code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 3
_lowerCAmelCase : str = 250
_lowerCAmelCase : str = ids_tensor((batch_size, length) ,_A )
_lowerCAmelCase : Optional[int] = torch.ones((batch_size, length) ,device=_A ,dtype=torch.float ) / length
return input_ids, scores
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self._get_tensors(5 )
_lowerCAmelCase : Any = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(_A ,_A ) )
_lowerCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(_A ,_A ) )
_lowerCAmelCase : int = self._get_tensors(10 )
self.assertTrue(criteria(_A ,_A ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = MaxLengthCriteria(max_length=10 )
_lowerCAmelCase : List[Any] = self._get_tensors(5 )
self.assertFalse(criteria(_A ,_A ) )
_lowerCAmelCase : Any = self._get_tensors(9 )
self.assertFalse(criteria(_A ,_A ) )
_lowerCAmelCase : int = self._get_tensors(10 )
self.assertTrue(criteria(_A ,_A ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 ,max_new_tokens=5 )
_lowerCAmelCase : str = self._get_tensors(5 )
self.assertFalse(criteria(_A ,_A ) )
_lowerCAmelCase : Union[str, Any] = self._get_tensors(9 )
self.assertFalse(criteria(_A ,_A ) )
_lowerCAmelCase : Dict = self._get_tensors(10 )
self.assertTrue(criteria(_A ,_A ) )
_lowerCAmelCase : List[Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length ,10 )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self._get_tensors(5 )
_lowerCAmelCase : int = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(_A ,_A ) )
_lowerCAmelCase : Union[str, Any] = MaxTimeCriteria(max_time=0.1 ,initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(_A ,_A ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,10 )
with self.assertWarns(_A ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,11 )
_lowerCAmelCase : List[Any] = validate_stopping_criteria(StoppingCriteriaList() ,11 )
self.assertEqual(len(_A ) ,1 ) | 709 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils )
_lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
_lowerCAmelCase : int = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
_lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(F"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
_lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ):
execute_subprocess_async(_A ,env=os.environ.copy() )
if __name__ == "__main__":
_lowerCAmelCase = Accelerator()
_lowerCAmelCase = (accelerator.state.process_index + 2, 1_0)
_lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device)
_lowerCAmelCase = """"""
_lowerCAmelCase = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 16 | 0 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
_lowerCAmelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""]
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A ,_A=None ,_A=1 ):
'''simple docstring'''
_lowerCAmelCase : Dict = tokenizer
_lowerCAmelCase : Union[str, Any] = dataset
_lowerCAmelCase : List[Any] = len(_A ) if n_tasks is None else n_tasks
_lowerCAmelCase : List[Any] = n_copies
def __iter__( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() )
_lowerCAmelCase : List[str] = self.tokenizer(_A ,padding=_A ,return_tensors='pt' )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = start_length
_lowerCAmelCase : Tuple = eof_strings
_lowerCAmelCase : str = tokenizer
def __call__( self ,_A ,_A ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
_lowerCAmelCase : str = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(_A )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase )
# last string should be ""
return "".join(string_list[:-2] )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(_lowerCamelCase ) ):
with torch.no_grad():
_lowerCAmelCase : List[str] = batch['ids'].shape[-1]
_lowerCAmelCase : Optional[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate(
input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase )
# each task is generated batch_size times
_lowerCAmelCase : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = accelerator.pad_across_processes(
_lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id )
_lowerCAmelCase : int = accelerator.gather((generated_tokens, generated_tasks) )
_lowerCAmelCase : int = generated_tokens.cpu().numpy()
_lowerCAmelCase : int = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ):
gen_token_dict[task].append(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = [[] for _ in range(_lowerCamelCase )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
_lowerCAmelCase : int = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
code_gens[task].append(remove_last_block(_lowerCamelCase ) )
return code_gens
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = HfArgumentParser(_lowerCamelCase )
_lowerCAmelCase : int = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
_lowerCAmelCase : Union[str, Any] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
_lowerCAmelCase : Dict = 'false'
if args.num_workers is None:
_lowerCAmelCase : List[str] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
_lowerCAmelCase : Optional[Any] = Accelerator()
set_seed(args.seed , device_specific=_lowerCamelCase )
# Load model and tokenizer
_lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt )
_lowerCAmelCase : Optional[Any] = tokenizer.eos_token
_lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
_lowerCAmelCase : str = {
'do_sample': args.do_sample,
'temperature': args.temperature,
'max_new_tokens': args.max_new_tokens,
'top_p': args.top_p,
'top_k': args.top_k,
'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ),
}
# Load evaluation dataset and metric
_lowerCAmelCase : Any = load_dataset('openai_humaneval' )
_lowerCAmelCase : Optional[Any] = load_metric('code_eval' )
_lowerCAmelCase : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] )
_lowerCAmelCase : Dict = args.n_samples // args.batch_size
_lowerCAmelCase : Optional[int] = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase )
# do not confuse args.batch_size, which is actually the num_return_sequences
_lowerCAmelCase : Dict = DataLoader(_lowerCamelCase , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
_lowerCAmelCase : Optional[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] )
except ValueError as exception:
print(
'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'
' flag to enable code evaluation.' )
raise exception
_lowerCAmelCase : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : int = complete_code(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , )
if accelerator.is_main_process:
_lowerCAmelCase : str = []
for task in tqdm(range(_lowerCamelCase ) ):
_lowerCAmelCase : List[Any] = human_eval['test'][task]['test']
_lowerCAmelCase : Optional[Any] = f"""check({human_eval['test'][task]['entry_point']})"""
references.append('\n' + test_func + '\n' + entry_point )
# Evaluate completions with "code_eval" metric
_lowerCAmelCase : Optional[Any] = code_eval_metric.compute(
references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers )
print(f"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file , 'w' ) as fp:
json.dump(_lowerCamelCase , _lowerCamelCase )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 710 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
'''simple docstring'''
if index == len(_lowerCamelCase ):
print(_lowerCamelCase )
return
for i in range(len(_lowerCamelCase ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_lowerCAmelCase : List[str] = True
create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase )
current_sequence.pop()
_lowerCAmelCase : int = False
_lowerCAmelCase = [3, 1, 2, 4]
generate_all_permutations(sequence)
_lowerCAmelCase = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 16 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
class __UpperCamelCase ( metaclass=a__ ):
_UpperCAmelCase = ["sentencepiece"]
def __init__( self ,*_A ,**_A ):
'''simple docstring'''
requires_backends(self ,['sentencepiece'] )
| 711 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class __UpperCamelCase ( logging.LoggerAdapter ):
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ):
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
_lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A )
_lowerCAmelCase : Any = kwargs.pop('in_order' ,_A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
elif in_order:
_lowerCAmelCase : str = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
state.wait_for_everyone()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ):
'''simple docstring'''
if log_level is None:
_lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase )
_lowerCAmelCase : int = logging.getLogger(_lowerCamelCase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_lowerCamelCase , {} )
| 16 | 0 |
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
_lowerCAmelCase = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
_lowerCAmelCase = """main"""
# Default branch name
_lowerCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2"""
# One particular commit (not the top of `main`)
_lowerCAmelCase = """aaaaaaa"""
# This commit does not exist, so we should 404.
_lowerCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684"""
# Sha-1 of config.json on the top of `main`, for checking purposes
_lowerCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3"""
@contextlib.contextmanager
def lowerCamelCase__ ( ):
'''simple docstring'''
print('Welcome!' )
yield
print('Bye!' )
@contextlib.contextmanager
def lowerCamelCase__ ( ):
'''simple docstring'''
print('Bonjour!' )
yield
print('Au revoir!' )
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
assert transformers.__spec__ is not None
assert importlib.util.find_spec('transformers' ) is not None
class __UpperCamelCase ( unittest.TestCase ):
@unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
with ContextManagers([] ):
print('Transformers are awesome!' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() ,'Transformers are awesome!\n' )
@unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
with ContextManagers([context_en()] ):
print('Transformers are awesome!' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() ,'Welcome!\nTransformers are awesome!\nBye!\n' )
@unittest.mock.patch('sys.stdout' ,new_callable=io.StringIO )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
with ContextManagers([context_fr(), context_en()] ):
print('Transformers are awesome!' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() ,'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' )
@require_torch
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertEqual(find_labels(_A ) ,['labels'] )
self.assertEqual(find_labels(_A ) ,['labels', 'next_sentence_label'] )
self.assertEqual(find_labels(_A ) ,['start_positions', 'end_positions'] )
class __UpperCamelCase ( a__ ):
pass
self.assertEqual(find_labels(_A ) ,['labels'] )
@require_tf
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertEqual(find_labels(_A ) ,['labels'] )
self.assertEqual(find_labels(_A ) ,['labels', 'next_sentence_label'] )
self.assertEqual(find_labels(_A ) ,['start_positions', 'end_positions'] )
class __UpperCamelCase ( a__ ):
pass
self.assertEqual(find_labels(_A ) ,['labels'] )
@require_flax
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertEqual(find_labels(_A ) ,[] )
self.assertEqual(find_labels(_A ) ,[] )
self.assertEqual(find_labels(_A ) ,[] )
class __UpperCamelCase ( a__ ):
pass
self.assertEqual(find_labels(_A ) ,[] )
| 712 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-question_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": 5_1_2,
"""facebook/dpr-reader-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_lowerCAmelCase = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCAmelCase = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(a__ )
class __UpperCamelCase :
def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
elif titles is None or texts is None:
_lowerCAmelCase : Optional[int] = titles if texts is None else texts
return super().__call__(
_A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
_lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles]
_lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts]
_lowerCAmelCase : Union[str, Any] = len(_A )
_lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages
if len(_A ) != len(_A ):
raise ValueError(
F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" )
_lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Optional[int] = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_A ,_A )
]
}
if return_attention_mask is not False:
_lowerCAmelCase : Tuple = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_lowerCAmelCase : List[Any] = attention_mask
return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A )
def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,):
'''simple docstring'''
_lowerCAmelCase : int = reader_input['input_ids']
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3]
_lowerCAmelCase : Optional[Any] = len(_A )
_lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ )
_lowerCAmelCase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_lowerCAmelCase : int = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id )
else:
_lowerCAmelCase : Optional[int] = len(_A )
_lowerCAmelCase : Optional[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(_A ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
for start_index, start_score in enumerate(_A ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A )
_lowerCAmelCase : int = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" )
_lowerCAmelCase : List[str] = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_A ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(a__ )
class __UpperCamelCase ( a__ , a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = ["input_ids", "attention_mask"]
| 16 | 0 |
"""simple docstring"""
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError('String lengths must match!' )
_lowerCAmelCase : int = 0
for chara, chara in zip(_lowerCamelCase , _lowerCamelCase ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 713 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = DanceDiffusionPipeline
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : List[Any] = UNetaDModel(
block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,)
_lowerCAmelCase : int = IPNDMScheduler()
_lowerCAmelCase : Union[str, Any] = {
'unet': unet,
'scheduler': scheduler,
}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : str = torch.manual_seed(_A )
else:
_lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : int = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A )
_lowerCAmelCase : List[str] = pipe(**_A )
_lowerCAmelCase : List[Any] = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_local()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_optional_components()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_attention_slicing_forward_pass()
def __lowerCamelCase ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = torch_device
_lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Optional[int] = torch.manual_seed(0 )
_lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : str = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = torch_device
_lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[int] = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : Union[str, Any] = output.audios
_lowerCAmelCase : int = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 16 | 0 |
"""simple docstring"""
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
_lowerCAmelCase = importlib.util.find_spec("""s3fs""") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
_lowerCAmelCase = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if "://" in dataset_path:
_lowerCAmelCase : int = dataset_path.split('://' )[1]
return dataset_path
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if fs is not None and fs.protocol != "file":
return True
else:
return False
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = not is_remote_filesystem(_lowerCamelCase )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(_lowerCamelCase ) , fs._strip_protocol(_lowerCamelCase ) )
else:
fs.mv(_lowerCamelCase , _lowerCamelCase , recursive=_lowerCamelCase )
def lowerCamelCase__ ( ):
'''simple docstring'''
if hasattr(fsspec.asyn , 'reset_lock' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : List[str] = None
_lowerCAmelCase : Optional[int] = threading.Lock()
| 714 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = (UniPCMultistepScheduler,)
_UpperCAmelCase = (("num_inference_steps", 25),)
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = {
'num_train_timesteps': 1000,
'beta_start': 0.0_0_0_1,
'beta_end': 0.0_2,
'beta_schedule': 'linear',
'solver_order': 2,
'solver_type': 'bh2',
}
config.update(**_A )
return config
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = dict(self.forward_default_kwargs )
_lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Optional[Any] = self.dummy_sample
_lowerCAmelCase : Union[str, Any] = 0.1 * sample
_lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A )
new_scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase, _lowerCAmelCase : str = sample, sample
for t in range(_A ,time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Union[str, Any] = self.dummy_sample
_lowerCAmelCase : Dict = 0.1 * sample
_lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Any = self.get_scheduler_config()
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : int = scheduler_class.from_pretrained(_A )
# copy over dummy past residuals
new_scheduler.set_timesteps(_A )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=None ,**_A ):
'''simple docstring'''
if scheduler is None:
_lowerCAmelCase : int = self.scheduler_classes[0]
_lowerCAmelCase : List[str] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
_lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : int = scheduler_class(**_A )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : str = self.dummy_model()
_lowerCAmelCase : str = self.dummy_sample_deter
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Any = model(_A ,_A )
_lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample
return sample
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A )
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : str = self.get_scheduler_config()
_lowerCAmelCase : List[str] = scheduler_class(**_A )
_lowerCAmelCase : Any = self.dummy_sample
_lowerCAmelCase : Tuple = 0.1 * sample
if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ):
scheduler.set_timesteps(_A )
elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ):
_lowerCAmelCase : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
_lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order]
_lowerCAmelCase : Any = scheduler.timesteps[5]
_lowerCAmelCase : List[str] = scheduler.timesteps[6]
_lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
_lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=_A )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
_lowerCAmelCase : List[Any] = self.full_loop(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
assert not torch.isnan(_A ).any(), "Samples have nan numbers"
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(lower_order_final=_A )
self.check_over_configs(lower_order_final=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_A ,time_step=0 )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.full_loop()
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' )
_lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 )
_lowerCAmelCase : Tuple = scheduler_class(**_A )
_lowerCAmelCase : Optional[Any] = 10
_lowerCAmelCase : Union[str, Any] = self.dummy_model()
_lowerCAmelCase : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Tuple = model(_A ,_A )
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : str = scheduler_class(**_A )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 16 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase = {
"""configuration_blenderbot_small""": [
"""BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlenderbotSmallConfig""",
"""BlenderbotSmallOnnxConfig""",
],
"""tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = ["""BlenderbotSmallTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = [
"""BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlenderbotSmallForCausalLM""",
"""BlenderbotSmallForConditionalGeneration""",
"""BlenderbotSmallModel""",
"""BlenderbotSmallPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = [
"""TFBlenderbotSmallForConditionalGeneration""",
"""TFBlenderbotSmallModel""",
"""TFBlenderbotSmallPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = [
"""FlaxBlenderbotSmallForConditionalGeneration""",
"""FlaxBlenderbotSmallModel""",
"""FlaxBlenderbotSmallPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
_lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 715 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/"""
_lowerCAmelCase = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' )
elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' )
elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' )
elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' )
if "conditioner_blocks.0." in key:
_lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' )
if "prime_prior" in key:
_lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
_lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' )
if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('.k' , '.codebook' )
if "y_emb." in key:
return key.replace('y_emb.' , 'metadata_embedding.' )
if "x_emb.emb." in key:
_lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' )
if "prime_state_ln" in key:
return key.replace('prime_state_ln' , 'encoder.final_layer_norm' )
if ".ln" in key:
return key.replace('.ln' , '.layer_norm' )
if "_ln" in key:
return key.replace('_ln' , '_layer_norm' )
if "prime_state_proj" in key:
return key.replace('prime_state_proj' , 'encoder.proj_in' )
if "prime_x_out" in key:
return key.replace('prime_x_out' , 'encoder.lm_head' )
if "prior.x_out" in key:
return key.replace('x_out' , 'fc_proj_out' )
if "x_emb" in key:
return key.replace('x_emb' , 'embed_tokens' )
return key
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = {}
import re
_lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(
R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Union[str, Any] = re.compile(
R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(
R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase )
_lowerCAmelCase : int = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = prefix + resnet_block
_lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
_lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Dict = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : List[Any] = prefix + resnet_block
_lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
_lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : Any = regex_match.groups()
_lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Tuple = regex_match.groups()
_lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
_lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = prefix + resnet_block
_lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[str] = regex_match.groups()
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
_lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# keep original key
else:
_lowerCAmelCase : Optional[Any] = original_key
_lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
_lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
_lowerCAmelCase : Optional[int] = original_key
_lowerCAmelCase : Union[str, Any] = original_key
_lowerCAmelCase : Optional[Any] = value
return new_dict
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ):
'''simple docstring'''
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ):
_lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase )
open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content )
_lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]]
_lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase )
_lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase )
_lowerCAmelCase : int = []
_lowerCAmelCase : Any = {}
for i, dict_name in enumerate(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model']
_lowerCAmelCase : Optional[Any] = {}
for k in old_dic.keys():
if k.endswith('.b' ):
_lowerCAmelCase : int = old_dic[k]
elif k.endswith('.w' ):
_lowerCAmelCase : Tuple = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
_lowerCAmelCase : str = old_dic[k]
else:
_lowerCAmelCase : Optional[Any] = old_dic[k]
_lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}"""
_lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase )
weight_dict.append(_lowerCamelCase )
_lowerCAmelCase : List[Any] = weight_dict.pop(0 )
model.vqvae.load_state_dict(_lowerCamelCase )
for i in range(len(_lowerCamelCase ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile:
json.dump(_lowerCamelCase , _lowerCamelCase )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
return weight_dict
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
_lowerCAmelCase = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 16 | 0 |
"""simple docstring"""
import os
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = os.path.join(os.path.dirname(_lowerCamelCase ) , 'num.txt' )
with open(_lowerCamelCase ) as file_hand:
return str(sum(int(_lowerCamelCase ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 716 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
_lowerCAmelCase = {"""UserAgent""": UserAgent().random}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = script.contents[0]
_lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/"""
_lowerCAmelCase : str = self.get_json()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text
_lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
'''simple docstring'''
return F"""{self.__class__.__name__}('{self.username}')"""
def __str__( self ):
'''simple docstring'''
return F"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["username"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["full_name"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["biography"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["business_email"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["external_url"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_follow"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_verified"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_private"]
def lowerCamelCase__ ( _lowerCamelCase = "github" ):
'''simple docstring'''
import os
if os.environ.get('CI' ):
return # test failing on GitHub Actions
_lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _lowerCamelCase )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('https://instagram.' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase = InstagramUser("""github""")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 16 | 0 |
"""simple docstring"""
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = 0
while number > 0:
_lowerCAmelCase : Optional[int] = number % 10
sum_of_digits += last_digit
_lowerCAmelCase : int = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def lowerCamelCase__ ( _lowerCamelCase = 100 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = factorial(_lowerCamelCase )
_lowerCAmelCase : List[Any] = split_and_add(_lowerCamelCase )
return result
if __name__ == "__main__":
print(solution(int(input("""Enter the Number: """).strip())))
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """spiece.model"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
}
}
_lowerCAmelCase = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
# Segments (not really needed)
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = 2
_lowerCAmelCase = 3
_lowerCAmelCase = 4
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = "left"
def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
_lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,)
_lowerCAmelCase : int = 3
_lowerCAmelCase : Union[str, Any] = do_lower_case
_lowerCAmelCase : Dict = remove_space
_lowerCAmelCase : int = keep_accents
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_A )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.sp_model )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.__dict__.copy()
_lowerCAmelCase : List[str] = None
return state
def __setstate__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_lowerCAmelCase : Union[str, Any] = {}
_lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.remove_space:
_lowerCAmelCase : str = ' '.join(inputs.strip().split() )
else:
_lowerCAmelCase : Dict = inputs
_lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' )
if not self.keep_accents:
_lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A )
_lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] )
if self.do_lower_case:
_lowerCAmelCase : Tuple = outputs.lower()
return outputs
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A )
_lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A )
_lowerCAmelCase : int = []
for piece in pieces:
if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
_lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase : int = cur_pieces[1:]
else:
_lowerCAmelCase : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_A )
else:
new_pieces.append(_A )
return new_pieces
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.PieceToId(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.IdToPiece(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip()
return out_string
def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A )
_lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : int = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
_lowerCAmelCase : Tuple = []
sub_texts.append(_A )
else:
current_sub_text.append(_A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase : List[Any] = ''.join(_A )
_lowerCAmelCase : Tuple = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase : int = self.clean_up_tokenization(_A )
return clean_text
else:
return text
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
if token_ids_a is not None:
return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1]
return ([0] * len(_A )) + [1, 1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Any = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_A )
elif not os.path.isfile(self.vocab_file ):
with open(_A ,'wb' ) as fi:
_lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
| 16 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = """▁"""
_lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"""
),
}
}
_lowerCAmelCase = {
"""facebook/nllb-200-distilled-600M""": 1_0_2_4,
}
# fmt: off
_lowerCAmelCase = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = ["input_ids", "attention_mask"]
_UpperCAmelCase = []
_UpperCAmelCase = []
def __init__( self ,_A ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=None ,_A=None ,_A=None ,_A = None ,_A=None ,_A=False ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
_lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
_lowerCAmelCase : int = legacy_behaviour
super().__init__(
bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,tokenizer_file=_A ,src_lang=_A ,tgt_lang=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=_A ,**_A ,)
_lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_A ) )
_lowerCAmelCase : Dict = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
_lowerCAmelCase : Union[str, Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_lowerCAmelCase : Union[str, Any] = 1
_lowerCAmelCase : Any = len(self.sp_model )
_lowerCAmelCase : Union[str, Any] = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A )
}
_lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()}
_lowerCAmelCase : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
_lowerCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
_lowerCAmelCase : List[str] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
_lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn'
_lowerCAmelCase : Tuple = self.lang_code_to_id[self._src_lang]
_lowerCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.__dict__.copy()
_lowerCAmelCase : Dict = None
_lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_lowerCAmelCase : Tuple = {}
_lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
_lowerCAmelCase : Any = [1] * len(self.prefix_tokens )
_lowerCAmelCase : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_A )) + suffix_ones
return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : int = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,**_A ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_lowerCAmelCase : Any = src_lang
_lowerCAmelCase : Union[str, Any] = self(_A ,add_special_tokens=_A ,return_tensors=_A ,**_A )
_lowerCAmelCase : str = self.convert_tokens_to_ids(_A )
_lowerCAmelCase : Union[str, Any] = tgt_lang_id
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.encode(_A ,out_type=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_lowerCAmelCase : int = self.sp_model.PieceToId(_A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = ''.join(_A ).replace(_A ,' ' ).strip()
return out_string
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : Any = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_A )
elif not os.path.isfile(self.vocab_file ):
with open(_A ,'wb' ) as fi:
_lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
def __lowerCamelCase ( self ,_A ,_A = "eng_Latn" ,_A = None ,_A = "fra_Latn" ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Tuple = src_lang
_lowerCAmelCase : int = tgt_lang
return super().prepare_seqaseq_batch(_A ,_A ,**_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
_lowerCAmelCase : int = []
_lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : Any = [self.cur_lang_code]
_lowerCAmelCase : Optional[Any] = [self.eos_token_id]
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
_lowerCAmelCase : Union[str, Any] = []
_lowerCAmelCase : List[Any] = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : List[str] = [self.cur_lang_code]
_lowerCAmelCase : int = [self.eos_token_id]
| 718 |
"""simple docstring"""
import argparse
import struct
import unittest
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = data
# Initialize hash values
_lowerCAmelCase : Any = [
0x6A09_E667,
0xBB67_AE85,
0x3C6E_F372,
0xA54F_F53A,
0x510E_527F,
0x9B05_688C,
0x1F83_D9AB,
0x5BE0_CD19,
]
# Initialize round constants
_lowerCAmelCase : str = [
0x428A_2F98,
0x7137_4491,
0xB5C0_FBCF,
0xE9B5_DBA5,
0x3956_C25B,
0x59F1_11F1,
0x923F_82A4,
0xAB1C_5ED5,
0xD807_AA98,
0x1283_5B01,
0x2431_85BE,
0x550C_7DC3,
0x72BE_5D74,
0x80DE_B1FE,
0x9BDC_06A7,
0xC19B_F174,
0xE49B_69C1,
0xEFBE_4786,
0x0FC1_9DC6,
0x240C_A1CC,
0x2DE9_2C6F,
0x4A74_84AA,
0x5CB0_A9DC,
0x76F9_88DA,
0x983E_5152,
0xA831_C66D,
0xB003_27C8,
0xBF59_7FC7,
0xC6E0_0BF3,
0xD5A7_9147,
0x06CA_6351,
0x1429_2967,
0x27B7_0A85,
0x2E1B_2138,
0x4D2C_6DFC,
0x5338_0D13,
0x650A_7354,
0x766A_0ABB,
0x81C2_C92E,
0x9272_2C85,
0xA2BF_E8A1,
0xA81A_664B,
0xC24B_8B70,
0xC76C_51A3,
0xD192_E819,
0xD699_0624,
0xF40E_3585,
0x106A_A070,
0x19A4_C116,
0x1E37_6C08,
0x2748_774C,
0x34B0_BCB5,
0x391C_0CB3,
0x4ED8_AA4A,
0x5B9C_CA4F,
0x682E_6FF3,
0x748F_82EE,
0x78A5_636F,
0x84C8_7814,
0x8CC7_0208,
0x90BE_FFFA,
0xA450_6CEB,
0xBEF9_A3F7,
0xC671_78F2,
]
_lowerCAmelCase : Any = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64))
_lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) )
return data + padding + big_endian_integer
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) )
# add 48 0-ed integers
words += [0] * 48
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowerCAmelCase : List[str] = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
_lowerCAmelCase : Tuple = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
_lowerCAmelCase : str = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0000_0000
# Compression
_lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 )
_lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g)
_lowerCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0000_0000
_lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 )
_lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c)
_lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = (
g,
f,
e,
((d + tempa) % 0x1_0000_0000),
c,
b,
a,
((tempa + tempa) % 0x1_0000_0000),
)
_lowerCAmelCase : Any = [a, b, c, d, e, f, g, h]
# Modify final values
_lowerCAmelCase : int = [
((element + mutated_hash_values[index]) % 0x1_0000_0000)
for index, element in enumerate(self.hashes )
]
_lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations)
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
import hashlib
_lowerCAmelCase : Any = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() )
def lowerCamelCase__ ( ):
'''simple docstring'''
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
_lowerCAmelCase : Tuple = parser.parse_args()
_lowerCAmelCase : List[str] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowerCAmelCase : int = f.read()
else:
_lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' )
print(SHAaaa(_lowerCamelCase ).hash )
if __name__ == "__main__":
main()
| 16 | 0 |
"""simple docstring"""
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
_lowerCAmelCase = logging.getLogger(__name__)
class __UpperCamelCase ( a__ ):
def __init__( self ,_A=-1 ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = label_idx
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
if isinstance(_A ,_A ):
_lowerCAmelCase : Any = mode.value
_lowerCAmelCase : Optional[Any] = os.path.join(_A ,F"""{mode}.txt""" )
_lowerCAmelCase : Optional[Any] = 1
_lowerCAmelCase : Tuple = []
with open(_A ,encoding='utf-8' ) as f:
_lowerCAmelCase : Any = []
_lowerCAmelCase : Any = []
for line in f:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A ) )
guid_index += 1
_lowerCAmelCase : str = []
_lowerCAmelCase : int = []
else:
_lowerCAmelCase : int = line.split(' ' )
words.append(splits[0] )
if len(_A ) > 1:
labels.append(splits[self.label_idx].replace('\n' ,'' ) )
else:
# Examples could have no label for mode = "test"
labels.append('O' )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A ) )
return examples
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = 0
for line in test_input_reader:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
writer.write(_A )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
_lowerCAmelCase : int = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n'
writer.write(_A )
else:
logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' ,line.split()[0] )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if path:
with open(_A ,'r' ) as f:
_lowerCAmelCase : Any = f.read().splitlines()
if "O" not in labels:
_lowerCAmelCase : Optional[int] = ['O'] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __UpperCamelCase ( a__ ):
def __init__( self ):
'''simple docstring'''
super().__init__(label_idx=-2 )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if path:
with open(_A ,'r' ) as f:
_lowerCAmelCase : Union[str, Any] = f.read().splitlines()
if "O" not in labels:
_lowerCAmelCase : Any = ['O'] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __UpperCamelCase ( a__ ):
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
if isinstance(_A ,_A ):
_lowerCAmelCase : Dict = mode.value
_lowerCAmelCase : Dict = os.path.join(_A ,F"""{mode}.txt""" )
_lowerCAmelCase : List[str] = 1
_lowerCAmelCase : str = []
with open(_A ,encoding='utf-8' ) as f:
for sentence in parse_incr(_A ):
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : Any = []
for token in sentence:
words.append(token['form'] )
labels.append(token['upos'] )
assert len(_A ) == len(_A )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A ) )
guid_index += 1
return examples
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = 0
for sentence in parse_incr(_A ):
_lowerCAmelCase : str = preds_list[example_id]
_lowerCAmelCase : Tuple = ''
for token in sentence:
out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """
out += "\n"
writer.write(_A )
example_id += 1
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if path:
with open(_A ,'r' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 719 |
"""simple docstring"""
from collections.abc import Callable
class __UpperCamelCase :
def __init__( self ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : list = []
