expand_dims(_A ,1 ) ,1 ) _lowerCAmelCase : Dict = hidden_states + temb _lowerCAmelCase : str = self.norma(_A ) _lowerCAmelCase : Optional[int] = nn.swish(_A ) _lowerCAmelCase : int = self.dropout(_A ,_A ) _lowerCAmelCase : Dict = self.conva(_A ) if self.conv_shortcut is not None: _lowerCAmelCase : Union[str, Any] = self.conv_shortcut(_A ) return hidden_states + residual
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCAmelCase : List[Any] = len(_A ) - 1 def __lowerCamelCase ( self ,_A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCAmelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,_A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_A ) ,5 ) == 1 return output_values def __lowerCamelCase ( self ,_A ): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCAmelCase : Tuple = self.basis_function(_A ) _lowerCAmelCase : Optional[Any] = 0.0 _lowerCAmelCase : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __lowerCamelCase ( self ,_A = 0.0_1 ): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore _lowerCAmelCase : list[float] = [] # x coordinates of points to plot _lowerCAmelCase : list[float] = [] # y coordinates of points to plot _lowerCAmelCase : Any = 0.0 while t <= 1: _lowerCAmelCase : str = self.bezier_curve_function(_A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowerCAmelCase : Any = [i[0] for i in self.list_of_points] _lowerCAmelCase : Any = [i[1] for i in self.list_of_points] plt.plot( _A ,_A ,color='blue' ,label='Curve of Degree ' + str(self.degree ) ,) plt.scatter(_A ,_A ,color='red' ,label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=0.999 , _lowerCamelCase="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowerCAmelCase : Union[str, Any] = [] for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = i / num_diffusion_timesteps _lowerCAmelCase : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self ,_A = 1000 ,_A = 0.0_0_0_8_5 ,_A = 0.0_1_2 ,_A = "linear" ,_A = None ,_A = "epsilon" ,_A = "linspace" ,_A = 0 ,): '''simple docstring''' if trained_betas is not None: _lowerCAmelCase : str = torch.tensor(_A ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase : Union[str, Any] = torch.linspace(_A ,_A ,_A ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase : str = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,_A ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase : Optional[Any] = betas_for_alpha_bar(_A ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowerCAmelCase : Optional[int] = 1.0 - self.betas _lowerCAmelCase : Tuple = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(_A ,_A ,_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' if schedule_timesteps is None: _lowerCAmelCase : Optional[Any] = self.timesteps _lowerCAmelCase : str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCAmelCase : Tuple = 1 if len(_A ) > 1 else 0 else: _lowerCAmelCase : int = timestep.cpu().item() if torch.is_tensor(_A ) else timestep _lowerCAmelCase : Any = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCamelCase ( self ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCamelCase ( self ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : int = self.index_for_timestep(_A ) if self.state_in_first_order: _lowerCAmelCase : Tuple = self.sigmas[step_index] else: _lowerCAmelCase : int = self.sigmas_interpol[step_index] _lowerCAmelCase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Any = num_inference_steps _lowerCAmelCase : int = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCAmelCase : Any = np.linspace(0 ,num_train_timesteps - 1 ,_A ,dtype=_A )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCAmelCase : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : int = (np.arange(0 ,_A ) * step_ratio).round()[::-1].copy().astype(_A ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCAmelCase : Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : Tuple = (np.arange(_A ,0 ,-step_ratio )).round().copy().astype(_A ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowerCAmelCase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCAmelCase : List[Any] = torch.from_numpy(np.log(_A ) ).to(_A ) _lowerCAmelCase : Optional[int] = np.interp(_A ,np.arange(0 ,len(_A ) ) ,_A ) _lowerCAmelCase : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).to(device=_A ) # interpolate sigmas _lowerCAmelCase : str = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowerCAmelCase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCAmelCase : int = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_A ).startswith('mps' ): # mps does not support float64 _lowerCAmelCase : int = torch.from_numpy(_A ).to(_A ,dtype=torch.floataa ) else: _lowerCAmelCase : Any = torch.from_numpy(_A ).to(_A ) # interpolate timesteps _lowerCAmelCase : List[Any] = self.sigma_to_t(_A ).to(_A ,dtype=timesteps.dtype ) _lowerCAmelCase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowerCAmelCase : List[str] = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowerCAmelCase : int = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCAmelCase : str = defaultdict(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = sigma.log() # get distribution _lowerCAmelCase : str = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowerCAmelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowerCAmelCase : List[str] = low_idx + 1 _lowerCAmelCase : Optional[Any] = self.log_sigmas[low_idx] _lowerCAmelCase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowerCAmelCase : List[Any] = (low - log_sigma) / (low - high) _lowerCAmelCase : str = w.clamp(0 ,1 ) # transform interpolation