# Stores indexes of each item for supporting updates and deletion.
_lowerCAmelCase : dict = {}
# Stores current size of heap.
_lowerCAmelCase : Union[str, Any] = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
_lowerCAmelCase : Union[str, Any] = key or (lambda _A : x)
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return int((i - 1) / 2 ) if i > 0 else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = int(2 * i + 2 )
return right if 0 < right < self.size else None
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase : Tuple = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
_lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i]
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return self.arr[i][1] < self.arr[j][1]
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self._left(_A )
_lowerCAmelCase : str = self._right(_A )
_lowerCAmelCase : Tuple = i
if left is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : int = left
if right is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : Optional[int] = right
return valid_parent
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self._parent(_A )
while parent is not None and not self._cmp(_A ,_A ):
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A )
while valid_parent != index:
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : int = self.pos_map[item]
_lowerCAmelCase : Dict = [item, self.key(_A )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : List[str] = self.pos_map[item]
del self.pos_map[item]
_lowerCAmelCase : Dict = self.arr[self.size - 1]
_lowerCAmelCase : Optional[Any] = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(_A )] )
else:
_lowerCAmelCase : Any = [item, self.key(_A )]
_lowerCAmelCase : str = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.arr[0] if self.size else None
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def lowerCamelCase__ ( ):
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
"""simple docstring"""
from math import factorial
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if successes > trials:
raise ValueError('successes must be lower or equal to trials' )
if trials < 0 or successes < 0:
raise ValueError('the function is defined for non-negative integers' )
if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise ValueError('the function is defined for non-negative integers' )
if not 0 < prob < 1:
raise ValueError('prob has to be in range of 1 - 0' )
_lowerCAmelCase : Dict = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
_lowerCAmelCase : Union[str, Any] = float(factorial(_lowerCamelCase ) )
coefficient /= factorial(_lowerCamelCase ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("""Probability of 2 successes out of 4 trails""")
print("""with probability of 0.75 is:""", end=""" """)
print(binomial_distribution(2, 4, 0.75))
| 720 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = 42
class __UpperCamelCase ( a__ , a__ ):
@register_to_config
def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Any = num_attention_heads
_lowerCAmelCase : Optional[int] = attention_head_dim
_lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim
_lowerCAmelCase : Optional[Any] = additional_embeddings
_lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim
_lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim
_lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim
_lowerCAmelCase : int = Timesteps(_A ,_A ,0 )
_lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A )
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
if embedding_proj_norm_type is None:
_lowerCAmelCase : Optional[Any] = None
elif embedding_proj_norm_type == "layer":
_lowerCAmelCase : List[Any] = nn.LayerNorm(_A )
else:
raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
_lowerCAmelCase : Tuple = nn.Linear(_A ,_A )
if encoder_hid_proj_type is None:
_lowerCAmelCase : int = None
elif encoder_hid_proj_type == "linear":
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
else:
raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) )
if added_emb_type == "prd":
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) )
elif added_emb_type is None:
_lowerCAmelCase : List[Any] = None
else:
raise ValueError(
F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
_lowerCAmelCase : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(
_A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,)
for d in range(_A )
] )
if norm_in_type == "layer":
_lowerCAmelCase : Any = nn.LayerNorm(_A )
elif norm_in_type is None:
_lowerCAmelCase : Any = None
else:
raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" )
_lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A )
_lowerCAmelCase : int = nn.Linear(_A ,_A )
_lowerCAmelCase : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
_lowerCAmelCase : Tuple = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' ,_A ,persistent=_A )
_lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {}
def fn_recursive_add_processors(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
_lowerCAmelCase : str = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_A ,_A ,_A )
return processors
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_A ,_A ) and len(_A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
if not isinstance(_A ,_A ):
module.set_processor(_A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A )
for name, module in self.named_children():
fn_recursive_attn_processor(_A ,_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,):
'''simple docstring'''
_lowerCAmelCase : str = hidden_states.shape[0]
_lowerCAmelCase : int = timestep
if not torch.is_tensor(_A ):
_lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device )
elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0:
_lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device )
_lowerCAmelCase : Dict = self.time_proj(_A )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype )
_lowerCAmelCase : Optional[Any] = self.time_embedding(_A )
if self.embedding_proj_norm is not None:
_lowerCAmelCase : int = self.embedding_proj_norm(_A )
_lowerCAmelCase : str = self.embedding_proj(_A )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_lowerCAmelCase : str = self.encoder_hidden_states_proj(_A )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
_lowerCAmelCase : Any = self.proj_in(_A )
_lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype )
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_A )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_lowerCAmelCase : int = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_lowerCAmelCase : Any = hidden_states[:, None, :]
_lowerCAmelCase : int = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 )
additional_embeds.append(_A )
_lowerCAmelCase : List[str] = torch.cat(
_A ,dim=1 ,)
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_lowerCAmelCase : Any = F.pad(
_A ,(
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) ,value=0.0 ,)
_lowerCAmelCase : int = hidden_states + positional_embeddings
if attention_mask is not None:
_lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
_lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 )
_lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 )
if self.norm_in is not None:
_lowerCAmelCase : Any = self.norm_in(_A )
for block in self.transformer_blocks:
_lowerCAmelCase : int = block(_A ,attention_mask=_A )
_lowerCAmelCase : Union[str, Any] = self.norm_out(_A )
if self.prd_embedding is not None:
_lowerCAmelCase : Optional[int] = hidden_states[:, -1]
else:
_lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:]
_lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 16 | 0 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_lowerCAmelCase = get_tests_dir("""fixtures""")
_lowerCAmelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
_lowerCAmelCase = get_tests_dir("""fixtures/dummy-config.json""")
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = 0
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' )
self.assertIsInstance(_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = AutoFeatureExtractor.from_pretrained(_A )
self.assertIsInstance(_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase : int = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
_lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_A ).to_dict()
config_dict.pop('feature_extractor_type' )
_lowerCAmelCase : str = WavaVecaFeatureExtractor(**_A )
# save in new folder
model_config.save_pretrained(_A )
config.save_pretrained(_A )
_lowerCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(_A )
# make sure private variable is not incorrectly saved
_lowerCAmelCase : Dict = json.loads(config.to_json_string() )
self.assertTrue('_processor_class' not in dict_as_saved )
self.assertIsInstance(_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A )
self.assertIsInstance(_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_A ,'bert-base is not a local folder and is not a valid model identifier' ):
_lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained('bert-base' )
def __lowerCamelCase ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_A ,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
_lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A ,revision='aaaaaa' )
def __lowerCamelCase ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_A ,'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' ,):
_lowerCAmelCase : str = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' )
def __lowerCamelCase ( self ):
'''simple docstring'''
with self.assertRaises(_A ):
_lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_A ):
_lowerCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A )
_lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A )
self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_A )
_lowerCAmelCase : str = AutoFeatureExtractor.from_pretrained(_A ,trust_remote_code=_A )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ ,'NewFeatureExtractor' )
def __lowerCamelCase ( self ):
'''simple docstring'''
try:
AutoConfig.register('custom' ,_A )
AutoFeatureExtractor.register(_A ,_A )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_A ):
AutoFeatureExtractor.register(_A ,_A )
# Now that the config is registered, it can be used as any other config with the auto-API
_lowerCAmelCase : Tuple = CustomFeatureExtractor.from_pretrained(_A )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_A )
_lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A )
self.assertIsInstance(_A ,_A )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def __lowerCamelCase ( self ):
'''simple docstring'''
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = True
try:
AutoConfig.register('custom' ,_A )
AutoFeatureExtractor.register(_A ,_A )
# If remote code is not set, the default is to use local
_lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
_lowerCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A )
self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
_lowerCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A )
self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' )
self.assertTrue(not hasattr(_A ,'is_local' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 721 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_lowerCAmelCase = get_logger()
_lowerCAmelCase = None
class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
def __init__( self ,_A=None ,_A=None ,**_A ):
'''simple docstring'''
super().__init__(features=_A )
import jax
from jaxlib.xla_client import Device
if isinstance(_A ,_A ):
raise ValueError(
F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
_lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"""Device with string identifier {self.device} not listed among the available """
F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
F"""device: {str(jax.devices()[0] )}.""" )
_lowerCAmelCase : List[str] = str(jax.devices()[0] )
_lowerCAmelCase : int = jnp_array_kwargs
@staticmethod
def __lowerCamelCase ( ):
'''simple docstring'''
import jax
return {str(_A ): device for device in jax.devices()}
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,_A ) and column:
if all(
isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_A ,axis=0 )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,(str, bytes, type(_A )) ):
return value
elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ):
return value.tolist()
_lowerCAmelCase : Optional[Any] = {}
if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_lowerCAmelCase : List[str] = {'dtype': jnp.intaa}
else:
_lowerCAmelCase : Tuple = {'dtype': jnp.intaa}
elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ):
_lowerCAmelCase : Any = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_A ,PIL.Image.Image ):
_lowerCAmelCase : int = np.asarray(_A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Optional[Any] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_A ,torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ):
_lowerCAmelCase : Optional[Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_A ,np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
elif isinstance(_A ,(list, tuple) ):
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
return self._tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return map_nested(self._recursive_tensorize ,_A ,map_list=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A )
_lowerCAmelCase : int = self.python_features_decoder.decode_row(_A )
return self.recursive_tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A )
_lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] )
_lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A )
_lowerCAmelCase : Optional[Any] = self._consolidate(_A )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A )
_lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A )
_lowerCAmelCase : str = self.recursive_tensorize(_A )
for column_name in batch:
_lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 16 | 0 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
_lowerCAmelCase = """0.12""" # assumed parallelism: 8
if is_torch_available():
import torch
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
if rng is None:
_lowerCAmelCase : List[Any] = random.Random()
_lowerCAmelCase : Dict = 1
for dim in shape:
total_dims *= dim
_lowerCAmelCase : Optional[Any] = []
for _ in range(_lowerCamelCase ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_lowerCAmelCase : int = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase )
return output
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Tuple = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase )
# make sure that at least one token is attended to for each batch
_lowerCAmelCase : str = 1
return attn_mask
@require_flax
class __UpperCamelCase :
_UpperCAmelCase = None
_UpperCAmelCase = ()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_lowerCAmelCase : Union[str, Any] = 2
_lowerCAmelCase : Union[str, Any] = inputs['input_ids'].shape[-1] // 2
_lowerCAmelCase : Tuple = inputs['input_ids'][:max_batch_size, :sequence_length]
_lowerCAmelCase : int = jnp.ones_like(_A )
_lowerCAmelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_lowerCAmelCase : List[Any] = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_lowerCAmelCase : Union[str, Any] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self._get_input_ids_and_config()
_lowerCAmelCase : Dict = False
_lowerCAmelCase : Dict = max_length
_lowerCAmelCase : Tuple = 0
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : Dict = model_class(_A )
_lowerCAmelCase : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning
_lowerCAmelCase : List[str] = getattr(_A ,_A )
_lowerCAmelCase : Union[str, Any] = pt_model_class(_A ).eval()
_lowerCAmelCase : Tuple = load_flax_weights_in_pytorch_model(_A ,flax_model.params )
_lowerCAmelCase : Union[str, Any] = flax_model.generate(_A ).sequences
_lowerCAmelCase : str = pt_model.generate(torch.tensor(_A ,dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_lowerCAmelCase : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self._get_input_ids_and_config()
_lowerCAmelCase : str = False
_lowerCAmelCase : Optional[Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : Union[str, Any] = model_class(_A )
_lowerCAmelCase : Union[str, Any] = model.generate(_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : Any = jit(model.generate )
_lowerCAmelCase : Dict = jit_generate(_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self._get_input_ids_and_config()
_lowerCAmelCase : Union[str, Any] = True
_lowerCAmelCase : Union[str, Any] = max_length
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : Tuple = model_class(_A )
_lowerCAmelCase : Any = model.generate(_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : Optional[Any] = jit(model.generate )
_lowerCAmelCase : Tuple = jit_generate(_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self._get_input_ids_and_config()
_lowerCAmelCase : str = False
_lowerCAmelCase : List[str] = max_length
_lowerCAmelCase : int = 2
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : List[Any] = model_class(_A )
_lowerCAmelCase : Tuple = model.generate(_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : List[str] = jit(model.generate )
_lowerCAmelCase : Optional[Any] = jit_generate(_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config()
_lowerCAmelCase : int = False
_lowerCAmelCase : Dict = max_length
_lowerCAmelCase : Optional[Any] = 2
_lowerCAmelCase : List[str] = 2
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : Optional[Any] = model_class(_A )
_lowerCAmelCase : str = model.generate(_A ).sequences
self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self._get_input_ids_and_config()
_lowerCAmelCase : Optional[int] = True
_lowerCAmelCase : int = max_length
_lowerCAmelCase : str = 0.8
_lowerCAmelCase : List[Any] = 10
_lowerCAmelCase : Any = 0.3
_lowerCAmelCase : int = 1
_lowerCAmelCase : int = 8
_lowerCAmelCase : Tuple = 9
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : List[Any] = model_class(_A )
_lowerCAmelCase : Any = model.generate(_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : Any = jit(model.generate )
_lowerCAmelCase : Optional[int] = jit_generate(_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config()
_lowerCAmelCase : Dict = max_length
_lowerCAmelCase : int = 1
_lowerCAmelCase : str = 8
_lowerCAmelCase : Optional[int] = 9
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : int = model_class(_A )
_lowerCAmelCase : Union[str, Any] = model.generate(_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : str = jit(model.generate )
_lowerCAmelCase : Union[str, Any] = jit_generate(_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self._get_input_ids_and_config()
_lowerCAmelCase : Optional[Any] = max_length
_lowerCAmelCase : Dict = 2
_lowerCAmelCase : Optional[Any] = 1
_lowerCAmelCase : List[Any] = 8
_lowerCAmelCase : List[str] = 9
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : List[str] = model_class(_A )
_lowerCAmelCase : List[Any] = model.generate(_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : str = jit(model.generate )
_lowerCAmelCase : str = jit_generate(_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCAmelCase : Union[str, Any] = attention_mask.at[(0, 0)].set(0 )
_lowerCAmelCase : Optional[Any] = False
_lowerCAmelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : List[str] = model_class(_A )
_lowerCAmelCase : Optional[int] = model.generate(_A ,attention_mask=_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : Optional[int] = jit(model.generate )
_lowerCAmelCase : Optional[Any] = jit_generate(_A ,attention_mask=_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCAmelCase : Dict = attention_mask.at[(0, 0)].set(0 )
_lowerCAmelCase : List[Any] = True
_lowerCAmelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : str = model_class(_A )
_lowerCAmelCase : Any = model.generate(_A ,attention_mask=_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : Any = jit(model.generate )
_lowerCAmelCase : Dict = jit_generate(_A ,attention_mask=_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self._get_input_ids_and_config()
# pad attention mask on the left
_lowerCAmelCase : Optional[int] = attention_mask.at[(0, 0)].set(0 )
_lowerCAmelCase : Dict = 2
_lowerCAmelCase : Any = max_length
for model_class in self.all_generative_model_classes:
_lowerCAmelCase : List[Any] = model_class(_A )
_lowerCAmelCase : Union[str, Any] = model.generate(_A ,attention_mask=_A ).sequences
self.assertEqual(generation_outputs.shape[-1] ,_A )
_lowerCAmelCase : Any = jit(model.generate )
_lowerCAmelCase : Any = jit_generate(_A ,attention_mask=_A ).sequences
self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() )
@require_flax
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' )
_lowerCAmelCase : List[Any] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
_lowerCAmelCase : Any = 'Hello world'
_lowerCAmelCase : Tuple = tokenizer(_A ,return_tensors='np' ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(_A ,'do_samples' ):
model.generate(_A ,do_samples=_A )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(_A ,'foo' ):
_lowerCAmelCase : List[Any] = {'foo': 'bar'}
model.generate(_A ,**_A )
| 700 |
"""simple docstring"""
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = ["vqvae"]
def __init__( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
super().__init__()
self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
return 50 if isinstance(self.scheduler ,_A ) else 1000
@torch.no_grad()
def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,):
'''simple docstring'''
_lowerCAmelCase : List[str] = steps or self.get_default_steps()
self.scheduler.set_timesteps(_A )
_lowerCAmelCase : Optional[Any] = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
_lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
_lowerCAmelCase : Optional[Any] = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) ,generator=_A ,device=self.device ,)
_lowerCAmelCase : Dict = noise
_lowerCAmelCase : Optional[Any] = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_A ,_A )
_lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A )
_lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
_lowerCAmelCase : int = (input_image / 255) * 2 - 1
_lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device )
if self.vqvae is not None:
_lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample(
generator=_A )[0]
_lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
_lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] )
_lowerCAmelCase : Optional[Any] = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
_lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second )
_lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second )
_lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet ,_A ):
_lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample']
else:
_lowerCAmelCase : Any = self.unet(_A ,_A )['sample']
if isinstance(self.scheduler ,_A ):
_lowerCAmelCase : Union[str, Any] = self.scheduler.step(
model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample']
else:
_lowerCAmelCase : Any = self.scheduler.step(
model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample']
if mask is not None:
if mask_start > 0:
_lowerCAmelCase : Any = mask[:, step, :, :mask_start]
if mask_end > 0:
_lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
_lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images
_lowerCAmelCase : Any = self.vqvae.decode(_A )['sample']
_lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 )
_lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy()
_lowerCAmelCase : Any = (images * 255).round().astype('uint8' )
_lowerCAmelCase : Any = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) )
_lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) )
@torch.no_grad()
def __lowerCamelCase ( self ,_A ,_A = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler ,_A )
self.scheduler.set_timesteps(_A )
_lowerCAmelCase : Dict = np.array(
[np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
_lowerCAmelCase : Dict = (sample / 255) * 2 - 1
_lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ):
_lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
_lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t]
_lowerCAmelCase : Dict = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
_lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t
_lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample']
_lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output
_lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
_lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def __lowerCamelCase ( _A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) )
return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
| 16 | 0 |
"""simple docstring"""
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
_lowerCAmelCase = {
"""iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""",
"""iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""",
"""iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""",
"""mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""",
"""mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""",
"""mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""",
"""mask_downscaling.0""": """mask_embed.conv1""",
"""mask_downscaling.1""": """mask_embed.layer_norm1""",
"""mask_downscaling.3""": """mask_embed.conv2""",
"""mask_downscaling.4""": """mask_embed.layer_norm2""",
"""mask_downscaling.6""": """mask_embed.conv3""",
"""point_embeddings""": """point_embed""",
"""pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""",
"""image_encoder""": """vision_encoder""",
"""neck.0""": """neck.conv1""",
"""neck.1""": """neck.layer_norm1""",
"""neck.2""": """neck.conv2""",
"""neck.3""": """neck.layer_norm2""",
"""patch_embed.proj""": """patch_embed.projection""",
""".norm""": """.layer_norm""",
"""blocks""": """layers""",
}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = {}
state_dict.pop('pixel_mean' , _lowerCamelCase )
state_dict.pop('pixel_std' , _lowerCamelCase )
_lowerCAmelCase : Optional[Any] = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
_lowerCAmelCase : Optional[int] = key.replace(_lowerCamelCase , _lowerCamelCase )
if re.match(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Optional[int] = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(2 ) )
if layer_nb == 0:
_lowerCAmelCase : List[str] = key.replace('layers.0' , 'proj_in' )
elif layer_nb == 1:
_lowerCAmelCase : List[str] = key.replace('layers.1' , 'layers.0' )
elif layer_nb == 2:
_lowerCAmelCase : Dict = key.replace('layers.2' , 'proj_out' )
_lowerCAmelCase : Tuple = value
_lowerCAmelCase : int = model_state_dict[
'prompt_encoder.shared_embedding.positional_embedding'
]
return model_state_dict
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="ybelkada/segment-anything" ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = hf_hub_download(_lowerCamelCase , f"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
_lowerCAmelCase : Optional[int] = SamConfig()
elif "sam_vit_l" in model_name:
_lowerCAmelCase : Any = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
_lowerCAmelCase : Union[str, Any] = SamConfig(
vision_config=_lowerCamelCase , )
elif "sam_vit_h" in model_name:
_lowerCAmelCase : Any = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
_lowerCAmelCase : str = SamConfig(
vision_config=_lowerCamelCase , )
_lowerCAmelCase : Tuple = torch.load(_lowerCamelCase , map_location='cpu' )
_lowerCAmelCase : Optional[Any] = replace_keys(_lowerCamelCase )
_lowerCAmelCase : Dict = SamImageProcessor()
_lowerCAmelCase : Optional[Any] = SamProcessor(image_processor=_lowerCamelCase )
_lowerCAmelCase : List[str] = SamModel(_lowerCamelCase )
hf_model.load_state_dict(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = hf_model.to('cuda' )
_lowerCAmelCase : List[Any] = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'
_lowerCAmelCase : Any = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('RGB' )
_lowerCAmelCase : Optional[int] = [[[400, 650]]]
_lowerCAmelCase : Union[str, Any] = [[1]]
_lowerCAmelCase : Optional[int] = processor(images=np.array(_lowerCamelCase ) , return_tensors='pt' ).to('cuda' )
with torch.no_grad():
_lowerCAmelCase : Union[str, Any] = hf_model(**_lowerCamelCase )
_lowerCAmelCase : Tuple = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579890251159668
_lowerCAmelCase : List[Any] = processor(
images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors='pt' ).to('cuda' )
with torch.no_grad():
_lowerCAmelCase : Optional[Any] = hf_model(**_lowerCamelCase )
_lowerCAmelCase : int = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9712603092193604
_lowerCAmelCase : List[str] = ((75, 275, 1725, 850),)
_lowerCAmelCase : List[Any] = processor(images=np.array(_lowerCamelCase ) , input_boxes=_lowerCamelCase , return_tensors='pt' ).to('cuda' )
with torch.no_grad():
_lowerCAmelCase : Tuple = hf_model(**_lowerCamelCase )
_lowerCAmelCase : List[str] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8686015605926514
# Test with 2 points and 1 image.
_lowerCAmelCase : Any = [[[400, 650], [800, 650]]]
_lowerCAmelCase : Dict = [[1, 1]]
_lowerCAmelCase : str = processor(
images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors='pt' ).to('cuda' )
with torch.no_grad():
_lowerCAmelCase : str = hf_model(**_lowerCamelCase )
_lowerCAmelCase : Dict = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9936047792434692
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
_lowerCAmelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""]
parser.add_argument(
"""--model_name""",
default="""sam_vit_h_4b8939""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
parser.add_argument(
"""--model_hub_id""",
default="""ybelkada/segment-anything""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
_lowerCAmelCase = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 701 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""vocab_file""": """vocab.json""",
"""tokenizer_config_file""": """tokenizer_config.json""",
"""merges_file""": """merges.txt""",
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json"""
),
},
"""tokenizer_config_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json"""
),
},
"""merges_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt"""
),
},
}
_lowerCAmelCase = """</w>"""
_lowerCAmelCase = """@@ """
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = set()
_lowerCAmelCase : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase : Any = char
return pairs
# Speech2Text2 has no max input length
_lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,)
_lowerCAmelCase : List[Any] = do_lower_case
with open(_A ,encoding='utf-8' ) as vocab_handle:
_lowerCAmelCase : Optional[int] = json.load(_A )
_lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : Tuple = None
else:
with open(_A ,encoding='utf-8' ) as merges_handle:
_lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1]
_lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges]
_lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Union[str, Any] = {}
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.decoder )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
_lowerCAmelCase : str = get_pairs(_A )
if not pairs:
return token
while True:
_lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram
_lowerCAmelCase : Union[str, Any] = []
_lowerCAmelCase : Dict = 0
while i < len(_A ):
try:
_lowerCAmelCase : Dict = word.index(_A ,_A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase : Optional[Any] = j
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase : Optional[Any] = tuple(_A )
_lowerCAmelCase : List[str] = new_word
if len(_A ) == 1:
break
else:
_lowerCAmelCase : List[str] = get_pairs(_A )
_lowerCAmelCase : Any = ' '.join(_A )
if word == "\n " + BPE_TOKEN_MERGES:
_lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES
if word.endswith(_A ):
_lowerCAmelCase : Dict = word.replace(_A ,'' )
_lowerCAmelCase : str = word.replace(' ' ,_A )
_lowerCAmelCase : str = word
return word
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.bpe_ranks is None:
raise ValueError(
'This tokenizer was instantiated without a `merges.txt` file, so'
' that it can only be used for decoding, not for encoding.'
'Make sure to provide `merges.txt` file at instantiation to enable '
'encoding.' )
if self.do_lower_case:
_lowerCAmelCase : Optional[Any] = text.lower()
_lowerCAmelCase : Tuple = text.split()
_lowerCAmelCase : Union[str, Any] = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) )
return split_tokens
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.encoder.get(_A ,self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token )
return result
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ' '.join(_A )
# make sure @@ tokens are concatenated
_lowerCAmelCase : int = ''.join(string.split(_A ) )
return string
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : List[Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
_lowerCAmelCase : str = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(_A ,'w' ,encoding='utf-8' ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowerCAmelCase : Dict = token_index
writer.write(' '.join(_A ) + '\n' )
index += 1
return (vocab_file, merges_file)
| 16 | 0 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
_lowerCAmelCase = {
"""vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""},
"""merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""},
"""tokenizer_config_file""": {
"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"""
},
}
_lowerCAmelCase = {"""facebook/blenderbot-3B""": 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
_lowerCAmelCase : Tuple = bs[:]
_lowerCAmelCase : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowerCamelCase )
cs.append(2**8 + n )
n += 1
_lowerCAmelCase : int = [chr(_lowerCamelCase ) for n in cs]
return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = set()
_lowerCAmelCase : int = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase : List[Any] = char
return pairs
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A ,_A="replace" ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=False ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else bos_token
_lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else eos_token
_lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else sep_token
_lowerCAmelCase : Dict = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else cls_token
_lowerCAmelCase : List[str] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else unk_token
_lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase : Dict = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
super().__init__(
errors=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,add_prefix_space=_A ,**_A ,)
with open(_A ,encoding='utf-8' ) as vocab_handle:
_lowerCAmelCase : List[Any] = json.load(_A )
_lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()}
_lowerCAmelCase : Any = errors # how to handle errors in decoding
_lowerCAmelCase : str = bytes_to_unicode()
_lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(_A ,encoding='utf-8' ) as merges_handle:
_lowerCAmelCase : List[Any] = merges_handle.read().split('\n' )[1:-1]
_lowerCAmelCase : Any = [tuple(merge.split() ) for merge in bpe_merges]
_lowerCAmelCase : Dict = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Tuple = {}
_lowerCAmelCase : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_lowerCAmelCase : List[str] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.encoder )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
_lowerCAmelCase : Any = tuple(_A )
_lowerCAmelCase : Any = get_pairs(_A )
if not pairs:
return token
while True:
_lowerCAmelCase : str = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase : int = bigram
_lowerCAmelCase : Tuple = []
_lowerCAmelCase : List[Any] = 0
while i < len(_A ):
try:
_lowerCAmelCase : Optional[int] = word.index(_A ,_A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase : Optional[int] = j
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase : Dict = tuple(_A )
_lowerCAmelCase : Optional[Any] = new_word
if len(_A ) == 1:
break
else:
_lowerCAmelCase : Optional[Any] = get_pairs(_A )
_lowerCAmelCase : Optional[int] = ' '.join(_A )
_lowerCAmelCase : str = word
return word
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = []
for token in re.findall(self.pat ,_A ):
_lowerCAmelCase : str = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(' ' ) )
return bpe_tokens
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.encoder.get(_A ,self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.decoder.get(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = ''.join(_A )
_lowerCAmelCase : int = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors )
return text
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : Tuple = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : Union[str, Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
_lowerCAmelCase : List[str] = 0
with open(_A ,'w' ,encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowerCAmelCase : List[str] = token_index
writer.write(' '.join(_A ) + '\n' )
index += 1
return vocab_file, merge_file
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
if token_ids_a is None:
return [1] + ([0] * len(_A )) + [1]
return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.sep_token_id]
_lowerCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCamelCase ( self ,_A ,_A=False ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = kwargs.pop('add_prefix_space' ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()):
_lowerCAmelCase : List[str] = ' ' + text
return (text, kwargs)
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
return token_ids_a + [self.eos_token_id]
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(_A )
_lowerCAmelCase : str = ' '.join(_A )
_lowerCAmelCase : Optional[int] = self.encode(_A )
if len(_A ) > self.model_max_length:
_lowerCAmelCase : Optional[int] = input_ids[-self.model_max_length :]
logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" )
return input_ids
| 702 |
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __UpperCamelCase ( a__ , a__ ):
@register_to_config
def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : int = nn.Sequential(
nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,)
_lowerCAmelCase : Any = nn.Embedding(_A ,_A )
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : int = nn.Dropout(p=_A )
_lowerCAmelCase : int = nn.ModuleList()
for lyr_num in range(_A ):
# FiLM conditional T5 decoder
_lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A )
self.decoders.append(_A )
_lowerCAmelCase : Optional[Any] = TaLayerNorm(_A )
_lowerCAmelCase : List[str] = nn.Dropout(p=_A )
_lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
_lowerCAmelCase : Any = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype )
_lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
_lowerCAmelCase : str = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
_lowerCAmelCase : Union[str, Any] = torch.broadcast_to(
torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,)
_lowerCAmelCase : Any = self.position_encoding(_A )
_lowerCAmelCase : str = self.continuous_inputs_projection(_A )
inputs += position_encodings
_lowerCAmelCase : int = self.dropout(_A )
# decoder: No padding present.
_lowerCAmelCase : Union[str, Any] = torch.ones(
decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
_lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
_lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 )
_lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 )
for lyr in self.decoders:
_lowerCAmelCase : Tuple = lyr(
_A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0]
_lowerCAmelCase : Any = self.decoder_norm(_A )
_lowerCAmelCase : List[Any] = self.post_dropout(_A )
_lowerCAmelCase : int = self.spec_out(_A )
return spec_out
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[Any] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Any = self.layer[0](
_A ,conditioning_emb=_A ,attention_mask=_A ,)
if encoder_hidden_states is not None:
_lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to(
encoder_hidden_states.dtype )
_lowerCAmelCase : str = self.layer[1](
_A ,key_value_states=_A ,attention_mask=_A ,)
# Apply Film Conditional Feed Forward layer
_lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A )
return (hidden_states,)
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A )
_lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A )
_lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A )
_lowerCAmelCase : Tuple = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : int = self.layer_norm(_A )
if conditioning_emb is not None:
_lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A )
# Self-attention block
_lowerCAmelCase : Union[str, Any] = self.attention(_A )
_lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A )
_lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A )
_lowerCAmelCase : Tuple = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.layer_norm(_A )
_lowerCAmelCase : str = self.attention(
_A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,)
_lowerCAmelCase : Any = hidden_states + self.dropout(_A )
return layer_output
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A )
_lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A )
_lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A )
_lowerCAmelCase : Union[str, Any] = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ):
'''simple docstring'''
_lowerCAmelCase : int = self.layer_norm(_A )
if conditioning_emb is not None:
_lowerCAmelCase : Union[str, Any] = self.film(_A ,_A )
_lowerCAmelCase : str = self.DenseReluDense(_A )
_lowerCAmelCase : Tuple = hidden_states + self.dropout(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Union[str, Any] = nn.Dropout(_A )
_lowerCAmelCase : int = NewGELUActivation()
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) )
_lowerCAmelCase : Optional[int] = self.wi_a(_A )
_lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear
_lowerCAmelCase : Dict = self.dropout(_A )
_lowerCAmelCase : Dict = self.wo(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A=1E-6 ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) )
_lowerCAmelCase : Optional[int] = eps
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A )
_lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
_lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __UpperCamelCase ( nn.Module ):
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) ))
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.scale_bias(_A )
_lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 )
_lowerCAmelCase : List[Any] = x * (1 + scale) + shift
return x
| 16 | 0 |
"""simple docstring"""
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
_lowerCAmelCase = get_logger(__name__)
_lowerCAmelCase = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class __UpperCamelCase :
@add_start_docstrings(_A )
def __call__( self ,_A ,_A ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class __UpperCamelCase :
@add_start_docstrings(_A )
def __call__( self ,_A ,_A ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class __UpperCamelCase ( a__ ):
@add_start_docstrings(_A )
def __call__( self ,_A ,_A ,_A ,**_A ):
'''simple docstring'''
for processor in self:
_lowerCAmelCase : List[Any] = inspect.signature(processor.__call__ ).parameters
if len(_A ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F"""Make sure that all the required parameters: {list(function_args.keys() )} for """
F"""{processor.__class__} are passed to the logits processor.""" )
_lowerCAmelCase : Tuple = processor(_A ,_A ,_A ,**_A )
else:
_lowerCAmelCase : Optional[int] = processor(_A ,_A ,_A )
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ):
'''simple docstring'''
if not isinstance(_A ,_A ) or not (temperature > 0):
raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" )
_lowerCAmelCase : List[Any] = temperature
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = scores / self.temperature
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A = -float('Inf' ) ,_A = 1 ):
'''simple docstring'''
if not isinstance(_A ,_A ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" )
if not isinstance(_A ,_A ) or (min_tokens_to_keep < 1):
raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" )
_lowerCAmelCase : List[Any] = top_p
_lowerCAmelCase : str = filter_value
_lowerCAmelCase : Union[str, Any] = min_tokens_to_keep
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = lax.top_k(_A ,scores.shape[-1] )
_lowerCAmelCase : Union[str, Any] = jnp.full_like(_A ,self.filter_value )
_lowerCAmelCase : Optional[int] = jax.nn.softmax(_A ,axis=-1 ).cumsum(axis=-1 )
_lowerCAmelCase : Optional[int] = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
_lowerCAmelCase : Optional[Any] = jnp.roll(_A ,1 )
score_mask |= score_mask.at[:, 0].set(_A )
# min tokens to keep
_lowerCAmelCase : List[str] = score_mask.at[:, : self.min_tokens_to_keep].set(_A )
_lowerCAmelCase : List[str] = jnp.where(_A ,_A ,_A )
_lowerCAmelCase : Tuple = jax.lax.sort_key_val(_A ,_A )[-1]
return next_scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A = -float('Inf' ) ,_A = 1 ):
'''simple docstring'''
if not isinstance(_A ,_A ) or top_k <= 0:
raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" )
_lowerCAmelCase : Dict = max(_A ,_A )
_lowerCAmelCase : Dict = filter_value
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = scores.shape
_lowerCAmelCase : Union[str, Any] = jnp.full(batch_size * vocab_size ,self.filter_value )
_lowerCAmelCase : str = min(self.top_k ,scores.shape[-1] ) # Safety check
_lowerCAmelCase : int = lax.top_k(_A ,_A )
_lowerCAmelCase : Union[str, Any] = jnp.broadcast_to((jnp.arange(_A ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten()
_lowerCAmelCase : Optional[int] = topk_scores.flatten()
_lowerCAmelCase : Optional[int] = topk_indices.flatten() + shift
_lowerCAmelCase : List[Any] = next_scores_flat.at[topk_indices_flat].set(_A )
_lowerCAmelCase : Union[str, Any] = next_scores_flat.reshape(_A ,_A )
return next_scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = bos_token_id
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = jnp.full(scores.shape ,-float('inf' ) )
_lowerCAmelCase : Any = 1 - jnp.bool_(cur_len - 1 )
_lowerCAmelCase : Optional[Any] = jnp.where(_A ,new_scores.at[:, self.bos_token_id].set(0 ) ,_A )
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = max_length
_lowerCAmelCase : Dict = eos_token_id
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = jnp.full(scores.shape ,-float('inf' ) )
_lowerCAmelCase : Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 )
_lowerCAmelCase : Any = jnp.where(_A ,new_scores.at[:, self.eos_token_id].set(0 ) ,_A )
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A ):
'''simple docstring'''
if not isinstance(_A ,_A ) or min_length < 0:
raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" )
if not isinstance(_A ,_A ) or eos_token_id < 0:
raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" )
_lowerCAmelCase : Union[str, Any] = min_length
_lowerCAmelCase : Dict = eos_token_id
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 )
_lowerCAmelCase : int = jnp.where(_A ,scores.at[:, self.eos_token_id].set(-float('inf' ) ) ,_A )
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = list(_A )
_lowerCAmelCase : str = begin_index
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = 1 - jnp.bool_(cur_len - self.begin_index )
_lowerCAmelCase : List[Any] = jnp.where(_A ,scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) ,_A )
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = list(_A )
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = scores.at[..., self.suppress_tokens].set(-float('inf' ) )
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = dict(_A )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
_lowerCAmelCase : int = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
_lowerCAmelCase : Optional[int] = force_token_array.at[index].set(_A )
_lowerCAmelCase : str = jnp.intaa(_A )
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
def _force_token(_A ):
_lowerCAmelCase : List[str] = scores.shape[0]
_lowerCAmelCase : Tuple = self.force_token_array[generation_idx]
_lowerCAmelCase : int = jnp.ones_like(_A ,dtype=scores.dtype ) * -float('inf' )
_lowerCAmelCase : List[Any] = jnp.zeros((batch_size, 1) ,dtype=scores.dtype )
_lowerCAmelCase : Optional[Any] = lax.dynamic_update_slice(_A ,_A ,(0, current_token) )
return new_scores
_lowerCAmelCase : Optional[int] = lax.cond(
cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond(
self.force_token_array[cur_len] >= 0 ,lambda: _force_token(_A ) ,lambda: scores ,) ,)
return scores
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = generate_config.eos_token_id
_lowerCAmelCase : Union[str, Any] = generate_config.no_timestamps_token_id
_lowerCAmelCase : List[str] = generate_config.no_timestamps_token_id + 1
_lowerCAmelCase : Optional[Any] = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(_A ,'max_initial_timestamp_index' ):
_lowerCAmelCase : Optional[Any] = generate_config.max_initial_timestamp_index
else:
_lowerCAmelCase : Optional[int] = model_config.vocab_size
if self.max_initial_timestamp_index is None:
_lowerCAmelCase : str = model_config.vocab_size
def __call__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) )
def handle_pairs(_A ,_A ):
_lowerCAmelCase : str = jnp.where((cur_len - self.begin_index) >= 1 ,_A ,_A )
_lowerCAmelCase : Union[str, Any] = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,_A ,)
_lowerCAmelCase : Any = jnp.where((cur_len - self.begin_index) < 2 ,_A ,_A )
_lowerCAmelCase : int = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin ,_A ,_A ,)
return jnp.where(
_A ,jnp.where(
penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) ,scores_k.at[: self.eos_token_id].set(-float('inf' ) ) ,) ,_A ,)
_lowerCAmelCase : Dict = jax.vmap(_A )(_A ,_A )
_lowerCAmelCase : Tuple = jnp.where(cur_len == self.begin_index ,_A ,_A )
_lowerCAmelCase : List[str] = jnp.where(
self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,_A ,)
_lowerCAmelCase : Dict = self.timestamp_begin + self.max_initial_timestamp_index
_lowerCAmelCase : Dict = jnp.where(
_A ,scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) ,_A ,)
# if sum of probability over timestamps is above any other token, sample timestamp
_lowerCAmelCase : Dict = jax.nn.log_softmax(_A ,axis=-1 )
def handle_cumulative_probs(_A ,_A ):
_lowerCAmelCase : Tuple = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 )
_lowerCAmelCase : Tuple = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) ,_A ,)
_lowerCAmelCase : Any = jax.vmap(_A )(_A ,_A )
return scores
| 703 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __UpperCamelCase :
def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = parent
_lowerCAmelCase : int = batch_size
_lowerCAmelCase : int = image_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Optional[int] = embeddings_size
_lowerCAmelCase : Optional[int] = hidden_sizes
_lowerCAmelCase : str = depths
_lowerCAmelCase : str = is_training
_lowerCAmelCase : int = use_labels
_lowerCAmelCase : Optional[int] = hidden_act
_lowerCAmelCase : Optional[int] = num_labels
_lowerCAmelCase : Dict = scope
_lowerCAmelCase : Union[str, Any] = len(_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : Optional[Any] = None
if self.use_labels:
_lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels )
_lowerCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCamelCase ( self ):
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,)
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A )
_lowerCAmelCase : List[str] = model(_A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self.num_labels
_lowerCAmelCase : Dict = TFResNetForImageClassification(_A )
_lowerCAmelCase : int = model(_A ,labels=_A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs
_lowerCAmelCase : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( a__ , a__ , unittest.TestCase ):
_UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_UpperCAmelCase = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = TFResNetModelTester(self )
_lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCamelCase ( self ):
'''simple docstring'''
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : int = model_class(_A )
_lowerCAmelCase : Union[str, Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase : Any = [*signature.parameters.keys()]
_lowerCAmelCase : str = ['pixel_values']
self.assertListEqual(arg_names[:1] ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
def check_hidden_states_output(_A ,_A ,_A ):
_lowerCAmelCase : int = model_class(_A )
_lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) )
_lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCAmelCase : int = self.model_tester.num_stages
self.assertEqual(len(_A ) ,expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
_lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase : Any = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
_lowerCAmelCase : Optional[int] = layer_type
_lowerCAmelCase : Tuple = True
check_hidden_states_output(_A ,_A ,_A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase : Any = True
check_hidden_states_output(_A ,_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def __lowerCamelCase ( self ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_lowerCAmelCase : Tuple = self.default_image_processor
_lowerCAmelCase : Optional[Any] = prepare_img()
_lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' )
# forward pass
_lowerCAmelCase : int = model(**_A )
# verify the logits
_lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape ,_A )
_lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
| 16 | 0 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
_lowerCAmelCase = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
_lowerCAmelCase = {
"""allenai/led-base-16384""": 1_6_3_8_4,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Any = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
_lowerCAmelCase : Union[str, Any] = bs[:]
_lowerCAmelCase : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowerCamelCase )
cs.append(2**8 + n )
n += 1
_lowerCAmelCase : str = [chr(_lowerCamelCase ) for n in cs]
return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = set()
_lowerCAmelCase : Optional[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase : Optional[Any] = char
return pairs
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A ,_A="replace" ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=False ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else bos_token
_lowerCAmelCase : Dict = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else eos_token
_lowerCAmelCase : Union[str, Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else sep_token
_lowerCAmelCase : Any = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else cls_token
_lowerCAmelCase : Tuple = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else unk_token
_lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
super().__init__(
errors=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,add_prefix_space=_A ,**_A ,)
with open(_A ,encoding='utf-8' ) as vocab_handle:
_lowerCAmelCase : Tuple = json.load(_A )
_lowerCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()}
_lowerCAmelCase : Optional[Any] = errors # how to handle errors in decoding
_lowerCAmelCase : Optional[int] = bytes_to_unicode()
_lowerCAmelCase : int = {v: k for k, v in self.byte_encoder.items()}
with open(_A ,encoding='utf-8' ) as merges_handle:
_lowerCAmelCase : Tuple = merges_handle.read().split('\n' )[1:-1]
_lowerCAmelCase : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges]
_lowerCAmelCase : Optional[int] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Any = {}
_lowerCAmelCase : List[Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_lowerCAmelCase : int = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.encoder )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
_lowerCAmelCase : int = tuple(_A )
_lowerCAmelCase : str = get_pairs(_A )
if not pairs:
return token
while True:
_lowerCAmelCase : Dict = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase : List[str] = bigram
_lowerCAmelCase : Tuple = []
_lowerCAmelCase : Tuple = 0
while i < len(_A ):
try:
_lowerCAmelCase : int = word.index(_A ,_A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase : int = j
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase : Optional[Any] = tuple(_A )
_lowerCAmelCase : Tuple = new_word
if len(_A ) == 1:
break
else:
_lowerCAmelCase : List[str] = get_pairs(_A )
_lowerCAmelCase : Tuple = ' '.join(_A )
_lowerCAmelCase : List[Any] = word
return word
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = []
for token in re.findall(self.pat ,_A ):
_lowerCAmelCase : int = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(' ' ) )
return bpe_tokens
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.encoder.get(_A ,self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.decoder.get(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = ''.join(_A )
_lowerCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors )
return text
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : Any = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : List[str] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
_lowerCAmelCase : Optional[int] = 0
with open(_A ,'w' ,encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowerCAmelCase : Union[str, Any] = token_index
writer.write(' '.join(_A ) + '\n' )
index += 1
return vocab_file, merge_file
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase : List[Any] = [self.cls_token_id]
_lowerCAmelCase : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
if token_ids_a is None:
return [1] + ([0] * len(_A )) + [1]
return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : int = [self.sep_token_id]
_lowerCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCamelCase ( self ,_A ,_A=False ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = kwargs.pop('add_prefix_space' ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()):
_lowerCAmelCase : Union[str, Any] = ' ' + text
return (text, kwargs)
def __lowerCamelCase ( self ,_A ,_A = None ,_A = PaddingStrategy.DO_NOT_PAD ,_A = None ,_A = None ,):
'''simple docstring'''
_lowerCAmelCase : Any = super()._pad(
encoded_inputs=_A ,max_length=_A ,padding_strategy=_A ,pad_to_multiple_of=_A ,return_attention_mask=_A ,)