to time range _lowerCAmelCase : int = (1 - w) * low_idx + w * high_idx _lowerCAmelCase : Optional[int] = t.view(sigma.shape ) return t @property def __lowerCamelCase ( self ): '''simple docstring''' return self.sample is None def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = True ,): '''simple docstring''' _lowerCAmelCase : List[Any] = self.index_for_timestep(_A ) # advance index counter by 1 _lowerCAmelCase : str = timestep.cpu().item() if torch.is_tensor(_A ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCAmelCase : Optional[Any] = self.sigmas[step_index] _lowerCAmelCase : Optional[int] = self.sigmas_interpol[step_index + 1] _lowerCAmelCase : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowerCAmelCase : Any = self.sigmas[step_index - 1] _lowerCAmelCase : List[Any] = self.sigmas_interpol[step_index] _lowerCAmelCase : int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCAmelCase : Dict = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase : str = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol _lowerCAmelCase : Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCAmelCase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCAmelCase : Optional[Any] = sigma_interpol - sigma_hat # store for 2nd order step _lowerCAmelCase : List[str] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowerCAmelCase : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowerCAmelCase : Tuple = sigma_next - sigma_hat _lowerCAmelCase : int = self.sample _lowerCAmelCase : str = None _lowerCAmelCase : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_A ): # mps does not support float64 _lowerCAmelCase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowerCAmelCase : List[str] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowerCAmelCase : Optional[Any] = self.timesteps.to(original_samples.device ) _lowerCAmelCase : Optional[int] = timesteps.to(original_samples.device ) _lowerCAmelCase : Tuple = [self.index_for_timestep(_A ,_A ) for t in timesteps] _lowerCAmelCase : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCAmelCase : int = sigma.unsqueeze(-1 ) _lowerCAmelCase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowerCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = field(default=a__ , metadata={"help": "Whether to use SortishSampler or not."} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = super().to_dict() for k, v in d.items(): if isinstance(_A ,_A ): _lowerCAmelCase : Tuple = v.to_dict() return d
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A = True ,_A = None ,_A = 32 ,_A = True ,_A = 1 / 255 ,_A = True ,_A = True ,_A = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] ,_A = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] ,_A = True ,_A=7 ,_A=30 ,_A=400 ,_A=3 ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : List[Any] = do_resize _lowerCAmelCase : Dict = size if size is not None else {'shortest_edge': 288} _lowerCAmelCase : str = size_divisor _lowerCAmelCase : List[str] = do_rescale _lowerCAmelCase : int = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : str = do_center_crop _lowerCAmelCase : Optional[int] = image_mean _lowerCAmelCase : Dict = image_std _lowerCAmelCase : int = do_pad _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : List[str] = min_resolution _lowerCAmelCase : Dict = max_resolution def __lowerCamelCase ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __lowerCamelCase ( self ,_A ,_A=False ): '''simple docstring''' if not batched: _lowerCAmelCase : Optional[Any] = self.size['shortest_edge'] _lowerCAmelCase : Tuple = image_inputs[0] if isinstance(_A ,Image.Image ): _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = image.size else: _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = image.shape[1], image.shape[2] _lowerCAmelCase : Union[str, Any] = size / min(_A ,_A ) if h < w: _lowerCAmelCase, _lowerCAmelCase : List[str] = size, scale * w else: _lowerCAmelCase, _lowerCAmelCase : Tuple = scale * h, size _lowerCAmelCase : Optional[int] = int((1333 / 800) * size ) if max(_A ,_A ) > max_size: _lowerCAmelCase : Union[str, Any] = max_size / max(_A ,_A ) _lowerCAmelCase : Optional[Any] = newh * scale _lowerCAmelCase : Any = neww * scale _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _lowerCAmelCase : List[Any] = [] for image in image_inputs: _lowerCAmelCase, _lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase : Union[str, Any] = max(_A ,key=lambda _A : item[0] )[0] _lowerCAmelCase : List[str] = max(_A ,key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = BridgeTowerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A ,'image_mean' ) ) self.assertTrue(hasattr(_A ,'image_std' ) ) self.assertTrue(hasattr(_A ,'do_normalize' ) ) self.assertTrue(hasattr(_A ,'do_resize' ) ) self.assertTrue(hasattr(_A ,'size' ) ) self.assertTrue(hasattr(_A ,'size_divisor' ) ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A ,Image.Image ) # Test not batched input _lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowerCAmelCase, _lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowerCAmelCase : Optional[int] = image_processing(_A ,return_tensors='pt' ).pixel_values _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ,batched=_A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,numpify=_A ) for image in image_inputs: self.assertIsInstance(_A ,np.ndarray ) # Test not batched input _lowerCAmelCase : int = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowerCAmelCase : str = image_processing(_A ,return_tensors='pt' ).pixel_values _lowerCAmelCase, _lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_A ,batched=_A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,torchify=_A ) for image in image_inputs: self.assertIsInstance(_A ,torch.Tensor ) # Test not batched input _lowerCAmelCase : int = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowerCAmelCase, _lowerCAmelCase : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowerCAmelCase : List[str] = image_processing(_A ,return_tensors='pt' ).pixel_values _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(_A ,batched=_A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,)