# Load from model defaults
if return_attention_mask is None:
_lowerCAmelCase : Union[str, Any] = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_lowerCAmelCase : Optional[Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_lowerCAmelCase : Any = len(encoded_inputs['global_attention_mask'] ) != len(_A )
if needs_to_be_padded:
_lowerCAmelCase : Optional[Any] = len(_A ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_lowerCAmelCase : Optional[Any] = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
_lowerCAmelCase : List[Any] = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 704 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
_lowerCAmelCase = list[list[float | int]]
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = len(_lowerCamelCase )
_lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : float
for row in range(_lowerCamelCase ):
for col in range(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = matrix[row][col]
_lowerCAmelCase : Tuple = vector[row][0]
_lowerCAmelCase : Dict = 0
_lowerCAmelCase : Any = 0
while row < size and col < size:
# pivoting
_lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , _lowerCamelCase ):
_lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col]
_lowerCAmelCase : Optional[Any] = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , _lowerCamelCase ):
for row in range(_lowerCamelCase ):
_lowerCAmelCase : int = augmented[row][col] / augmented[col][col]
for cola in range(_lowerCamelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase )
]
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = len(_lowerCamelCase )
_lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : Matrix
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
for x_val, y_val in enumerate(_lowerCamelCase ):
for col in range(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1)
_lowerCAmelCase : Optional[int] = y_val
_lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase )
def interpolated_func(_lowerCamelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(_lowerCamelCase ) )
return interpolated_func
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ):
'''simple docstring'''
_lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )]
_lowerCAmelCase : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
_lowerCAmelCase : int = 0
_lowerCAmelCase : Callable[[int], int]
_lowerCAmelCase : int
for poly in polynomials:
_lowerCAmelCase : Any = 1
while func(_lowerCamelCase ) == poly(_lowerCamelCase ):
x_val += 1
ret += poly(_lowerCamelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 16 | 0 |
"""simple docstring"""
import argparse
import struct
import unittest
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = data
# Initialize hash values
_lowerCAmelCase : Any = [
0x6A09_E667,
0xBB67_AE85,
0x3C6E_F372,
0xA54F_F53A,
0x510E_527F,
0x9B05_688C,
0x1F83_D9AB,
0x5BE0_CD19,
]
# Initialize round constants
_lowerCAmelCase : str = [
0x428A_2F98,
0x7137_4491,
0xB5C0_FBCF,
0xE9B5_DBA5,
0x3956_C25B,
0x59F1_11F1,
0x923F_82A4,
0xAB1C_5ED5,
0xD807_AA98,
0x1283_5B01,
0x2431_85BE,
0x550C_7DC3,
0x72BE_5D74,
0x80DE_B1FE,
0x9BDC_06A7,
0xC19B_F174,
0xE49B_69C1,
0xEFBE_4786,
0x0FC1_9DC6,
0x240C_A1CC,
0x2DE9_2C6F,
0x4A74_84AA,
0x5CB0_A9DC,
0x76F9_88DA,
0x983E_5152,
0xA831_C66D,
0xB003_27C8,
0xBF59_7FC7,
0xC6E0_0BF3,
0xD5A7_9147,
0x06CA_6351,
0x1429_2967,
0x27B7_0A85,
0x2E1B_2138,
0x4D2C_6DFC,
0x5338_0D13,
0x650A_7354,
0x766A_0ABB,
0x81C2_C92E,
0x9272_2C85,
0xA2BF_E8A1,
0xA81A_664B,
0xC24B_8B70,
0xC76C_51A3,
0xD192_E819,
0xD699_0624,
0xF40E_3585,
0x106A_A070,
0x19A4_C116,
0x1E37_6C08,
0x2748_774C,
0x34B0_BCB5,
0x391C_0CB3,
0x4ED8_AA4A,
0x5B9C_CA4F,
0x682E_6FF3,
0x748F_82EE,
0x78A5_636F,
0x84C8_7814,
0x8CC7_0208,
0x90BE_FFFA,
0xA450_6CEB,
0xBEF9_A3F7,
0xC671_78F2,
]
_lowerCAmelCase : Any = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64))
_lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) )
return data + padding + big_endian_integer
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) )
# add 48 0-ed integers
words += [0] * 48
_lowerCAmelCase : Tuple = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowerCAmelCase : List[str] = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
_lowerCAmelCase : Tuple = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
_lowerCAmelCase : str = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0000_0000
# Compression
_lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 )
_lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g)
_lowerCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0000_0000
_lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 )
_lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c)
_lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000
_lowerCAmelCase : Tuple = (
g,
f,
e,
((d + tempa) % 0x1_0000_0000),
c,
b,
a,
((tempa + tempa) % 0x1_0000_0000),
)
_lowerCAmelCase : Any = [a, b, c, d, e, f, g, h]
# Modify final values
_lowerCAmelCase : int = [
((element + mutated_hash_values[index]) % 0x1_0000_0000)
for index, element in enumerate(self.hashes )
]
_lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations)
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
import hashlib
_lowerCAmelCase : Any = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() )
def lowerCamelCase__ ( ):
'''simple docstring'''
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
_lowerCAmelCase : Tuple = parser.parse_args()
_lowerCAmelCase : List[str] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowerCAmelCase : int = f.read()
else:
_lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' )
print(SHAaaa(_lowerCamelCase ).hash )
if __name__ == "__main__":
main()
| 705 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
for char in word:
_lowerCAmelCase : Dict = ord(_lowerCamelCase )
if not _is_chinese_char(_lowerCamelCase ):
return 0
return 1
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Tuple = set()
for token in tokens:
_lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase )
if chinese_word:
word_set.add(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase )
return word_list
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
_lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] )
_lowerCAmelCase : str = bert_tokens
_lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase )
while start < end:
_lowerCAmelCase : Dict = True
if is_chinese(bert_word[start] ):
_lowerCAmelCase : str = min(end - start , _lowerCamelCase )
for i in range(_lowerCamelCase , 1 , -1 ):
_lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_lowerCAmelCase : Tuple = '##' + bert_word[j]
_lowerCAmelCase : Optional[int] = start + i
_lowerCAmelCase : Any = False
break
if single_word:
start += 1
return bert_word
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0]
_lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res]
ltp_res.extend(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : int = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Optional[int] = []
for id in input_ids:
_lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase )
input_tokens.append(_lowerCamelCase )
_lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : List[str] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCamelCase ):
if token[:2] == "##":
_lowerCAmelCase : List[Any] = token[2:]
# save chinese tokens' pos
if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ):
ref_id.append(_lowerCamelCase )
ref_ids.append(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
return ref_ids
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
_lowerCAmelCase : int = f.readlines()
_lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device
_lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert )
_lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids]
f.writelines(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_lowerCAmelCase = parser.parse_args()
main(args)
| 16 | 0 |
"""simple docstring"""
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
_lowerCAmelCase = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = "facebook/nllb-200-distilled-600M"
_UpperCAmelCase = (
"This is a tool that translates text from a language to another. It takes three inputs: `text`, which should "
"be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, "
"which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in "
"plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."
)
_UpperCAmelCase = "translator"
_UpperCAmelCase = AutoTokenizer
_UpperCAmelCase = AutoModelForSeqaSeqLM
_UpperCAmelCase = LANGUAGE_CODES
_UpperCAmelCase = ["text", "text", "text"]
_UpperCAmelCase = ["text"]
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(F"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(F"""{tgt_lang} is not a supported language.""" )
_lowerCAmelCase : Tuple = self.lang_to_code[src_lang]
_lowerCAmelCase : Any = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
_A ,return_tensors='pt' ,src_lang=_A ,tgt_lang=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.model.generate(**_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist() ,skip_special_tokens=_A )
| 706 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = LDMTextToImagePipeline
_UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,)
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,)
torch.manual_seed(0 )
_lowerCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,)
torch.manual_seed(0 )
_lowerCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
_lowerCAmelCase : Tuple = CLIPTextModel(_A )
_lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowerCAmelCase : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vqvae': vae,
'bert': text_encoder,
'tokenizer': tokenizer,
}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : int = torch.manual_seed(_A )
else:
_lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : str = LDMTextToImagePipeline(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A )
_lowerCAmelCase : Any = pipe(**_A ).images
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = torch.manual_seed(_A )
_lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A )
_lowerCAmelCase : List[str] = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Optional[Any] = self.get_inputs(_A )
_lowerCAmelCase : List[Any] = pipe(**_A ).images
_lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] )
_lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ):
'''simple docstring'''
_lowerCAmelCase : List[str] = torch.manual_seed(_A )
_lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A )
_lowerCAmelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 50,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : str = self.get_inputs(_A )
_lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0]
_lowerCAmelCase : int = load_numpy(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' )
_lowerCAmelCase : List[str] = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 707 |
"""simple docstring"""
import baseaa
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return baseaa.aaaencode(string.encode('utf-8' ) )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = DebertaTokenizer
_UpperCAmelCase = True
_UpperCAmelCase = DebertaTokenizerFast
def __lowerCamelCase ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowerCAmelCase : List[str] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'[UNK]',
]
_lowerCAmelCase : Optional[int] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
_lowerCAmelCase : int = {'unk_token': '[UNK]'}
_lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(_A ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(_A ) )
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 'lower newer'
_lowerCAmelCase : Dict = 'lower newer'
return input_text, output_text
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.get_tokenizer()
_lowerCAmelCase : Optional[Any] = 'lower newer'
_lowerCAmelCase : Dict = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
_lowerCAmelCase : Optional[int] = tokenizer.tokenize(_A )
self.assertListEqual(_A ,_A )
_lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token]
_lowerCAmelCase : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_tokenizer()
_lowerCAmelCase : Any = tokenizer('Hello' ,'World' )
_lowerCAmelCase : Optional[int] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['token_type_ids'] ,_A )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' )
_lowerCAmelCase : Optional[Any] = tokenizer.encode('sequence builders' ,add_special_tokens=_A )
_lowerCAmelCase : Optional[Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=_A )
_lowerCAmelCase : Union[str, Any] = tokenizer.encode(
'sequence builders' ,add_special_tokens=_A ,add_prefix_space=_A )
_lowerCAmelCase : Optional[Any] = tokenizer.encode(
'sequence builders' ,'multi-sequence build' ,add_special_tokens=_A ,add_prefix_space=_A )
_lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(_A )
_lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(_A ,_A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
_lowerCAmelCase : Dict = tokenizer_class.from_pretrained('microsoft/deberta-base' )
_lowerCAmelCase : Tuple = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
_lowerCAmelCase : List[str] = tokenizer(_A ,padding=_A )
_lowerCAmelCase : Dict = [tokenizer.decode(_A ,skip_special_tokens=_A ) for seq in encoding['input_ids']]
# fmt: off
_lowerCAmelCase : Tuple = {
'input_ids': [
[1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2]
],
'token_type_ids': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
_lowerCAmelCase : List[str] = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
self.assertDictEqual(encoding.data ,_A )
for expected, decoded in zip(_A ,_A ):
self.assertEqual(_A ,_A )
| 708 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""bert-base-uncased""": 5_1_2,
"""bert-large-uncased""": 5_1_2,
"""bert-base-cased""": 5_1_2,
"""bert-large-cased""": 5_1_2,
"""bert-base-multilingual-uncased""": 5_1_2,
"""bert-base-multilingual-cased""": 5_1_2,
"""bert-base-chinese""": 5_1_2,
"""bert-base-german-cased""": 5_1_2,
"""bert-large-uncased-whole-word-masking""": 5_1_2,
"""bert-large-cased-whole-word-masking""": 5_1_2,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-base-cased-finetuned-mrpc""": 5_1_2,
"""bert-base-german-dbmdz-cased""": 5_1_2,
"""bert-base-german-dbmdz-uncased""": 5_1_2,
"""TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2,
"""wietsedv/bert-base-dutch-cased""": 5_1_2,
}
_lowerCAmelCase = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = BertTokenizer
def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
_A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,)
_lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,_A ) != do_lower_case
or normalizer_state.get('strip_accents' ,_A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars
):
_lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) )
_lowerCAmelCase : Dict = do_lower_case
_lowerCAmelCase : Optional[int] = strip_accents
_lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars
_lowerCAmelCase : Dict = normalizer_class(**_A )
_lowerCAmelCase : Union[str, Any] = do_lower_case
def __lowerCamelCase ( self ,_A ,_A=None ):
'''simple docstring'''
_lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.sep_token_id]
_lowerCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A )
return tuple(_A )
| 16 | 0 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
for char in word:
_lowerCAmelCase : Dict = ord(_lowerCamelCase )
if not _is_chinese_char(_lowerCamelCase ):
return 0
return 1
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Tuple = set()
for token in tokens:
_lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase )
if chinese_word:
word_set.add(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase )
return word_list
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
_lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] )
_lowerCAmelCase : str = bert_tokens
_lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase )
while start < end:
_lowerCAmelCase : Dict = True
if is_chinese(bert_word[start] ):
_lowerCAmelCase : str = min(end - start , _lowerCamelCase )
for i in range(_lowerCamelCase , 1 , -1 ):
_lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_lowerCAmelCase : Tuple = '##' + bert_word[j]
_lowerCAmelCase : Optional[int] = start + i
_lowerCAmelCase : Any = False
break
if single_word:
start += 1
return bert_word
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0]
_lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res]
ltp_res.extend(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : int = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Optional[int] = []
for id in input_ids:
_lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase )
input_tokens.append(_lowerCamelCase )
_lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : List[str] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCamelCase ):
if token[:2] == "##":
_lowerCAmelCase : List[Any] = token[2:]
# save chinese tokens' pos
if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ):
ref_id.append(_lowerCamelCase )
ref_ids.append(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
return ref_ids
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
_lowerCAmelCase : int = f.readlines()
_lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device
_lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert )
_lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids]
f.writelines(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_lowerCAmelCase = parser.parse_args()
main(args) | 709 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils )
_lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
_lowerCAmelCase : int = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
_lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(F"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
_lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ):
execute_subprocess_async(_A ,env=os.environ.copy() )
if __name__ == "__main__":
_lowerCAmelCase = Accelerator()
_lowerCAmelCase = (accelerator.state.process_index + 2, 1_0)
_lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device)
_lowerCAmelCase = """"""
_lowerCAmelCase = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 16 | 0 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
_lowerCAmelCase = ["""text""", """image""", """audio"""]
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
for input_type in input_types:
if input_type == "text":
inputs.append('Text input' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
inputs.append(create_inputs(_lowerCamelCase ) )
else:
raise ValueError(f"""Invalid type requested: {input_type}""" )
return inputs
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = []
for output in outputs:
if isinstance(_lowerCamelCase , (str, AgentText) ):
output_types.append('text' )
elif isinstance(_lowerCamelCase , (Image.Image, AgentImage) ):
output_types.append('image' )
elif isinstance(_lowerCamelCase , (torch.Tensor, AgentAudio) ):
output_types.append('audio' )
else:
raise ValueError(f"""Invalid output: {output}""" )
return output_types
@is_tool_test
class __UpperCamelCase :
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertTrue(hasattr(self.tool ,'inputs' ) )
self.assertTrue(hasattr(self.tool ,'outputs' ) )
_lowerCAmelCase : str = self.tool.inputs
for _input in inputs:
if isinstance(_input ,_A ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
_lowerCAmelCase : Tuple = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = create_inputs(self.tool.inputs )
_lowerCAmelCase : str = self.tool(*_A )
# There is a single output
if len(self.tool.outputs ) == 1:
_lowerCAmelCase : Union[str, Any] = [outputs]
self.assertListEqual(output_types(_A ) ,self.tool.outputs )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.assertTrue(hasattr(self.tool ,'description' ) )
self.assertTrue(hasattr(self.tool ,'default_checkpoint' ) )
self.assertTrue(self.tool.description.startswith('This is a tool that' ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = create_inputs(self.tool.inputs )
_lowerCAmelCase : List[Any] = self.tool(*_A )
if not isinstance(_A ,_A ):
_lowerCAmelCase : List[Any] = [outputs]
self.assertEqual(len(_A ) ,len(self.tool.outputs ) )
for output, output_type in zip(_A ,self.tool.outputs ):
_lowerCAmelCase : Dict = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(_A ,_A ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = create_inputs(self.tool.inputs )
_lowerCAmelCase : int = []
for _input, input_type in zip(_A ,self.tool.inputs ):
if isinstance(_A ,_A ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
_lowerCAmelCase : Optional[int] = self.tool(*_A )
if not isinstance(_A ,_A ):
_lowerCAmelCase : Dict = [outputs]
self.assertEqual(len(_A ) ,len(self.tool.outputs ) )
| 710 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
'''simple docstring'''
if index == len(_lowerCamelCase ):
print(_lowerCamelCase )
return
for i in range(len(_lowerCamelCase ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_lowerCAmelCase : List[str] = True
create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase )
current_sequence.pop()
_lowerCAmelCase : int = False
_lowerCAmelCase = [3, 1, 2, 4]
generate_all_permutations(sequence)
_lowerCAmelCase = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 16 | 0 |
"""simple docstring"""
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : List[str] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(_lowerCamelCase )
if number < 0:
return False
_lowerCAmelCase : str = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class __UpperCamelCase ( logging.LoggerAdapter ):
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ):
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
_lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A )
_lowerCAmelCase : Any = kwargs.pop('in_order' ,_A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
elif in_order:
_lowerCAmelCase : str = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
state.wait_for_everyone()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ):
'''simple docstring'''
if log_level is None:
_lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase )
_lowerCAmelCase : int = logging.getLogger(_lowerCamelCase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_lowerCamelCase , {} )
| 16 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils )
_lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
_lowerCAmelCase : int = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
_lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(F"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
_lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ):
execute_subprocess_async(_A ,env=os.environ.copy() )
if __name__ == "__main__":
_lowerCAmelCase = Accelerator()
_lowerCAmelCase = (accelerator.state.process_index + 2, 1_0)
_lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device)
_lowerCAmelCase = """"""
_lowerCAmelCase = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 712 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-question_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": 5_1_2,
"""facebook/dpr-reader-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_lowerCAmelCase = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCAmelCase = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(a__ )
class __UpperCamelCase :
def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
elif titles is None or texts is None:
_lowerCAmelCase : Optional[int] = titles if texts is None else texts
return super().__call__(
_A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
_lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles]
_lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts]
_lowerCAmelCase : Union[str, Any] = len(_A )
_lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages
if len(_A ) != len(_A ):
raise ValueError(
F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" )
_lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Optional[int] = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_A ,_A )
]
}
if return_attention_mask is not False:
_lowerCAmelCase : Tuple = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_lowerCAmelCase : List[Any] = attention_mask
return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A )
def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,):
'''simple docstring'''
_lowerCAmelCase : int = reader_input['input_ids']
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3]
_lowerCAmelCase : Optional[Any] = len(_A )
_lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ )
_lowerCAmelCase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_lowerCAmelCase : int = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id )
else:
_lowerCAmelCase : Optional[int] = len(_A )
_lowerCAmelCase : Optional[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(_A ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
for start_index, start_score in enumerate(_A ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A )
_lowerCAmelCase : int = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" )
_lowerCAmelCase : List[str] = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_A ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(a__ )
class __UpperCamelCase ( a__ , a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = ["input_ids", "attention_mask"]
| 16 | 0 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""",
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = "mctct"
def __init__( self ,_A=8065 ,_A=1536 ,_A=36 ,_A=6144 ,_A=4 ,_A=384 ,_A=920 ,_A=1E-5 ,_A=0.3 ,_A="relu" ,_A=0.0_2 ,_A=0.3 ,_A=0.3 ,_A=1 ,_A=0 ,_A=2 ,_A=1 ,_A=0.3 ,_A=1 ,_A=(7,) ,_A=(3,) ,_A=80 ,_A=1 ,_A=None ,_A="sum" ,_A=False ,**_A ,):
'''simple docstring'''
super().__init__(**_A ,pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A )
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Optional[Any] = hidden_size
_lowerCAmelCase : List[str] = num_hidden_layers
_lowerCAmelCase : Union[str, Any] = intermediate_size
_lowerCAmelCase : List[str] = num_attention_heads
_lowerCAmelCase : Optional[Any] = attention_head_dim
_lowerCAmelCase : Optional[int] = max_position_embeddings
_lowerCAmelCase : List[str] = layer_norm_eps
_lowerCAmelCase : Dict = layerdrop
_lowerCAmelCase : Optional[Any] = hidden_act
_lowerCAmelCase : Tuple = initializer_range
_lowerCAmelCase : Optional[int] = hidden_dropout_prob
_lowerCAmelCase : Dict = attention_probs_dropout_prob
_lowerCAmelCase : Union[str, Any] = pad_token_id
_lowerCAmelCase : Any = bos_token_id
_lowerCAmelCase : Union[str, Any] = eos_token_id
_lowerCAmelCase : str = conv_glu_dim
_lowerCAmelCase : int = conv_dropout
_lowerCAmelCase : str = num_conv_layers
_lowerCAmelCase : Union[str, Any] = input_feat_per_channel
_lowerCAmelCase : Any = input_channels
_lowerCAmelCase : Optional[int] = conv_channels
_lowerCAmelCase : str = ctc_loss_reduction
_lowerCAmelCase : str = ctc_zero_infinity
# prevents config testing fail with exporting to json
_lowerCAmelCase : Any = list(_A )
_lowerCAmelCase : List[Any] = list(_A )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """
F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
| 713 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = DanceDiffusionPipeline
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : List[Any] = UNetaDModel(
block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,)
_lowerCAmelCase : int = IPNDMScheduler()
_lowerCAmelCase : Union[str, Any] = {
'unet': unet,
'scheduler': scheduler,
}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : str = torch.manual_seed(_A )
else:
_lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : int = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A )
_lowerCAmelCase : List[str] = pipe(**_A )
_lowerCAmelCase : List[Any] = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_local()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_optional_components()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_attention_slicing_forward_pass()
def __lowerCamelCase ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = torch_device
_lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Optional[int] = torch.manual_seed(0 )
_lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : str = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = torch_device
_lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[int] = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : Union[str, Any] = output.audios
_lowerCAmelCase : int = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 16 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9},
},
{
"framework": "tensorflow",
"script": "run_tf.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.g4dn.xlarge",
"results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9},
},
] )
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='utf-8' ,check=_A ,)
assert hasattr(self ,'env' )
def __lowerCamelCase ( self ,_A=1 ):
'''simple docstring'''
return HuggingFace(
entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"""{self.env.base_job_name}-single""" ,instance_count=_A ,instance_type=self.instance_type ,debugger_hook_config=_A ,hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='py36' ,)
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.create_estimator()
# run training
estimator.fit()
# result dataframe
_lowerCAmelCase : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
_lowerCAmelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_lowerCAmelCase : Any = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" ,'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,_A )
| 714 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = (UniPCMultistepScheduler,)
_UpperCAmelCase = (("num_inference_steps", 25),)
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = {
'num_train_timesteps': 1000,
'beta_start': 0.0_0_0_1,
'beta_end': 0.0_2,
'beta_schedule': 'linear',
'solver_order': 2,
'solver_type': 'bh2',
}
config.update(**_A )
return config
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = dict(self.forward_default_kwargs )
_lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Optional[Any] = self.dummy_sample
_lowerCAmelCase : Union[str, Any] = 0.1 * sample
_lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A )
new_scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase, _lowerCAmelCase : str = sample, sample
for t in range(_A ,time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Union[str, Any] = self.dummy_sample
_lowerCAmelCase : Dict = 0.1 * sample
_lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Any = self.get_scheduler_config()
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : int = scheduler_class.from_pretrained(_A )
# copy over dummy past residuals
new_scheduler.set_timesteps(_A )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=None ,**_A ):
'''simple docstring'''
if scheduler is None:
_lowerCAmelCase : int = self.scheduler_classes[0]
_lowerCAmelCase : List[str] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
_lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : int = scheduler_class(**_A )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : str = self.dummy_model()
_lowerCAmelCase : str = self.dummy_sample_deter
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Any = model(_A ,_A )
_lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample
return sample
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A )
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : str = self.get_scheduler_config()
_lowerCAmelCase : List[str] = scheduler_class(**_A )
_lowerCAmelCase : Any = self.dummy_sample
_lowerCAmelCase : Tuple = 0.1 * sample
if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ):
scheduler.set_timesteps(_A )
elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ):
_lowerCAmelCase : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
_lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order]
_lowerCAmelCase : Any = scheduler.timesteps[5]
_lowerCAmelCase : List[str] = scheduler.timesteps[6]
_lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
_lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=_A )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
_lowerCAmelCase : List[Any] = self.full_loop(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
assert not torch.isnan(_A ).any(), "Samples have nan numbers"
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(lower_order_final=_A )
self.check_over_configs(lower_order_final=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_A ,time_step=0 )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.full_loop()
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' )
_lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 )
_lowerCAmelCase : Tuple = scheduler_class(**_A )
_lowerCAmelCase : Optional[Any] = 10
_lowerCAmelCase : Union[str, Any] = self.dummy_model()
_lowerCAmelCase : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Tuple = model(_A ,_A )
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : str = scheduler_class(**_A )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 16 | 0 |
"""simple docstring"""
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_lowerCAmelCase = logging.get_logger(__name__)
# General docstring
_lowerCAmelCase = """PoolFormerConfig"""
# Base docstring
_lowerCAmelCase = """sail/poolformer_s12"""
_lowerCAmelCase = [1, 5_1_2, 7, 7]
# Image classification docstring
_lowerCAmelCase = """sail/poolformer_s12"""
_lowerCAmelCase = """tabby, tabby cat"""
_lowerCAmelCase = [
"""sail/poolformer_s12""",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = False ):
'''simple docstring'''
if drop_prob == 0.0 or not training:
return input
_lowerCAmelCase : List[str] = 1 - drop_prob
_lowerCAmelCase : List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
_lowerCAmelCase : str = keep_prob + torch.rand(_lowerCamelCase , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
_lowerCAmelCase : Any = input.div(_lowerCamelCase ) * random_tensor
return output
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A = None ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : int = drop_prob
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return drop_path(_A ,self.drop_prob ,self.training )
def __lowerCamelCase ( self ):
'''simple docstring'''
return "p={}".format(self.drop_prob )
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=None ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[Any] = patch_size if isinstance(_A ,collections.abc.Iterable ) else (patch_size, patch_size)
_lowerCAmelCase : Union[str, Any] = stride if isinstance(_A ,collections.abc.Iterable ) else (stride, stride)
_lowerCAmelCase : Optional[Any] = padding if isinstance(_A ,collections.abc.Iterable ) else (padding, padding)
_lowerCAmelCase : List[Any] = nn.Convad(_A ,_A ,kernel_size=_A ,stride=_A ,padding=_A )
_lowerCAmelCase : Any = norm_layer(_A ) if norm_layer else nn.Identity()
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = self.projection(_A )
_lowerCAmelCase : Union[str, Any] = self.norm(_A )
return embeddings
class __UpperCamelCase ( nn.GroupNorm ):
def __init__( self ,_A ,**_A ):
'''simple docstring'''
super().__init__(1 ,_A ,**_A )
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = nn.AvgPoolad(_A ,stride=1 ,padding=pool_size // 2 ,count_include_pad=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.pool(_A ) - hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : str = nn.Convad(_A ,_A ,1 )
_lowerCAmelCase : Optional[Any] = nn.Convad(_A ,_A ,1 )
_lowerCAmelCase : Union[str, Any] = PoolFormerDropPath(_A )
if isinstance(config.hidden_act ,_A ):
_lowerCAmelCase : Optional[int] = ACTaFN[config.hidden_act]
else:
_lowerCAmelCase : str = config.hidden_act
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.conva(_A )
_lowerCAmelCase : Optional[Any] = self.act_fn(_A )
_lowerCAmelCase : List[str] = self.drop(_A )
_lowerCAmelCase : Union[str, Any] = self.conva(_A )
_lowerCAmelCase : Any = self.drop(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : int = PoolFormerPooling(_A )
_lowerCAmelCase : int = PoolFormerOutput(_A ,_A ,_A ,_A )
_lowerCAmelCase : List[Any] = PoolFormerGroupNorm(_A )
_lowerCAmelCase : Dict = PoolFormerGroupNorm(_A )
# Useful for training neural nets
_lowerCAmelCase : Optional[Any] = PoolFormerDropPath(_A ) if drop_path > 0.0 else nn.Identity()
_lowerCAmelCase : Any = config.use_layer_scale
if config.use_layer_scale:
_lowerCAmelCase : List[str] = nn.Parameter(
config.layer_scale_init_value * torch.ones((_A) ) ,requires_grad=_A )
_lowerCAmelCase : Optional[Any] = nn.Parameter(
config.layer_scale_init_value * torch.ones((_A) ) ,requires_grad=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.use_layer_scale:
_lowerCAmelCase : Optional[int] = self.pooling(self.before_norm(_A ) )
_lowerCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
_lowerCAmelCase : Union[str, Any] = hidden_states + self.drop_path(_A )
_lowerCAmelCase : Union[str, Any] = ()
_lowerCAmelCase : Optional[int] = self.output(self.after_norm(_A ) )
_lowerCAmelCase : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
_lowerCAmelCase : int = hidden_states + self.drop_path(_A )
_lowerCAmelCase : int = (output,) + outputs
return outputs
else:
_lowerCAmelCase : List[Any] = self.drop_path(self.pooling(self.before_norm(_A ) ) )
# First residual connection
_lowerCAmelCase : int = pooling_output + hidden_states
_lowerCAmelCase : List[str] = ()
# Second residual connection inside the PoolFormerOutput block
_lowerCAmelCase : Tuple = self.drop_path(self.output(self.after_norm(_A ) ) )
_lowerCAmelCase : str = hidden_states + layer_output
_lowerCAmelCase : Union[str, Any] = (output,) + outputs
return outputs
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[int] = config
# stochastic depth decay rule
_lowerCAmelCase : str = [x.item() for x in torch.linspace(0 ,config.drop_path_rate ,sum(config.depths ) )]
# patch embeddings
_lowerCAmelCase : Optional[Any] = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] ,stride=config.strides[i] ,padding=config.padding[i] ,num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] ,hidden_size=config.hidden_sizes[i] ,) )
_lowerCAmelCase : Dict = nn.ModuleList(_A )
# Transformer blocks
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : Tuple = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
_lowerCAmelCase : int = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
_A ,num_channels=config.hidden_sizes[i] ,pool_size=config.pool_size ,hidden_size=config.hidden_sizes[i] ,intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) ,drop_path=dpr[cur + j] ,) )
blocks.append(nn.ModuleList(_A ) )
_lowerCAmelCase : Tuple = nn.ModuleList(_A )
def __lowerCamelCase ( self ,_A ,_A=False ,_A=True ):
'''simple docstring'''
_lowerCAmelCase : Dict = () if output_hidden_states else None
_lowerCAmelCase : str = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings ,self.block ) ):
_lowerCAmelCase : Optional[int] = layers
# Get patch embeddings from hidden_states
_lowerCAmelCase : Dict = embedding_layer(_A )
# Send the embeddings through the blocks
for _, blk in enumerate(_A ):
_lowerCAmelCase : Optional[int] = blk(_A )
_lowerCAmelCase : int = layer_outputs[0]
if output_hidden_states:
_lowerCAmelCase : List[str] = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_A ,hidden_states=_A )
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = PoolFormerConfig
_UpperCAmelCase = "poolformer"
_UpperCAmelCase = "pixel_values"
_UpperCAmelCase = True
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if isinstance(_A ,(nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_A ,nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def __lowerCamelCase ( self ,_A ,_A=False ):
'''simple docstring'''
if isinstance(_A ,_A ):
_lowerCAmelCase : Any = value
_lowerCAmelCase = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
_lowerCAmelCase = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PoolFormerImageProcessor.__call__`] for details.
"""
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , a__ , )
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ):
'''simple docstring'''
super().__init__(_A )
_lowerCAmelCase : List[Any] = config
_lowerCAmelCase : int = PoolFormerEncoder(_A )
# Initialize weights and apply final processing
self.post_init()
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(_A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,):
'''simple docstring'''
_lowerCAmelCase : List[str] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('You have to specify pixel_values' )
_lowerCAmelCase : List[Any] = self.encoder(
_A ,output_hidden_states=_A ,return_dict=_A ,)
_lowerCAmelCase : Optional[int] = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=_A ,hidden_states=encoder_outputs.hidden_states ,)
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Dict = nn.Linear(config.hidden_size ,config.hidden_size )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = self.dense(_A )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , a__ , )
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ):
'''simple docstring'''
super().__init__(_A )
_lowerCAmelCase : Optional[int] = config.num_labels
_lowerCAmelCase : Optional[int] = PoolFormerModel(_A )
# Final norm
_lowerCAmelCase : Tuple = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
_lowerCAmelCase : Tuple = (
nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,_A = None ,):
'''simple docstring'''
_lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict
_lowerCAmelCase : Dict = self.poolformer(
_A ,output_hidden_states=_A ,return_dict=_A ,)
_lowerCAmelCase : Tuple = outputs[0]
_lowerCAmelCase : Any = self.classifier(self.norm(_A ).mean([-2, -1] ) )
_lowerCAmelCase : List[Any] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_lowerCAmelCase : int = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_lowerCAmelCase : str = 'single_label_classification'
else:
_lowerCAmelCase : Optional[int] = 'multi_label_classification'
if self.config.problem_type == "regression":
_lowerCAmelCase : Tuple = MSELoss()
if self.num_labels == 1:
_lowerCAmelCase : Union[str, Any] = loss_fct(logits.squeeze() ,labels.squeeze() )
else:
_lowerCAmelCase : List[str] = loss_fct(_A ,_A )
elif self.config.problem_type == "single_label_classification":
_lowerCAmelCase : Any = CrossEntropyLoss()
_lowerCAmelCase : List[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_lowerCAmelCase : List[str] = BCEWithLogitsLoss()
_lowerCAmelCase : Any = loss_fct(_A ,_A )
if not return_dict:
_lowerCAmelCase : Any = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_A ,logits=_A ,hidden_states=outputs.hidden_states )
| 715 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/"""
_lowerCAmelCase = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' )
elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' )
elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' )
elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' )
if "conditioner_blocks.0." in key:
_lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' )
if "prime_prior" in key:
_lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
_lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' )
if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('.k' , '.codebook' )
if "y_emb." in key:
return key.replace('y_emb.' , 'metadata_embedding.' )
if "x_emb.emb." in key:
_lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' )
if "prime_state_ln" in key:
return key.replace('prime_state_ln' , 'encoder.final_layer_norm' )
if ".ln" in key:
return key.replace('.ln' , '.layer_norm' )
if "_ln" in key:
return key.replace('_ln' , '_layer_norm' )
if "prime_state_proj" in key:
return key.replace('prime_state_proj' , 'encoder.proj_in' )
if "prime_x_out" in key:
return key.replace('prime_x_out' , 'encoder.lm_head' )
if "prior.x_out" in key:
return key.replace('x_out' , 'fc_proj_out' )
if "x_emb" in key:
return key.replace('x_emb' , 'embed_tokens' )
return key
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = {}
import re
_lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(
R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Union[str, Any] = re.compile(
R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(
R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase )
_lowerCAmelCase : int = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = prefix + resnet_block
_lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
_lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Dict = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : List[Any] = prefix + resnet_block
_lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
_lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : Any = regex_match.groups()
_lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Tuple = regex_match.groups()
_lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
_lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = prefix + resnet_block
_lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[str] = regex_match.groups()
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
_lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# keep original key
else:
_lowerCAmelCase : Optional[Any] = original_key
_lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
_lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
_lowerCAmelCase : Optional[int] = original_key
_lowerCAmelCase : Union[str, Any] = original_key
_lowerCAmelCase : Optional[Any] = value
return new_dict
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ):
'''simple docstring'''
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ):
_lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase )
open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content )
_lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]]
_lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase )
_lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase )
_lowerCAmelCase : int = []
_lowerCAmelCase : Any = {}
for i, dict_name in enumerate(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model']
_lowerCAmelCase : Optional[Any] = {}
for k in old_dic.keys():
if k.endswith('.b' ):
_lowerCAmelCase : int = old_dic[k]
elif k.endswith('.w' ):
_lowerCAmelCase : Tuple = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
_lowerCAmelCase : str = old_dic[k]
else:
_lowerCAmelCase : Optional[Any] = old_dic[k]
_lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}"""
_lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase )
weight_dict.append(_lowerCamelCase )
_lowerCAmelCase : List[Any] = weight_dict.pop(0 )
model.vqvae.load_state_dict(_lowerCamelCase )
for i in range(len(_lowerCamelCase ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile:
json.dump(_lowerCamelCase , _lowerCamelCase )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
return weight_dict
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
_lowerCAmelCase = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 16 | 0 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
_lowerCAmelCase = {"""facebook/blenderbot_small-90M""": 5_1_2}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = set()
_lowerCAmelCase : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase : Tuple = char
_lowerCAmelCase : Dict = set(_lowerCamelCase )
return pairs
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A ,_A="__start__" ,_A="__end__" ,_A="__unk__" ,_A="__null__" ,**_A ,):
'''simple docstring'''
super().__init__(unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,**_A )
with open(_A ,encoding='utf-8' ) as vocab_handle:
_lowerCAmelCase : Union[str, Any] = json.load(_A )
_lowerCAmelCase : int = {v: k for k, v in self.encoder.items()}
with open(_A ,encoding='utf-8' ) as merges_handle:
_lowerCAmelCase : Optional[int] = merges_handle.read().split('\n' )[1:-1]
_lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in merges]
_lowerCAmelCase : Union[str, Any] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Dict = {}
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.encoder )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
_lowerCAmelCase : Union[str, Any] = re.sub('([.,!?()])' ,r' \1' ,_A )
_lowerCAmelCase : Any = re.sub('(\')' ,r' \1 ' ,_A )
_lowerCAmelCase : Tuple = re.sub(r'\s{2,}' ,' ' ,_A )
if "\n" in token:
_lowerCAmelCase : Optional[Any] = token.replace('\n' ,' __newln__' )
_lowerCAmelCase : Optional[Any] = token.split(' ' )
_lowerCAmelCase : List[str] = []
for token in tokens:
if not len(_A ):
continue
_lowerCAmelCase : str = token.lower()
_lowerCAmelCase : Optional[Any] = tuple(_A )
_lowerCAmelCase : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
_lowerCAmelCase : str = get_pairs(_A )
if not pairs:
words.append(_A )
continue
while True:
_lowerCAmelCase : str = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase : Tuple = bigram
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : Any = 0
while i < len(_A ):
try:
_lowerCAmelCase : str = word.index(_A ,_A )
new_word.extend(word[i:j] )
_lowerCAmelCase : Union[str, Any] = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase : Optional[int] = tuple(_A )
_lowerCAmelCase : str = new_word
if len(_A ) == 1:
break
else:
_lowerCAmelCase : List[Any] = get_pairs(_A )
_lowerCAmelCase : Any = '@@ '.join(_A )
_lowerCAmelCase : List[str] = word[:-4]
_lowerCAmelCase : Any = word
words.append(_A )
return " ".join(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : int = re.findall(r'\S+\n?' ,_A )
for token in words:
split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) )
return split_tokens
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = token.lower()
return self.encoder.get(_A ,self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.decoder.get(_A ,self.unk_token )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ' '.join(_A ).replace('@@ ' ,'' ).strip()
return out_string
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : Dict = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : Tuple = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
_lowerCAmelCase : Tuple = 0
with open(_A ,'w' ,encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowerCAmelCase : Dict = token_index
writer.write(' '.join(_A ) + '\n' )
index += 1
return vocab_file, merge_file
| 716 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
_lowerCAmelCase = {"""UserAgent""": UserAgent().random}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = script.contents[0]
_lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/"""
_lowerCAmelCase : str = self.get_json()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text
_lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
'''simple docstring'''
return F"""{self.__class__.__name__}('{self.username}')"""
def __str__( self ):
'''simple docstring'''
return F"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["username"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["full_name"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["biography"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["business_email"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["external_url"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_follow"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_verified"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_private"]
def lowerCamelCase__ ( _lowerCamelCase = "github" ):
'''simple docstring'''
import os
if os.environ.get('CI' ):
return # test failing on GitHub Actions
_lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _lowerCamelCase )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('https://instagram.' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase = InstagramUser("""github""")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 16 | 0 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class __UpperCamelCase ( logging.LoggerAdapter ):
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ):
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
_lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A )
_lowerCAmelCase : Any = kwargs.pop('in_order' ,_A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
elif in_order:
_lowerCAmelCase : str = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
state.wait_for_everyone()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ):
'''simple docstring'''
if log_level is None:
_lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase )
_lowerCAmelCase : int = logging.getLogger(_lowerCamelCase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_lowerCamelCase , {} )
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """spiece.model"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
}
}
_lowerCAmelCase = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
# Segments (not really needed)
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = 2
_lowerCAmelCase = 3
_lowerCAmelCase = 4
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = "left"
def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
_lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,)
_lowerCAmelCase : int = 3
_lowerCAmelCase : Union[str, Any] = do_lower_case
_lowerCAmelCase : Dict = remove_space
_lowerCAmelCase : int = keep_accents
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_A )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.sp_model )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.__dict__.copy()
_lowerCAmelCase : List[str] = None
return state
def __setstate__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_lowerCAmelCase : Union[str, Any] = {}
_lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.remove_space:
_lowerCAmelCase : str = ' '.join(inputs.strip().split() )
else:
_lowerCAmelCase : Dict = inputs
_lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' )
if not self.keep_accents:
_lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A )
_lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] )
if self.do_lower_case:
_lowerCAmelCase : Tuple = outputs.lower()
return outputs
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A )
_lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A )
_lowerCAmelCase : int = []
for piece in pieces:
if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
_lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase : int = cur_pieces[1:]
else:
_lowerCAmelCase : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_A )
else:
new_pieces.append(_A )
return new_pieces
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.PieceToId(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.IdToPiece(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip()
return out_string
def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A )
_lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : int = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
_lowerCAmelCase : Tuple = []
sub_texts.append(_A )
else:
current_sub_text.append(_A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase : List[Any] = ''.join(_A )
_lowerCAmelCase : Tuple = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase : int = self.clean_up_tokenization(_A )
return clean_text
else:
return text
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
if token_ids_a is not None:
return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1]
return ([0] * len(_A )) + [1, 1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Any = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_A )
elif not os.path.isfile(self.vocab_file ):
with open(_A ,'wb' ) as fi:
_lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
| 16 | 0 |
"""simple docstring"""
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
debug_launcher(test_script.main )
def __lowerCamelCase ( self ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 718 |
"""simple docstring"""
import argparse
import struct
import unittest
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = data
# Initialize hash values
_lowerCAmelCase : Any = [
0x6A09_E667,
0xBB67_AE85,
0x3C6E_F372,
0xA54F_F53A,
0x510E_527F,
0x9B05_688C,
0x1F83_D9AB,
0x5BE0_CD19,
]
# Initialize round constants
_lowerCAmelCase : str = [
0x428A_2F98,
0x7137_4491,
0xB5C0_FBCF,
0xE9B5_DBA5,
0x3956_C25B,
0x59F1_11F1,
0x923F_82A4,
0xAB1C_5ED5,
0xD807_AA98,
0x1283_5B01,
0x2431_85BE,
0x550C_7DC3,
0x72BE_5D74,
0x80DE_B1FE,
0x9BDC_06A7,
0xC19B_F174,
0xE49B_69C1,
0xEFBE_4786,
0x0FC1_9DC6,
0x240C_A1CC,
0x2DE9_2C6F,
0x4A74_84AA,
0x5CB0_A9DC,
0x76F9_88DA,
0x983E_5152,
0xA831_C66D,
0xB003_27C8,
0xBF59_7FC7,
0xC6E0_0BF3,
0xD5A7_9147,
0x06CA_6351,
0x1429_2967,
0x27B7_0A85,
0x2E1B_2138,
0x4D2C_6DFC,
0x5338_0D13,
0x650A_7354,
0x766A_0ABB,
0x81C2_C92E,
0x9272_2C85,
0xA2BF_E8A1,
0xA81A_664B,
0xC24B_8B70,
0xC76C_51A3,
0xD192_E819,
0xD699_0624,
0xF40E_3585,
0x106A_A070,
0x19A4_C116,
0x1E37_6C08,
0x2748_774C,
0x34B0_BCB5,
0x391C_0CB3,
0x4ED8_AA4A,
0x5B9C_CA4F,
0x682E_6FF3,
0x748F_82EE,
0x78A5_636F,
0x84C8_7814,
0x8CC7_0208,
0x90BE_FFFA,
0xA450_6CEB,
0xBEF9_A3F7,
0xC671_78F2,
]
_lowerCAmelCase : Any = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64))
_lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) )
return data + padding + big_endian_integer
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) )
# add 48 0-ed integers
words += [0] * 48
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowerCAmelCase : List[str] = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
_lowerCAmelCase : Tuple = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
_lowerCAmelCase : str = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0000_0000
# Compression
_lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 )
_lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g)
_lowerCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0000_0000
_lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 )
_lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c)
_lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = (
g,
f,
e,
((d + tempa) % 0x1_0000_0000),
c,
b,
a,
((tempa + tempa) % 0x1_0000_0000),
)
_lowerCAmelCase : Any = [a, b, c, d, e, f, g, h]
# Modify final values
_lowerCAmelCase : int = [
((element + mutated_hash_values[index]) % 0x1_0000_0000)
for index, element in enumerate(self.hashes )
]
_lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations)
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
import hashlib
_lowerCAmelCase : Any = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() )
def lowerCamelCase__ ( ):
'''simple docstring'''
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
_lowerCAmelCase : Tuple = parser.parse_args()
_lowerCAmelCase : List[str] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowerCAmelCase : int = f.read()
else:
_lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' )
print(SHAaaa(_lowerCamelCase ).hash )
if __name__ == "__main__":
main()
| 16 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = DiTPipeline
_UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
_UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : List[str] = TransformeraDModel(
sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=_A ,activation_fn='gelu-approximate' ,num_embeds_ada_norm=1000 ,norm_type='ada_norm_zero' ,norm_elementwise_affine=_A ,)
_lowerCAmelCase : Union[str, Any] = AutoencoderKL()
_lowerCAmelCase : Union[str, Any] = DDIMScheduler()
_lowerCAmelCase : Tuple = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : Dict = torch.manual_seed(_A )
else:
_lowerCAmelCase : int = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : Tuple = {
'class_labels': [1],
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 'cpu'
_lowerCAmelCase : Optional[int] = self.get_dummy_components()
_lowerCAmelCase : Optional[Any] = self.pipeline_class(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Tuple = self.get_dummy_inputs(_A )
_lowerCAmelCase : Dict = pipe(**_A ).images
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape ,(1, 16, 16, 3) )
_lowerCAmelCase : List[str] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] )
_lowerCAmelCase : int = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_A ,1E-3 )
def __lowerCamelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=_A ,expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = torch.manual_seed(0 )
_lowerCAmelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
_lowerCAmelCase : List[Any] = ['vase', 'umbrella', 'white shark', 'white wolf']
_lowerCAmelCase : str = pipe.get_label_ids(_A )
_lowerCAmelCase : Dict = pipe(_A ,generator=_A ,num_inference_steps=40 ,output_type='np' ).images
for word, image in zip(_A ,_A ):
_lowerCAmelCase : Any = load_numpy(
F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" )
assert np.abs((expected_image - image).max() ) < 1E-2
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
_lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
_lowerCAmelCase : str = ['vase', 'umbrella']
_lowerCAmelCase : Any = pipe.get_label_ids(_A )
_lowerCAmelCase : Optional[Any] = torch.manual_seed(0 )
_lowerCAmelCase : List[str] = pipe(_A ,generator=_A ,num_inference_steps=25 ,output_type='np' ).images
for word, image in zip(_A ,_A ):
_lowerCAmelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
F"""/dit/{word}_512.npy""" )
assert np.abs((expected_image - image).max() ) < 1E-1
| 719 |
"""simple docstring"""
from collections.abc import Callable
class __UpperCamelCase :
def __init__( self ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : list = []
# Stores indexes of each item for supporting updates and deletion.
_lowerCAmelCase : dict = {}
# Stores current size of heap.
_lowerCAmelCase : Union[str, Any] = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
_lowerCAmelCase : Union[str, Any] = key or (lambda _A : x)
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return int((i - 1) / 2 ) if i > 0 else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = int(2 * i + 2 )
return right if 0 < right < self.size else None
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase : Tuple = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
_lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i]
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return self.arr[i][1] < self.arr[j][1]
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self._left(_A )
_lowerCAmelCase : str = self._right(_A )
_lowerCAmelCase : Tuple = i
if left is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : int = left
if right is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : Optional[int] = right
return valid_parent
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self._parent(_A )
while parent is not None and not self._cmp(_A ,_A ):
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A )
while valid_parent != index:
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : int = self.pos_map[item]
_lowerCAmelCase : Dict = [item, self.key(_A )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : List[str] = self.pos_map[item]
del self.pos_map[item]
_lowerCAmelCase : Dict = self.arr[self.size - 1]
_lowerCAmelCase : Optional[Any] = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(_A )] )
else:
_lowerCAmelCase : Any = [item, self.key(_A )]
_lowerCAmelCase : str = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.arr[0] if self.size else None
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def lowerCamelCase__ ( ):
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = CanineTokenizer
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
super().setUp()
_lowerCAmelCase : str = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCamelCase ( self ):
'''simple docstring'''
return CanineTokenizer.from_pretrained('google/canine-s' )
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ,**_A )
_lowerCAmelCase : List[Any] = 1024
return tokenizer
@require_torch
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.canine_tokenizer
_lowerCAmelCase : Tuple = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.']
# fmt: off
_lowerCAmelCase : int = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
_lowerCAmelCase : str = tokenizer(_A ,padding=_A ,return_tensors='pt' )
self.assertIsInstance(_A ,_A )
_lowerCAmelCase : Tuple = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_A ,_A )
self.assertEqual((2, 39) ,batch.input_ids.shape )
self.assertEqual((2, 39) ,batch.attention_mask.shape )
@require_torch
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.canine_tokenizer
_lowerCAmelCase : Optional[int] = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.']
_lowerCAmelCase : Dict = tokenizer(_A ,padding=_A ,return_tensors='pt' )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn('input_ids' ,_A )
self.assertIn('attention_mask' ,_A )
self.assertIn('token_type_ids' ,_A )
@require_torch
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.canine_tokenizer
_lowerCAmelCase : Dict = [
'What\'s the weater?',
'It\'s about 25 degrees.',
]
_lowerCAmelCase : Optional[int] = tokenizer(
text_target=_A ,max_length=32 ,padding='max_length' ,truncation=_A ,return_tensors='pt' )
self.assertEqual(32 ,targets['input_ids'].shape[1] )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length ,42 )
# Now let's start the test
_lowerCAmelCase : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowerCAmelCase : str = tempfile.mkdtemp()
_lowerCAmelCase : int = ' He is very happy, UNwant\u00E9d,running'
_lowerCAmelCase : Tuple = tokenizer.encode(_A ,add_special_tokens=_A )
tokenizer.save_pretrained(_A )
_lowerCAmelCase : str = tokenizer.__class__.from_pretrained(_A )
_lowerCAmelCase : int = after_tokenizer.encode(_A ,add_special_tokens=_A )
self.assertListEqual(_A ,_A )
shutil.rmtree(_A )
_lowerCAmelCase : int = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : str = ' He is very happy, UNwant\u00E9d,running'
_lowerCAmelCase : List[str] = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
_lowerCAmelCase : Optional[int] = chr(0xE007 )
additional_special_tokens.append(_A )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowerCAmelCase : Any = tokenizer.encode(_A ,add_special_tokens=_A )
tokenizer.save_pretrained(_A )
_lowerCAmelCase : int = tokenizer.__class__.from_pretrained(_A )
_lowerCAmelCase : str = after_tokenizer.encode(_A ,add_special_tokens=_A )
self.assertListEqual(_A ,_A )
self.assertIn(_A ,after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length ,42 )
_lowerCAmelCase : str = tokenizer.__class__.from_pretrained(_A ,model_max_length=43 )
self.assertEqual(tokenizer.model_max_length ,43 )
shutil.rmtree(_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCAmelCase : Dict = self.get_clean_sequence(_A )
# a special token for Canine can be defined as follows:
_lowerCAmelCase : List[Any] = 0xE005
_lowerCAmelCase : Dict = chr(_A )
tokenizer.add_special_tokens({'cls_token': special_token} )
_lowerCAmelCase : Any = tokenizer.encode(_A ,add_special_tokens=_A )
self.assertEqual(len(_A ) ,1 )
_lowerCAmelCase : Tuple = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=_A )
_lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A )
_lowerCAmelCase : List[Any] = tokenizer.encode(_A ,add_special_tokens=_A )
_lowerCAmelCase : Optional[Any] = tokenizer.encode(_A ,add_special_tokens=_A )
self.assertEqual(_A ,input_encoded + special_token_id )
_lowerCAmelCase : List[Any] = tokenizer.decode(_A ,skip_special_tokens=_A )
self.assertTrue(special_token not in decoded )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.get_tokenizers(do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCAmelCase : Union[str, Any] = chr(0xE005 )
_lowerCAmelCase : Tuple = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=_A )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} )
_lowerCAmelCase : str = tokenizer.tokenize(_A )
_lowerCAmelCase : Tuple = tokenizer.tokenize(_A )
self.assertEqual(len(_A ) ,1 )
self.assertEqual(len(_A ) ,1 )
self.assertEqual(token_a[0] ,_A )
self.assertEqual(token_a[0] ,_A )
@require_tokenizers
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.get_tokenizers(do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# a special token for Canine can be defined as follows:
_lowerCAmelCase : Optional[int] = 0xE006
_lowerCAmelCase : List[Any] = chr(_A )
_lowerCAmelCase : Union[str, Any] = AddedToken(_A ,lstrip=_A )
tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(_A )
tokenizer.from_pretrained(_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_A )
with open(os.path.join(_A ,'special_tokens_map.json' ) ,encoding='utf-8' ) as json_file:
_lowerCAmelCase : List[Any] = json.load(_A )
with open(os.path.join(_A ,'tokenizer_config.json' ) ,encoding='utf-8' ) as json_file:
_lowerCAmelCase : Optional[Any] = json.load(_A )
# a special token for Canine can be defined as follows:
_lowerCAmelCase : str = 0xE006
_lowerCAmelCase : List[str] = chr(_A )
_lowerCAmelCase : Dict = [new_token_a]
_lowerCAmelCase : Optional[Any] = [new_token_a]
with open(os.path.join(_A ,'special_tokens_map.json' ) ,'w' ,encoding='utf-8' ) as outfile:
json.dump(_A ,_A )
with open(os.path.join(_A ,'tokenizer_config.json' ) ,'w' ,encoding='utf-8' ) as outfile:
json.dump(_A ,_A )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowerCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained(_A ,extra_ids=0 )
self.assertIn(_A ,tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,)
_lowerCAmelCase : List[Any] = 0xE007
_lowerCAmelCase : List[str] = chr(_A )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowerCAmelCase : Optional[Any] = [AddedToken(_A ,lstrip=_A )]
_lowerCAmelCase : str = tokenizer_class.from_pretrained(
_A ,additional_special_tokens=_A ,extra_ids=0 )
self.assertIn(_A ,tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.get_tokenizers(do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCAmelCase : str = 'hello world'
if self.space_between_special_tokens:
_lowerCAmelCase : Optional[Any] = '[CLS] hello world [SEP]'
else:
_lowerCAmelCase : Optional[Any] = input
_lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A )
_lowerCAmelCase : Tuple = tokenizer.decode(_A ,spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(_A ,[output, output.lower()] )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCAmelCase : Any = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
_lowerCAmelCase : Union[str, Any] = 'a'
_lowerCAmelCase : List[str] = ord(_A )
for attr in attributes_list:
setattr(_A ,attr + '_id' ,_A )
self.assertEqual(getattr(_A ,_A ) ,_A )
self.assertEqual(getattr(_A ,attr + '_id' ) ,_A )
setattr(_A ,attr + '_id' ,_A )
self.assertEqual(getattr(_A ,_A ) ,_A )
self.assertEqual(getattr(_A ,attr + '_id' ) ,_A )
setattr(_A ,'additional_special_tokens_ids' ,[] )
self.assertListEqual(getattr(_A ,'additional_special_tokens' ) ,[] )
self.assertListEqual(getattr(_A ,'additional_special_tokens_ids' ) ,[] )
_lowerCAmelCase : List[Any] = 0xE006
_lowerCAmelCase : Any = chr(_A )
setattr(_A ,'additional_special_tokens_ids' ,[additional_special_token_id] )
self.assertListEqual(getattr(_A ,'additional_special_tokens' ) ,[additional_special_token] )
self.assertListEqual(getattr(_A ,'additional_special_tokens_ids' ) ,[additional_special_token_id] )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
| 720 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = 42
class __UpperCamelCase ( a__ , a__ ):
@register_to_config
def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Any = num_attention_heads
_lowerCAmelCase : Optional[int] = attention_head_dim
_lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim
_lowerCAmelCase : Optional[Any] = additional_embeddings
_lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim
_lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim
_lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim
_lowerCAmelCase : int = Timesteps(_A ,_A ,0 )
_lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A )
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
if embedding_proj_norm_type is None:
_lowerCAmelCase : Optional[Any] = None
elif embedding_proj_norm_type == "layer":
_lowerCAmelCase : List[Any] = nn.LayerNorm(_A )
else:
raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
_lowerCAmelCase : Tuple = nn.Linear(_A ,_A )
if encoder_hid_proj_type is None:
_lowerCAmelCase : int = None
elif encoder_hid_proj_type == "linear":
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
else:
raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) )
if added_emb_type == "prd":
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) )
elif added_emb_type is None:
_lowerCAmelCase : List[Any] = None
else:
raise ValueError(
F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
_lowerCAmelCase : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(
_A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,)
for d in range(_A )
] )
if norm_in_type == "layer":
_lowerCAmelCase : Any = nn.LayerNorm(_A )
elif norm_in_type is None:
_lowerCAmelCase : Any = None
else:
raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" )
_lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A )
_lowerCAmelCase : int = nn.Linear(_A ,_A )
_lowerCAmelCase : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
_lowerCAmelCase : Tuple = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' ,_A ,persistent=_A )
_lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {}
def fn_recursive_add_processors(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
_lowerCAmelCase : str = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_A ,_A ,_A )
return processors
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_A ,_A ) and len(_A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
if not isinstance(_A ,_A ):
module.set_processor(_A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A )
for name, module in self.named_children():
fn_recursive_attn_processor(_A ,_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,):
'''simple docstring'''
_lowerCAmelCase : str = hidden_states.shape[0]
_lowerCAmelCase : int = timestep
if not torch.is_tensor(_A ):
_lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device )
elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0:
_lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device )
_lowerCAmelCase : Dict = self.time_proj(_A )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype )
_lowerCAmelCase : Optional[Any] = self.time_embedding(_A )
if self.embedding_proj_norm is not None:
_lowerCAmelCase : int = self.embedding_proj_norm(_A )
_lowerCAmelCase : str = self.embedding_proj(_A )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_lowerCAmelCase : str = self.encoder_hidden_states_proj(_A )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
_lowerCAmelCase : Any = self.proj_in(_A )
_lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype )
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_A )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_lowerCAmelCase : int = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_lowerCAmelCase : Any = hidden_states[:, None, :]
_lowerCAmelCase : int = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 )
additional_embeds.append(_A )
_lowerCAmelCase : List[str] = torch.cat(
_A ,dim=1 ,)
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_lowerCAmelCase : Any = F.pad(
_A ,(
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) ,value=0.0 ,)
_lowerCAmelCase : int = hidden_states + positional_embeddings
if attention_mask is not None:
_lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
_lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 )
_lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 )
if self.norm_in is not None:
_lowerCAmelCase : Any = self.norm_in(_A )
for block in self.transformer_blocks:
_lowerCAmelCase : int = block(_A ,attention_mask=_A )
_lowerCAmelCase : Union[str, Any] = self.norm_out(_A )
if self.prd_embedding is not None:
_lowerCAmelCase : Optional[int] = hidden_states[:, -1]
else:
_lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:]
_lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 16 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_lowerCAmelCase = logging.get_logger(__name__)
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = ["pixel_values"]
def __init__( self ,_A = True ,_A = None ,_A = PIL.Image.BICUBIC ,_A = True ,_A = None ,_A = 1 / 255 ,_A = True ,_A = True ,_A = None ,_A = None ,**_A ,):
'''simple docstring'''
super().__init__(**_A )
_lowerCAmelCase : int = size if size is not None else {'height': 256, 'width': 256}
_lowerCAmelCase : List[Any] = get_size_dict(_A )
_lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224}
_lowerCAmelCase : int = get_size_dict(_A ,param_name='crop_size' )
_lowerCAmelCase : int = do_resize
_lowerCAmelCase : int = size
_lowerCAmelCase : str = resample
_lowerCAmelCase : Dict = do_center_crop
_lowerCAmelCase : Dict = crop_size
_lowerCAmelCase : Any = do_rescale
_lowerCAmelCase : int = rescale_factor
_lowerCAmelCase : int = do_normalize
_lowerCAmelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCamelCase ( self ,_A ,_A ,_A = PIL.Image.BICUBIC ,_A = None ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
_A ,size=(size['height'], size['width']) ,resample=_A ,data_format=_A ,**_A )
def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A ,size=(size['height'], size['width']) ,data_format=_A ,**_A )
def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ,):
'''simple docstring'''
return rescale(_A ,scale=_A ,data_format=_A ,**_A )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,**_A ,):
'''simple docstring'''
return normalize(_A ,mean=_A ,std=_A ,data_format=_A ,**_A )
def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A=None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = ChannelDimension.FIRST ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase : str = resample if resample is not None else self.resample
_lowerCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale
_lowerCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
_lowerCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
_lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std
_lowerCAmelCase : List[str] = size if size is not None else self.size
_lowerCAmelCase : List[str] = get_size_dict(_A )
_lowerCAmelCase : int = crop_size if crop_size is not None else self.crop_size
_lowerCAmelCase : str = get_size_dict(_A ,param_name='crop_size' )
_lowerCAmelCase : Dict = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
_lowerCAmelCase : Optional[int] = [to_numpy_array(_A ) for image in images]
if do_resize:
_lowerCAmelCase : int = [self.resize(image=_A ,size=_A ,resample=_A ) for image in images]
if do_center_crop:
_lowerCAmelCase : List[Any] = [self.center_crop(image=_A ,size=_A ) for image in images]
if do_rescale:
_lowerCAmelCase : Optional[Any] = [self.rescale(image=_A ,scale=_A ) for image in images]
if do_normalize:
_lowerCAmelCase : Union[str, Any] = [self.normalize(image=_A ,mean=_A ,std=_A ) for image in images]
_lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(_A ,_A ) for image in images]
_lowerCAmelCase : Optional[int] = {'pixel_values': images}
return BatchFeature(data=_A ,tensor_type=_A )
| 721 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_lowerCAmelCase = get_logger()
_lowerCAmelCase = None
class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
def __init__( self ,_A=None ,_A=None ,**_A ):
'''simple docstring'''
super().__init__(features=_A )
import jax
from jaxlib.xla_client import Device
if isinstance(_A ,_A ):
raise ValueError(
F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
_lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"""Device with string identifier {self.device} not listed among the available """
F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
F"""device: {str(jax.devices()[0] )}.""" )
_lowerCAmelCase : List[str] = str(jax.devices()[0] )
_lowerCAmelCase : int = jnp_array_kwargs
@staticmethod
def __lowerCamelCase ( ):
'''simple docstring'''
import jax
return {str(_A ): device for device in jax.devices()}
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,_A ) and column:
if all(
isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_A ,axis=0 )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,(str, bytes, type(_A )) ):
return value
elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ):
return value.tolist()
_lowerCAmelCase : Optional[Any] = {}
if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_lowerCAmelCase : List[str] = {'dtype': jnp.intaa}
else:
_lowerCAmelCase : Tuple = {'dtype': jnp.intaa}
elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ):
_lowerCAmelCase : Any = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_A ,PIL.Image.Image ):
_lowerCAmelCase : int = np.asarray(_A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Optional[Any] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_A ,torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ):
_lowerCAmelCase : Optional[Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_A ,np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
elif isinstance(_A ,(list, tuple) ):
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
return self._tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return map_nested(self._recursive_tensorize ,_A ,map_list=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A )
_lowerCAmelCase : int = self.python_features_decoder.decode_row(_A )
return self.recursive_tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A )
_lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] )
_lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A )
_lowerCAmelCase : Optional[Any] = self._consolidate(_A )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A )
_lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A )
_lowerCAmelCase : str = self.recursive_tensorize(_A )
for column_name in batch:
_lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 16 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = BertConfig.from_json_file(_lowerCamelCase )
print(f"""Building PyTorch model from configuration: {config}""" )
_lowerCAmelCase : List[Any] = BertForPreTraining(_lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained BERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_lowerCAmelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 700 |
"""simple docstring"""
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = ["vqvae"]
def __init__( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
super().__init__()
self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
return 50 if isinstance(self.scheduler ,_A ) else 1000
@torch.no_grad()
def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,):
'''simple docstring'''
_lowerCAmelCase : List[str] = steps or self.get_default_steps()
self.scheduler.set_timesteps(_A )
_lowerCAmelCase : Optional[Any] = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
_lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
_lowerCAmelCase : Optional[Any] = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) ,generator=_A ,device=self.device ,)
_lowerCAmelCase : Dict = noise
_lowerCAmelCase : Optional[Any] = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_A ,_A )
_lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A )
_lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
_lowerCAmelCase : int = (input_image / 255) * 2 - 1
_lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device )
if self.vqvae is not None:
_lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample(
generator=_A )[0]
_lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
_lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] )
_lowerCAmelCase : Optional[Any] = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
_lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second )
_lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second )
_lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet ,_A ):
_lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample']
else:
_lowerCAmelCase : Any = self.unet(_A ,_A )['sample']
if isinstance(self.scheduler ,_A ):
_lowerCAmelCase : Union[str, Any] = self.scheduler.step(
model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample']
else:
_lowerCAmelCase : Any = self.scheduler.step(
model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample']
if mask is not None:
if mask_start > 0:
_lowerCAmelCase : Any = mask[:, step, :, :mask_start]
if mask_end > 0:
_lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
_lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images
_lowerCAmelCase : Any = self.vqvae.decode(_A )['sample']
_lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 )
_lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy()
_lowerCAmelCase : Any = (images * 255).round().astype('uint8' )
_lowerCAmelCase : Any = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) )
_lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) )
@torch.no_grad()
def __lowerCamelCase ( self ,_A ,_A = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler ,_A )
self.scheduler.set_timesteps(_A )
_lowerCAmelCase : Dict = np.array(
[np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
_lowerCAmelCase : Dict = (sample / 255) * 2 - 1
_lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ):
_lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
_lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t]
_lowerCAmelCase : Dict = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
_lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t
_lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample']
_lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output
_lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
_lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def __lowerCamelCase ( _A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) )
return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
| 16 | 0 |
"""simple docstring"""
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
_lowerCAmelCase = 1.054_571_817E-34 # unit of ℏ : J * s
_lowerCAmelCase = 3E8 # unit of c : m * s^-1
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
_lowerCAmelCase : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
_lowerCAmelCase : Any = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
_lowerCAmelCase : List[str] = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 701 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""vocab_file""": """vocab.json""",
"""tokenizer_config_file""": """tokenizer_config.json""",
"""merges_file""": """merges.txt""",
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json"""
),
},
"""tokenizer_config_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json"""
),
},
"""merges_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt"""
),
},
}
_lowerCAmelCase = """</w>"""
_lowerCAmelCase = """@@ """
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = set()
_lowerCAmelCase : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase : Any = char
return pairs
# Speech2Text2 has no max input length
_lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,)
_lowerCAmelCase : List[Any] = do_lower_case
with open(_A ,encoding='utf-8' ) as vocab_handle:
_lowerCAmelCase : Optional[int] = json.load(_A )
_lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : Tuple = None
else:
with open(_A ,encoding='utf-8' ) as merges_handle:
_lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1]
_lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges]
_lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Union[str, Any] = {}
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.decoder )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
_lowerCAmelCase : str = get_pairs(_A )
if not pairs:
return token
while True:
_lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram
_lowerCAmelCase : Union[str, Any] = []
_lowerCAmelCase : Dict = 0
while i < len(_A ):
try:
_lowerCAmelCase : Dict = word.index(_A ,_A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase : Optional[Any] = j
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase : Optional[Any] = tuple(_A )
_lowerCAmelCase : List[str] = new_word
if len(_A ) == 1:
break
else:
_lowerCAmelCase : List[str] = get_pairs(_A )
_lowerCAmelCase : Any = ' '.join(_A )
if word == "\n " + BPE_TOKEN_MERGES:
_lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES
if word.endswith(_A ):
_lowerCAmelCase : Dict = word.replace(_A ,'' )
_lowerCAmelCase : str = word.replace(' ' ,_A )
_lowerCAmelCase : str = word
return word
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.bpe_ranks is None:
raise ValueError(
'This tokenizer was instantiated without a `merges.txt` file, so'
' that it can only be used for decoding, not for encoding.'