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = UniSpeechSatForSequenceClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) _lowerCAmelCase : Any = downstream_dict['projector.weight'] _lowerCAmelCase : Any = downstream_dict['projector.bias'] _lowerCAmelCase : List[Any] = downstream_dict['model.post_net.linear.weight'] _lowerCAmelCase : List[Any] = downstream_dict['model.post_net.linear.bias'] return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = downstream_dict['model.linear.weight'] _lowerCAmelCase : int = downstream_dict['model.linear.bias'] return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = UniSpeechSatForXVector.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) _lowerCAmelCase : Tuple = downstream_dict['connector.weight'] _lowerCAmelCase : List[Any] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCAmelCase : Optional[int] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _lowerCAmelCase : str = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _lowerCAmelCase : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _lowerCAmelCase : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _lowerCAmelCase : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _lowerCAmelCase : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _lowerCAmelCase : str = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = torch.load(_lowerCamelCase , map_location='cpu' ) _lowerCAmelCase : Dict = checkpoint['Downstream'] _lowerCAmelCase : Union[str, Any] = UniSpeechSatConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( _lowerCamelCase , return_attention_mask=_lowerCamelCase , do_normalize=_lowerCamelCase ) _lowerCAmelCase : List[str] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _lowerCAmelCase : Dict = convert_classification(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): _lowerCAmelCase : int = convert_diarization(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith('ForXVector' ): _lowerCAmelCase : Any = convert_xvector(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _lowerCAmelCase : int = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "open-llama" def __init__( self ,_A=10_0000 ,_A=4096 ,_A=1_1008 ,_A=32 ,_A=32 ,_A="silu" ,_A=2048 ,_A=0.0_2 ,_A=1E-6 ,_A=True ,_A=0 ,_A=1 ,_A=2 ,_A=False ,_A=True ,_A=0.1 ,_A=0.1 ,_A=True ,_A=True ,_A=None ,**_A ,): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : Optional[int] = rms_norm_eps _lowerCAmelCase : Tuple = use_cache _lowerCAmelCase : int = kwargs.pop( 'use_memorry_efficient_attention' ,_A ) _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_dropout_prob _lowerCAmelCase : int = use_stable_embedding _lowerCAmelCase : int = shared_input_output_embedding _lowerCAmelCase : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,tie_word_embeddings=_A ,**_A ,) def __lowerCamelCase ( self ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_A ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) _lowerCAmelCase : Optional[Any] = self.rope_scaling.get('type' ,_A ) _lowerCAmelCase : Tuple = self.rope_scaling.get('factor' ,_A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_A ,_A ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "mctct" def __init__( self ,_A=8065 ,_A=1536 ,_A=36 ,_A=6144 ,_A=4 ,_A=384 ,_A=920 ,_A=1E-5 ,_A=0.3 ,_A="relu" ,_A=0.0_2 ,_A=0.3 ,_A=0.3 ,_A=1 ,_A=0 ,_A=2 ,_A=1 ,_A=0.3 ,_A=1 ,_A=(7,) ,_A=(3,) ,_A=80 ,_A=1 ,_A=None ,_A="sum" ,_A=False ,**_A ,): '''simple docstring''' super().__init__(**_A ,pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ) _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Optional[Any] = attention_head_dim _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = pad_token_id _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : Union[str, Any] = eos_token_id _lowerCAmelCase : str = conv_glu_dim _lowerCAmelCase : int = conv_dropout _lowerCAmelCase : str = num_conv_layers _lowerCAmelCase : Union[str, Any] = input_feat_per_channel _lowerCAmelCase : Any = input_channels _lowerCAmelCase : Optional[int] = conv_channels _lowerCAmelCase : str = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # prevents config testing fail with exporting to json _lowerCAmelCase : Any = list(_A ) _lowerCAmelCase : List[Any] = list(_A ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : Dict = embeddings_size _lowerCAmelCase : Optional[Any] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : str = hidden_act _lowerCAmelCase : int = num_labels _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : Optional[int] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : str = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFRegNetModel(config=_A ) _lowerCAmelCase : Any = model(_A ,training=_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : int = TFRegNetForImageClassification(_A ) _lowerCAmelCase : Any = model(_A ,labels=_A ,training=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = TFRegNetModelTester(self ) _lowerCAmelCase : Optional[int] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 ,reason='TF does