'Make sure to provide `merges.txt` file at instantiation to enable '
'encoding.' )
if self.do_lower_case:
_lowerCAmelCase : Optional[Any] = text.lower()
_lowerCAmelCase : Tuple = text.split()
_lowerCAmelCase : Union[str, Any] = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) )
return split_tokens
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.encoder.get(_A ,self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token )
return result
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ' '.join(_A )
# make sure @@ tokens are concatenated
_lowerCAmelCase : int = ''.join(string.split(_A ) )
return string
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : List[Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
_lowerCAmelCase : str = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(_A ,'w' ,encoding='utf-8' ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowerCAmelCase : Dict = token_index
writer.write(' '.join(_A ) + '\n' )
index += 1
return (vocab_file, merges_file)
| 16 | 0 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __UpperCamelCase :
def __init__( self ,_A ,_A=2 ,_A=3 ,_A=4 ,_A=2 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=36 ,_A=3 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=6 ,_A=6 ,_A=3 ,_A=4 ,_A=None ,_A=1000 ,):
'''simple docstring'''
_lowerCAmelCase : Any = parent
_lowerCAmelCase : Tuple = batch_size
_lowerCAmelCase : Tuple = num_channels
_lowerCAmelCase : Any = image_size
_lowerCAmelCase : Optional[Any] = patch_size
_lowerCAmelCase : str = text_seq_length
_lowerCAmelCase : Optional[Any] = is_training
_lowerCAmelCase : List[Any] = use_input_mask
_lowerCAmelCase : List[Any] = use_token_type_ids
_lowerCAmelCase : Tuple = use_labels
_lowerCAmelCase : int = vocab_size
_lowerCAmelCase : Dict = hidden_size
_lowerCAmelCase : Any = num_hidden_layers
_lowerCAmelCase : Any = num_attention_heads
_lowerCAmelCase : Optional[int] = intermediate_size
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : Union[str, Any] = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : Optional[Any] = max_position_embeddings
_lowerCAmelCase : str = type_vocab_size
_lowerCAmelCase : Tuple = type_sequence_label_size
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Optional[int] = coordinate_size
_lowerCAmelCase : Optional[Any] = shape_size
_lowerCAmelCase : Union[str, Any] = num_labels
_lowerCAmelCase : str = num_choices
_lowerCAmelCase : Optional[Any] = scope
_lowerCAmelCase : str = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_lowerCAmelCase : Dict = text_seq_length
_lowerCAmelCase : Optional[int] = (image_size // patch_size) ** 2 + 1
_lowerCAmelCase : int = self.text_seq_length + self.image_seq_length
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
_lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowerCAmelCase : Union[str, Any] = bbox[i, j, 3]
_lowerCAmelCase : Any = bbox[i, j, 1]
_lowerCAmelCase : int = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowerCAmelCase : Tuple = bbox[i, j, 2]
_lowerCAmelCase : Any = bbox[i, j, 0]
_lowerCAmelCase : Any = t
_lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : Dict = None
if self.use_input_mask:
_lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.text_seq_length] )
_lowerCAmelCase : str = None
if self.use_token_type_ids:
_lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : Union[str, Any] = None
if self.use_labels:
_lowerCAmelCase : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
_lowerCAmelCase : Any = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = LayoutLMvaModel(config=_A )
model.to(_A )
model.eval()
# text + image
_lowerCAmelCase : str = model(_A ,pixel_values=_A )
_lowerCAmelCase : Tuple = model(
_A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A )
_lowerCAmelCase : Union[str, Any] = model(_A ,bbox=_A ,pixel_values=_A ,token_type_ids=_A )
_lowerCAmelCase : Optional[Any] = model(_A ,bbox=_A ,pixel_values=_A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
_lowerCAmelCase : Union[str, Any] = model(_A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_lowerCAmelCase : str = model(pixel_values=_A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.num_labels
_lowerCAmelCase : Dict = LayoutLMvaForSequenceClassification(_A )
model.to(_A )
model.eval()
_lowerCAmelCase : Optional[Any] = model(
_A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.num_labels
_lowerCAmelCase : int = LayoutLMvaForTokenClassification(config=_A )
model.to(_A )
model.eval()
_lowerCAmelCase : Optional[Any] = model(
_A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = LayoutLMvaForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
_lowerCAmelCase : Union[str, Any] = model(
_A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A ,start_positions=_A ,end_positions=_A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs()
(
_lowerCAmelCase
) : Optional[Any] = config_and_inputs
_lowerCAmelCase : List[str] = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( a__ , a__ , unittest.TestCase ):
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
_UpperCAmelCase = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
return True
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = LayoutLMvaModelTester(self )
_lowerCAmelCase : Any = ConfigTester(self ,config_class=_A ,hidden_size=37 )
def __lowerCamelCase ( self ,_A ,_A ,_A=False ):
'''simple docstring'''
_lowerCAmelCase : Dict = copy.deepcopy(_A )
if model_class in get_values(_A ):
_lowerCAmelCase : int = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(_A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_A ):
_lowerCAmelCase : int = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=_A )
elif model_class in get_values(_A ):
_lowerCAmelCase : List[Any] = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=_A )
_lowerCAmelCase : Dict = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=_A )
elif model_class in [
*get_values(_A ),
]:
_lowerCAmelCase : Optional[Any] = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=_A )
elif model_class in [
*get_values(_A ),
]:
_lowerCAmelCase : Dict = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=_A ,)
return inputs_dict
def __lowerCamelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase : Dict = type
self.model_tester.create_and_check_model(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : List[str] = LayoutLMvaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def __lowerCamelCase ( self ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(_A )
_lowerCAmelCase : str = self.default_image_processor
_lowerCAmelCase : Tuple = prepare_img()
_lowerCAmelCase : Optional[Any] = image_processor(images=_A ,return_tensors='pt' ).pixel_values.to(_A )
_lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2]] )
_lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
_lowerCAmelCase : Union[str, Any] = model(
input_ids=input_ids.to(_A ) ,bbox=bbox.to(_A ) ,pixel_values=pixel_values.to(_A ) ,)
# verify the logits
_lowerCAmelCase : Tuple = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape ,_A )
_lowerCAmelCase : str = torch.tensor(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(_A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,_A ,atol=1E-4 ) )
| 702 |
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __UpperCamelCase ( a__ , a__ ):
@register_to_config
def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : int = nn.Sequential(
nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,)
_lowerCAmelCase : Any = nn.Embedding(_A ,_A )
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : int = nn.Dropout(p=_A )
_lowerCAmelCase : int = nn.ModuleList()
for lyr_num in range(_A ):
# FiLM conditional T5 decoder
_lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A )
self.decoders.append(_A )
_lowerCAmelCase : Optional[Any] = TaLayerNorm(_A )
_lowerCAmelCase : List[str] = nn.Dropout(p=_A )
_lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
_lowerCAmelCase : Any = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype )
_lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
_lowerCAmelCase : str = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
_lowerCAmelCase : Union[str, Any] = torch.broadcast_to(
torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,)
_lowerCAmelCase : Any = self.position_encoding(_A )
_lowerCAmelCase : str = self.continuous_inputs_projection(_A )
inputs += position_encodings
_lowerCAmelCase : int = self.dropout(_A )
# decoder: No padding present.
_lowerCAmelCase : Union[str, Any] = torch.ones(
decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
_lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
_lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 )
_lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 )
for lyr in self.decoders:
_lowerCAmelCase : Tuple = lyr(
_A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0]
_lowerCAmelCase : Any = self.decoder_norm(_A )
_lowerCAmelCase : List[Any] = self.post_dropout(_A )
_lowerCAmelCase : int = self.spec_out(_A )
return spec_out
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[Any] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Any = self.layer[0](
_A ,conditioning_emb=_A ,attention_mask=_A ,)
if encoder_hidden_states is not None:
_lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to(
encoder_hidden_states.dtype )
_lowerCAmelCase : str = self.layer[1](
_A ,key_value_states=_A ,attention_mask=_A ,)
# Apply Film Conditional Feed Forward layer
_lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A )
return (hidden_states,)
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A )
_lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A )
_lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A )
_lowerCAmelCase : Tuple = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : int = self.layer_norm(_A )
if conditioning_emb is not None:
_lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A )
# Self-attention block
_lowerCAmelCase : Union[str, Any] = self.attention(_A )
_lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A )
_lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A )
_lowerCAmelCase : Tuple = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.layer_norm(_A )
_lowerCAmelCase : str = self.attention(
_A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,)
_lowerCAmelCase : Any = hidden_states + self.dropout(_A )
return layer_output
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A )
_lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A )
_lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A )
_lowerCAmelCase : Union[str, Any] = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ):
'''simple docstring'''
_lowerCAmelCase : int = self.layer_norm(_A )
if conditioning_emb is not None:
_lowerCAmelCase : Union[str, Any] = self.film(_A ,_A )
_lowerCAmelCase : str = self.DenseReluDense(_A )
_lowerCAmelCase : Tuple = hidden_states + self.dropout(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Union[str, Any] = nn.Dropout(_A )
_lowerCAmelCase : int = NewGELUActivation()
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) )
_lowerCAmelCase : Optional[int] = self.wi_a(_A )
_lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear
_lowerCAmelCase : Dict = self.dropout(_A )
_lowerCAmelCase : Dict = self.wo(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A=1E-6 ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) )
_lowerCAmelCase : Optional[int] = eps
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A )
_lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
_lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __UpperCamelCase ( nn.Module ):
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) ))
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.scale_bias(_A )
_lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 )
_lowerCAmelCase : List[Any] = x * (1 + scale) + shift
return x
| 16 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return [ord(_lowerCamelCase ) - 96 for elem in plain]
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return "".join(chr(elem + 96 ) for elem in encoded )
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = encode(input('-> ' ).strip().lower() )
print('Encoded: ' , _lowerCamelCase )
print('Decoded:' , decode(_lowerCamelCase ) )
if __name__ == "__main__":
main()
| 703 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __UpperCamelCase :
def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = parent
_lowerCAmelCase : int = batch_size
_lowerCAmelCase : int = image_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Optional[int] = embeddings_size
_lowerCAmelCase : Optional[int] = hidden_sizes
_lowerCAmelCase : str = depths
_lowerCAmelCase : str = is_training
_lowerCAmelCase : int = use_labels
_lowerCAmelCase : Optional[int] = hidden_act
_lowerCAmelCase : Optional[int] = num_labels
_lowerCAmelCase : Dict = scope
_lowerCAmelCase : Union[str, Any] = len(_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : Optional[Any] = None
if self.use_labels:
_lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels )
_lowerCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCamelCase ( self ):
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,)
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A )
_lowerCAmelCase : List[str] = model(_A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self.num_labels
_lowerCAmelCase : Dict = TFResNetForImageClassification(_A )
_lowerCAmelCase : int = model(_A ,labels=_A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs
_lowerCAmelCase : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( a__ , a__ , unittest.TestCase ):
_UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_UpperCAmelCase = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = TFResNetModelTester(self )
_lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCamelCase ( self ):
'''simple docstring'''
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : int = model_class(_A )
_lowerCAmelCase : Union[str, Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase : Any = [*signature.parameters.keys()]
_lowerCAmelCase : str = ['pixel_values']
self.assertListEqual(arg_names[:1] ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
def check_hidden_states_output(_A ,_A ,_A ):
_lowerCAmelCase : int = model_class(_A )
_lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) )
_lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCAmelCase : int = self.model_tester.num_stages
self.assertEqual(len(_A ) ,expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
_lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase : Any = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
_lowerCAmelCase : Optional[int] = layer_type
_lowerCAmelCase : Tuple = True
check_hidden_states_output(_A ,_A ,_A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase : Any = True
check_hidden_states_output(_A ,_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def __lowerCamelCase ( self ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_lowerCAmelCase : Tuple = self.default_image_processor
_lowerCAmelCase : Optional[Any] = prepare_img()
_lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' )
# forward pass
_lowerCAmelCase : int = model(**_A )
# verify the logits
_lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape ,_A )
_lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
| 16 | 0 |
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise ValueError('Input must be an integer' )
if input_num <= 0:
raise ValueError('Input must be positive' )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
_lowerCAmelCase = list[list[float | int]]
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = len(_lowerCamelCase )
_lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : float
for row in range(_lowerCamelCase ):
for col in range(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = matrix[row][col]
_lowerCAmelCase : Tuple = vector[row][0]
_lowerCAmelCase : Dict = 0
_lowerCAmelCase : Any = 0
while row < size and col < size:
# pivoting
_lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , _lowerCamelCase ):
_lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col]
_lowerCAmelCase : Optional[Any] = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , _lowerCamelCase ):
for row in range(_lowerCamelCase ):
_lowerCAmelCase : int = augmented[row][col] / augmented[col][col]
for cola in range(_lowerCamelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase )
]
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = len(_lowerCamelCase )
_lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : Matrix
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
for x_val, y_val in enumerate(_lowerCamelCase ):
for col in range(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1)
_lowerCAmelCase : Optional[int] = y_val
_lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase )
def interpolated_func(_lowerCamelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(_lowerCamelCase ) )
return interpolated_func
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ):
'''simple docstring'''
_lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )]
_lowerCAmelCase : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
_lowerCAmelCase : int = 0
_lowerCAmelCase : Callable[[int], int]
_lowerCAmelCase : int
for poly in polynomials:
_lowerCAmelCase : Any = 1
while func(_lowerCamelCase ) == poly(_lowerCamelCase ):
x_val += 1
ret += poly(_lowerCamelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 16 | 0 |
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
_lowerCAmelCase = getLogger(__name__)
_lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu"""
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 8 , _lowerCamelCase = DEFAULT_DEVICE , _lowerCamelCase=False , _lowerCamelCase="summarization" , _lowerCamelCase=None , **_lowerCamelCase , ):
'''simple docstring'''
_lowerCAmelCase : str = Path(_lowerCamelCase ).open('w' , encoding='utf-8' )
_lowerCAmelCase : int = str(_lowerCamelCase )
_lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase )
if fpaa:
_lowerCAmelCase : List[Any] = model.half()
_lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase )
logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type.
_lowerCAmelCase : Optional[Any] = time.time()
# update config with task specific params
use_task_specific_params(_lowerCamelCase , _lowerCamelCase )
if prefix is None:
_lowerCAmelCase : Optional[Any] = prefix or getattr(model.config , 'prefix' , '' ) or ''
for examples_chunk in tqdm(list(chunks(_lowerCamelCase , _lowerCamelCase ) ) ):
_lowerCAmelCase : Union[str, Any] = [prefix + text for text in examples_chunk]
_lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors='pt' , truncation=_lowerCamelCase , padding='longest' ).to(_lowerCamelCase )
_lowerCAmelCase : Tuple = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCamelCase , )
_lowerCAmelCase : int = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
for hypothesis in dec:
fout.write(hypothesis + '\n' )
fout.flush()
fout.close()
_lowerCAmelCase : str = int(time.time() - start_time ) # seconds
_lowerCAmelCase : Tuple = len(_lowerCamelCase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def lowerCamelCase__ ( ):
'''simple docstring'''
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )
def lowerCamelCase__ ( _lowerCamelCase=True ):
'''simple docstring'''
_lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument('model_name' , type=_lowerCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' )
parser.add_argument('input_path' , type=_lowerCamelCase , help='like cnn_dm/test.source' )
parser.add_argument('save_path' , type=_lowerCamelCase , help='where to save summaries' )
parser.add_argument('--reference_path' , type=_lowerCamelCase , required=_lowerCamelCase , help='like cnn_dm/test.target' )
parser.add_argument('--score_path' , type=_lowerCamelCase , required=_lowerCamelCase , default='metrics.json' , help='where to save metrics' )
parser.add_argument('--device' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='cuda, cuda:1, cpu etc.' )
parser.add_argument(
'--prefix' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='will be added to the begininng of src examples' )
parser.add_argument('--task' , type=_lowerCamelCase , default='summarization' , help='used for task_specific_params + metrics' )
parser.add_argument('--bs' , type=_lowerCamelCase , default=8 , required=_lowerCamelCase , help='batch size' )
parser.add_argument(
'--n_obs' , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help='How many observations. Defaults to all.' )
parser.add_argument('--fp16' , action='store_true' )
parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' )
parser.add_argument(
'--info' , nargs='?' , type=_lowerCamelCase , const=datetime_now() , help=(
'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'
' lang=en-ru. If no value is passed, the current datetime string will be used.'