not support backprop for grouped convolutions on CPU.' ,) @slow def __lowerCamelCase ( self ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(_A ) _lowerCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] _lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : List[Any] = model_class(_A ) _lowerCAmelCase : str = model(**self._prepare_for_class(_A ,_A ) ,training=_A ) _lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Tuple = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : int = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_A ,_A ,_A ,_A={} ): _lowerCAmelCase : Optional[int] = model(_A ,return_dict=_A ,**_A ) _lowerCAmelCase : List[str] = model(_A ,return_dict=_A ,**_A ).to_tuple() def recursive_check(_A ,_A ): if isinstance(_A ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A ,_A ): recursive_check(_A ,_A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_A ,_A ) ) ,msg=( 'Tuple and dict output are not equal. Difference:' F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) ,) recursive_check(_A ,_A ) for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(_A ) _lowerCAmelCase : List[Any] = self._prepare_for_class(_A ,_A ) _lowerCAmelCase : Any = self._prepare_for_class(_A ,_A ) check_equivalence(_A ,_A ,_A ) _lowerCAmelCase : int = self._prepare_for_class(_A ,_A ,return_labels=_A ) _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(_A ,_A ,return_labels=_A ) check_equivalence(_A ,_A ,_A ) _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(_A ,_A ) _lowerCAmelCase : Any = self._prepare_for_class(_A ,_A ) check_equivalence(_A ,_A ,_A ,{'output_hidden_states': True} ) _lowerCAmelCase : Tuple = self._prepare_for_class(_A ,_A ,return_labels=_A ) _lowerCAmelCase : Dict = self._prepare_for_class(_A ,_A ,return_labels=_A ) check_equivalence(_A ,_A ,_A ,{'output_hidden_states': True} ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = TFRegNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : List[str] = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Optional[int] = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : List[str] = model(**_A ,training=_A ) # verify the logits _lowerCAmelCase : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Optional[int] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] ,_A ,atol=1E-4 )
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase = 2000000 ): '''simple docstring''' _lowerCAmelCase : Tuple = [0 for i in range(n + 1 )] _lowerCAmelCase : Tuple = 1 _lowerCAmelCase : List[str] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _lowerCamelCase ): _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Any = 0 for i in range(_lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCamelCase__ ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : List[str] = f"""https://www.amazon.in/laptop/s?k={product}""" _lowerCAmelCase : int = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } _lowerCAmelCase : str = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : Dict = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : Optional[Any] = 'https://www.amazon.in/' + item.ha.a['href'] _lowerCAmelCase : Optional[int] = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: _lowerCAmelCase : Any = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: _lowerCAmelCase : Optional[int] = 'Not available' try: _lowerCAmelCase : Optional[Any] = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: _lowerCAmelCase : Optional[int] = '' try: _lowerCAmelCase : List[str] = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[int] = float('nan' ) except AttributeError: pass _lowerCAmelCase : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : Optional[Any] = ' ' _lowerCAmelCase : Tuple = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": _lowerCAmelCase = """headphones""" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(_lowerCamelCase , 2 ) - pow(_lowerCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowerCamelCase , 2 ) - pow(_lowerCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowerCamelCase , 2 ) + pow(_lowerCamelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _lowerCAmelCase = 2_9_9_7_9_2_4_5_8 # Symbols _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = symbols("""ct x y z""") def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return 1 / sqrt(1 - beta(_lowerCamelCase ) ** 2 ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return np.array( [ [gamma(_lowerCamelCase ), -gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), 0, 0], [-gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), gamma(_lowerCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if event is None: _lowerCAmelCase : Optional[Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _lowerCAmelCase = transform(2_9_9_7_9_2_4_5) print("""Example of four vector: """) print(F'''ct\' = {four_vector[0]}''') print(F'''x\' = {four_vector[1]}''') print(F'''y\' = {four_vector[2]}''') print(F'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values _lowerCAmelCase = {ct: c, x: 1, y: 1, z: 1} _lowerCAmelCase = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'''\n{numerical_vector}''')
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _lowerCAmelCase : str = 6 _lowerCAmelCase : Any = 1 _lowerCAmelCase : int = 1901 _lowerCAmelCase : Union[str, Any] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _lowerCAmelCase : Dict = day - 29 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : Any = day - days_per_month[month - 2] if month > 12: year += 1 _lowerCAmelCase : str = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1