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
_lowerCAmelCase : Any = parser.parse_known_args()
_lowerCAmelCase : Optional[Any] = parse_numeric_n_bool_cl_kwargs(_lowerCamelCase )
if parsed_args and verbose:
print(f"""parsed the following generate kwargs: {parsed_args}""" )
_lowerCAmelCase : List[Any] = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
_lowerCAmelCase : Dict = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_lowerCamelCase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('Can\'t mix --fp16 and --device cpu' )
_lowerCAmelCase : str = generate_summaries_or_translations(
_lowerCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCamelCase , )
if args.reference_path is None:
return {}
# Compute scores
_lowerCAmelCase : Dict = calculate_bleu if 'translation' in args.task else calculate_rouge
_lowerCAmelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()]
_lowerCAmelCase : List[str] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCamelCase )]
_lowerCAmelCase : dict = score_fn(_lowerCamelCase , _lowerCamelCase )
scores.update(_lowerCamelCase )
if args.dump_args:
scores.update(_lowerCamelCase )
if args.info:
_lowerCAmelCase : Any = args.info
if verbose:
print(_lowerCamelCase )
if args.score_path is not None:
json.dump(_lowerCamelCase , open(args.score_path , 'w' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 705 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
for char in word:
_lowerCAmelCase : Dict = ord(_lowerCamelCase )
if not _is_chinese_char(_lowerCamelCase ):
return 0
return 1
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Tuple = set()
for token in tokens:
_lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase )
if chinese_word:
word_set.add(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase )
return word_list
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
_lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] )
_lowerCAmelCase : str = bert_tokens
_lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase )
while start < end:
_lowerCAmelCase : Dict = True
if is_chinese(bert_word[start] ):
_lowerCAmelCase : str = min(end - start , _lowerCamelCase )
for i in range(_lowerCamelCase , 1 , -1 ):
_lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_lowerCAmelCase : Tuple = '##' + bert_word[j]
_lowerCAmelCase : Optional[int] = start + i
_lowerCAmelCase : Any = False
break
if single_word:
start += 1
return bert_word
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0]
_lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res]
ltp_res.extend(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : int = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Optional[int] = []
for id in input_ids:
_lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase )
input_tokens.append(_lowerCamelCase )
_lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : List[str] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCamelCase ):
if token[:2] == "##":
_lowerCAmelCase : List[Any] = token[2:]
# save chinese tokens' pos
if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ):
ref_id.append(_lowerCamelCase )
ref_ids.append(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
return ref_ids
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
_lowerCAmelCase : int = f.readlines()
_lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device
_lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert )
_lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids]
f.writelines(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_lowerCAmelCase = parser.parse_args()
main(args)
| 16 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = MgpstrTokenizer
_UpperCAmelCase = False
_UpperCAmelCase = {}
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
_lowerCAmelCase : List[Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
_lowerCAmelCase : List[str] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(_A ) + '\n' )
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = 'tester'
_lowerCAmelCase : Tuple = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCAmelCase : List[str] = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
_lowerCAmelCase : Dict = tokenizer.encode([special_token] ,add_special_tokens=_A )
self.assertEqual(len(_A ) ,1 )
_lowerCAmelCase : Dict = tokenizer.decode(_A ,skip_special_tokens=_A )
self.assertTrue(special_token not in decoded )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
_lowerCAmelCase : Tuple = self.get_input_output_texts(_A )
_lowerCAmelCase : Dict = tokenizer.tokenize(_A )
_lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(_A )
_lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A )
self.assertListEqual(_A ,_A )
_lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(_A )
self.assertNotEqual(len(_A ) ,0 )
_lowerCAmelCase : int = tokenizer.decode(_A )
self.assertIsInstance(_A ,_A )
self.assertEqual(text_a.replace(' ' ,'' ) ,_A )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
| 706 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = LDMTextToImagePipeline
_UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,)
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,)
torch.manual_seed(0 )
_lowerCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,)
torch.manual_seed(0 )
_lowerCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
_lowerCAmelCase : Tuple = CLIPTextModel(_A )
_lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowerCAmelCase : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vqvae': vae,
'bert': text_encoder,
'tokenizer': tokenizer,
}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : int = torch.manual_seed(_A )
else:
_lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : str = LDMTextToImagePipeline(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A )
_lowerCAmelCase : Any = pipe(**_A ).images
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = torch.manual_seed(_A )
_lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A )
_lowerCAmelCase : List[str] = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Optional[Any] = self.get_inputs(_A )
_lowerCAmelCase : List[Any] = pipe(**_A ).images
_lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] )
_lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ):
'''simple docstring'''
_lowerCAmelCase : List[str] = torch.manual_seed(_A )
_lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A )
_lowerCAmelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 50,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : str = self.get_inputs(_A )
_lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0]
_lowerCAmelCase : int = load_numpy(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' )
_lowerCAmelCase : List[str] = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 0 |
"""simple docstring"""
_lowerCAmelCase = {str(digit): digit**5 for digit in range(1_0)}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_lowerCamelCase ) )
def lowerCamelCase__ ( ):
'''simple docstring'''
return sum(
number
for number in range(1000 , 1000000 )
if number == digits_fifth_powers_sum(_lowerCamelCase ) )
if __name__ == "__main__":
print(solution())
| 707 |
"""simple docstring"""
import baseaa
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return baseaa.aaaencode(string.encode('utf-8' ) )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_lowerCAmelCase : Tuple = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creates a copy of the matrix with swapped positions of the elements
_lowerCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]]
_lowerCAmelCase : Optional[Any] = matrix[1][1], matrix[0][0]
_lowerCAmelCase : Optional[int] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_lowerCamelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_lowerCAmelCase : str = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creating cofactor matrix
_lowerCAmelCase : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_lowerCAmelCase : Any = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_lowerCAmelCase : Optional[int] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_lowerCAmelCase : Union[str, Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_lowerCAmelCase : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_lowerCAmelCase : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_lowerCAmelCase : Tuple = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_lowerCAmelCase : Tuple = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_lowerCAmelCase : List[Any] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_lowerCAmelCase : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_lowerCAmelCase : Tuple = array(_lowerCamelCase )
for i in range(3 ):
for j in range(3 ):
_lowerCAmelCase : Union[str, Any] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_lowerCAmelCase : Any = array(_lowerCamelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_lowerCamelCase )
# Calculate the inverse of the matrix
return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
| 708 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""bert-base-uncased""": 5_1_2,
"""bert-large-uncased""": 5_1_2,
"""bert-base-cased""": 5_1_2,
"""bert-large-cased""": 5_1_2,
"""bert-base-multilingual-uncased""": 5_1_2,
"""bert-base-multilingual-cased""": 5_1_2,
"""bert-base-chinese""": 5_1_2,
"""bert-base-german-cased""": 5_1_2,
"""bert-large-uncased-whole-word-masking""": 5_1_2,
"""bert-large-cased-whole-word-masking""": 5_1_2,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-base-cased-finetuned-mrpc""": 5_1_2,
"""bert-base-german-dbmdz-cased""": 5_1_2,
"""bert-base-german-dbmdz-uncased""": 5_1_2,
"""TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2,
"""wietsedv/bert-base-dutch-cased""": 5_1_2,
}
_lowerCAmelCase = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = BertTokenizer
def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
_A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,)
_lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,_A ) != do_lower_case
or normalizer_state.get('strip_accents' ,_A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars
):
_lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) )
_lowerCAmelCase : Dict = do_lower_case
_lowerCAmelCase : Optional[int] = strip_accents
_lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars
_lowerCAmelCase : Dict = normalizer_class(**_A )
_lowerCAmelCase : Union[str, Any] = do_lower_case
def __lowerCamelCase ( self ,_A ,_A=None ):
'''simple docstring'''
_lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.sep_token_id]
_lowerCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A )
return tuple(_A )
| 16 | 0 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class __UpperCamelCase ( unittest.TestCase ):
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ,return_dict=_A ).to(_A )
_lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('google/mt5-small' )
_lowerCAmelCase : List[Any] = tokenizer('Hello there' ,return_tensors='pt' ).input_ids
_lowerCAmelCase : Any = tokenizer('Hi I am' ,return_tensors='pt' ).input_ids
_lowerCAmelCase : int = model(input_ids.to(_A ) ,labels=labels.to(_A ) ).loss
_lowerCAmelCase : str = -(labels.shape[-1] * loss.item())
_lowerCAmelCase : str = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 ) | 709 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils )
_lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
_lowerCAmelCase : int = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
_lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(F"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
_lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ):
execute_subprocess_async(_A ,env=os.environ.copy() )
if __name__ == "__main__":
_lowerCAmelCase = Accelerator()
_lowerCAmelCase = (accelerator.state.process_index + 2, 1_0)
_lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device)
_lowerCAmelCase = """"""
_lowerCAmelCase = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 16 | 0 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""",
},
"""emoji_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""",
},
}
_lowerCAmelCase = {
"""abeja/gpt-neox-japanese-2.7b""": 2_0_4_8,
}
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f:
_lowerCAmelCase : Tuple = json.loads(f.read() )
_lowerCAmelCase : Tuple = collections.OrderedDict()
_lowerCAmelCase : List[str] = collections.OrderedDict()
_lowerCAmelCase : Union[str, Any] = collections.OrderedDict()
with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f:
_lowerCAmelCase : Tuple = f.readlines()
_lowerCAmelCase : int = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token]
for idx, b in enumerate(_lowerCamelCase ):
_lowerCAmelCase : Optional[int] = b
_lowerCAmelCase : Dict = idx
for wd in b:
_lowerCAmelCase : Dict = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A ,_A="<|endoftext|>" ,_A="<|endoftext|>" ,_A="<|startoftext|>" ,_A="<|endoftext|>" ,_A=False ,**_A ,):
'''simple docstring'''
super().__init__(
unk_token=_A ,pad_token=_A ,bos_token=_A ,eos_token=_A ,do_clean_text=_A ,**_A ,)
if not os.path.isfile(_A ):
raise ValueError(
F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"""
' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
if not os.path.isfile(_A ):
raise ValueError(
F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"""
' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
_lowerCAmelCase : Tuple = do_clean_text
_lowerCAmelCase : str = load_vocab_and_emoji(_A ,_A )
_lowerCAmelCase : List[Any] = SubWordJapaneseTokenizer(
vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.raw_vocab )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.raw_vocab ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.subword_tokenizer.tokenize(_A ,clean=self.do_clean_text )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.vocab.get(_A ,self.vocab.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = ''.join(_A ).strip()
return out_string
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_A ,add_special_tokens=_A ) + [self.eos_token_id] )
if len(_A ) > self.model_max_length:
_lowerCAmelCase : Optional[int] = input_ids[-self.model_max_length :]
return input_ids
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 0
if os.path.isdir(_A ):
_lowerCAmelCase : int = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : Optional[Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] )
else:
_lowerCAmelCase : Dict = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file']
)
_lowerCAmelCase : List[Any] = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file']
)
with open(_A ,'w' ,encoding='utf-8' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
' Please check that the vocabulary is not corrupted!' )
_lowerCAmelCase : Optional[int] = token_index
writer.write(','.join(_A ) + '\n' )
index += 1
with open(_A ,'w' ,encoding='utf-8' ) as writer:
json.dump(self.emoji ,_A )
return vocab_file, emoji_file
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = vocab # same as swe
_lowerCAmelCase : int = ids_to_tokens # same as bpe
_lowerCAmelCase : List[Any] = emoji
_lowerCAmelCase : Tuple = np.max([len(_A ) for w in self.vocab.keys()] )
_lowerCAmelCase : Dict = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' )
_lowerCAmelCase : int = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' )
_lowerCAmelCase : Optional[int] = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' )
_lowerCAmelCase : Optional[int] = re.compile(
r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
_lowerCAmelCase : Optional[int] = re.compile(
r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
_lowerCAmelCase : Dict = re.compile(
r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' )
_lowerCAmelCase : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'
_lowerCAmelCase : List[str] = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'
_lowerCAmelCase : Union[str, Any] = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} )
def __len__( self ):
'''simple docstring'''
return len(self.ids_to_tokens )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.content_repattera.sub('<URL>' ,_A )
_lowerCAmelCase : int = self.content_repattera.sub('<EMAIL>' ,_A )
_lowerCAmelCase : List[Any] = self.content_repattera.sub('<TEL>' ,_A )
_lowerCAmelCase : str = self.content_repattera.sub('<DATE>' ,_A )
_lowerCAmelCase : Union[str, Any] = self.content_repattera.sub('<DATE>' ,_A )
_lowerCAmelCase : Any = self.content_repattera.sub('<PRICE>' ,_A )
_lowerCAmelCase : Union[str, Any] = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
_lowerCAmelCase : int = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' )
return content
def __lowerCamelCase ( self ,_A ,_A=False ):
'''simple docstring'''
_lowerCAmelCase : Tuple = text.replace(' ' ,'<SP>' )
_lowerCAmelCase : Optional[Any] = text.replace(' ' ,'<SP>' )
_lowerCAmelCase : List[str] = text.replace('\r\n' ,'<BR>' )
_lowerCAmelCase : Dict = text.replace('\n' ,'<BR>' )
_lowerCAmelCase : int = text.replace('\r' ,'<BR>' )
_lowerCAmelCase : int = text.replace('\t' ,'<TAB>' )
_lowerCAmelCase : Optional[Any] = text.replace('—' ,'ー' )
_lowerCAmelCase : List[str] = text.replace('−' ,'ー' )
for k, v in self.emoji["emoji"].items():
if k in text:
_lowerCAmelCase : List[Any] = text.replace(_A ,_A )
if clean:
_lowerCAmelCase : Any = self.clean_text(_A )
def check_simbol(_A ):
_lowerCAmelCase : Tuple = x.encode()
if len(_A ) == 1 and len(_A ) == 2:
_lowerCAmelCase : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xC2A1 and c <= 0xC2BF)
or (c >= 0xC780 and c <= 0xC783)
or (c >= 0xCAB9 and c <= 0xCBBF)
or (c >= 0xCC80 and c <= 0xCDA2)
):
return True
return False
def checkuae(_A ):
_lowerCAmelCase : Optional[Any] = x.encode()
if len(_A ) == 1 and len(_A ) == 3:
_lowerCAmelCase : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xE2_8080 and c <= 0xE2_B07F:
return True
return False
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : int = []
while pos < len(_A ):
_lowerCAmelCase : Tuple = min(len(_A ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3
_lowerCAmelCase : int = [] # (token_id, token, pos)
for e in range(_A ,_A ,-1 ):
_lowerCAmelCase : Optional[int] = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(_A ) > 2:
_lowerCAmelCase : Optional[int] = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(_A ) > 0:
# the smallest token_id is adopted
_lowerCAmelCase : Union[str, Any] = sorted(_A ,key=lambda _A : x[0] )[0]
result.append(_A )
_lowerCAmelCase : List[str] = e
else:
_lowerCAmelCase : Dict = pos + 1
_lowerCAmelCase : Tuple = text[pos:end]
if check_simbol(_A ):
result.append('<KIGOU>' )
elif checkuae(_A ):
result.append('<U2000U2BFF>' )
else:
for i in wd.encode('utf-8' ):
result.append('<|byte%d|>' % i )
_lowerCAmelCase : str = end
return result
def __lowerCamelCase ( self ,_A ,_A="\n" ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : Optional[int] = []
_lowerCAmelCase : List[str] = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(_A ) > 0:
words.append(bytearray(_A ).decode('utf-8' ,errors='replace' ) )
_lowerCAmelCase : int = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['emoji_inv'][word] )
elif word == "<SP>":
words.append(' ' )
elif word == "<BR>":
words.append(_A )
elif word == "<TAB>":
words.append('\t' )
elif word == "<BLOCK>":
words.append('▀' )
elif word == "<KIGOU>":
words.append('ǀ' )
elif word == "<U2000U2BFF>":
words.append('‖' )
else:
words.append(_A )
if len(_A ) > 0:
words.append(bytearray(_A ).decode('utf-8' ,errors='replace' ) )
_lowerCAmelCase : Tuple = ''.join(_A )
return text
| 710 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
'''simple docstring'''
if index == len(_lowerCamelCase ):
print(_lowerCamelCase )
return
for i in range(len(_lowerCamelCase ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_lowerCAmelCase : List[str] = True
create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase )
current_sequence.pop()
_lowerCAmelCase : int = False
_lowerCAmelCase = [3, 1, 2, 4]
generate_all_permutations(sequence)
_lowerCAmelCase = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 16 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase = logging.get_logger(__name__)
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location='cpu' )
if "model" in sd.keys():
_lowerCAmelCase : Union[str, Any] = torch.load(_lowerCamelCase , map_location='cpu' )['model']
# pop unnecessary weights
_lowerCAmelCase : List[Any] = [
'decoder.version',
'decoder.output_projection.weight',
]
for key in keys_to_delete:
if key in sd:
sd.pop(_lowerCamelCase )
_lowerCAmelCase : Any = {
'decoder.project_in_dim.weight': 'decoder.project_in.weight',
'decoder.project_out_dim.weight': 'decoder.project_out.weight',
'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight',
'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
_lowerCAmelCase : Tuple = sd.pop(_lowerCamelCase )
_lowerCAmelCase : Optional[Any] = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
_lowerCAmelCase : int = sd[key]
# We split QKV in separate Q,K,V
_lowerCAmelCase : List[Any] = key.replace('.qkv_proj.' , '.q_proj.' )
_lowerCAmelCase : Optional[int] = key.replace('.qkv_proj.' , '.k_proj.' )
_lowerCAmelCase : Any = key.replace('.qkv_proj.' , '.v_proj.' )
_lowerCAmelCase : Optional[Any] = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
_lowerCAmelCase : int = torch.split(_lowerCamelCase , depth // 3 , dim=0 )
_lowerCAmelCase : int = q
_lowerCAmelCase : List[Any] = k
_lowerCAmelCase : Optional[int] = v
del sd[key]
return sd
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = load_checkpoint(_lowerCamelCase )
if config is not None:
_lowerCAmelCase : str = OPTConfig.from_pretrained(_lowerCamelCase )
else:
_lowerCAmelCase : Tuple = OPTConfig()
_lowerCAmelCase : Dict = OPTModel(_lowerCamelCase ).half().eval()
model.load_state_dict(_lowerCamelCase )
# Check results
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
_lowerCAmelCase = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 711 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class __UpperCamelCase ( logging.LoggerAdapter ):
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ):
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
_lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A )
_lowerCAmelCase : Any = kwargs.pop('in_order' ,_A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
elif in_order:
_lowerCAmelCase : str = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
state.wait_for_everyone()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ):
'''simple docstring'''
if log_level is None:
_lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase )
_lowerCAmelCase : int = logging.getLogger(_lowerCamelCase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_lowerCamelCase , {} )
| 16 | 0 |
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = CodeGenTokenizer
_UpperCAmelCase = CodeGenTokenizerFast
_UpperCAmelCase = True
_UpperCAmelCase = {"add_prefix_space": True}
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowerCAmelCase : Tuple = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
'<|endoftext|>',
]
_lowerCAmelCase : Dict = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
_lowerCAmelCase : Union[str, Any] = {'unk_token': '<unk>'}
_lowerCAmelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(_A ) + '\n' )
with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp:
fp.write('\n'.join(_A ) )
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**_A )
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = 'lower newer'
_lowerCAmelCase : int = 'lower newer'
return input_text, output_text
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map )
_lowerCAmelCase : List[Any] = 'lower newer'
_lowerCAmelCase : Optional[int] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er']
_lowerCAmelCase : Any = tokenizer.tokenize(_A ,add_prefix_space=_A )
self.assertListEqual(_A ,_A )
_lowerCAmelCase : Any = tokens + [tokenizer.unk_token]
_lowerCAmelCase : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
_lowerCAmelCase : str = self.get_tokenizer()
_lowerCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=_A )
_lowerCAmelCase : Dict = 'lower newer'
# Testing tokenization
_lowerCAmelCase : Any = tokenizer.tokenize(_A ,add_prefix_space=_A )
_lowerCAmelCase : Optional[int] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A ,_A )
# Testing conversion to ids without special tokens
_lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A ,add_prefix_space=_A )
_lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(_A ,add_special_tokens=_A )
self.assertListEqual(_A ,_A )
# Testing conversion to ids with special tokens
_lowerCAmelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=_A )
_lowerCAmelCase : Optional[int] = tokenizer.encode(_A ,add_prefix_space=_A )
_lowerCAmelCase : Union[str, Any] = rust_tokenizer.encode(_A )
self.assertListEqual(_A ,_A )
# Testing the unknown token
_lowerCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token]
_lowerCAmelCase : Tuple = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_A ) ,_A )
def __lowerCamelCase ( self ,*_A ,**_A ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ,_A=15 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(_A ,**_A )
# Simple input
_lowerCAmelCase : Dict = 'This is a simple input'
_lowerCAmelCase : Dict = ['This is a simple input 1', 'This is a simple input 2']
_lowerCAmelCase : Any = ('This is a simple input', 'This is a pair')
_lowerCAmelCase : int = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(_A ,tokenizer_r.encode ,_A ,max_length=_A ,padding='max_length' )
# Simple input
self.assertRaises(_A ,tokenizer_r.encode_plus ,_A ,max_length=_A ,padding='max_length' )
# Simple input
self.assertRaises(
_A ,tokenizer_r.batch_encode_plus ,_A ,max_length=_A ,padding='max_length' ,)
# Pair input
self.assertRaises(_A ,tokenizer_r.encode ,_A ,max_length=_A ,padding='max_length' )
# Pair input
self.assertRaises(_A ,tokenizer_r.encode_plus ,_A ,max_length=_A ,padding='max_length' )
# Pair input
self.assertRaises(
_A ,tokenizer_r.batch_encode_plus ,_A ,max_length=_A ,padding='max_length' ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token='<pad>' )
# Simple input
_lowerCAmelCase : str = 'This is a simple input'
_lowerCAmelCase : List[Any] = ['This is a simple input looooooooong', 'This is a simple input']
_lowerCAmelCase : Optional[Any] = ('This is a simple input', 'This is a pair')
_lowerCAmelCase : List[Any] = [
('This is a simple input loooooong', 'This is a simple input'),
('This is a simple pair loooooong', 'This is a simple pair'),
]
_lowerCAmelCase : Optional[int] = tokenizer.pad_token_id
_lowerCAmelCase : List[str] = tokenizer(_A ,padding='max_length' ,max_length=30 ,return_tensors='np' )
_lowerCAmelCase : Optional[int] = tokenizer(_A ,padding=_A ,truncate=_A ,return_tensors='np' )
_lowerCAmelCase : Dict = tokenizer(*_A ,padding='max_length' ,max_length=60 ,return_tensors='np' )
_lowerCAmelCase : Optional[Any] = tokenizer(_A ,padding=_A ,truncate=_A ,return_tensors='np' )
# s
# test single string max_length padding
self.assertEqual(out_s['input_ids'].shape[-1] ,30 )
self.assertTrue(pad_token_id in out_s['input_ids'] )
self.assertTrue(0 in out_s['attention_mask'] )
# s2
# test automatic padding
self.assertEqual(out_sa['input_ids'].shape[-1] ,33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa['input_ids'][0] )
self.assertFalse(0 in out_sa['attention_mask'][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa['input_ids'][1] )
self.assertTrue(0 in out_sa['attention_mask'][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p['input_ids'].shape[-1] ,60 )
self.assertTrue(pad_token_id in out_p['input_ids'] )
self.assertTrue(0 in out_p['attention_mask'] )
# p2
# test automatic padding pair
self.assertEqual(out_pa['input_ids'].shape[-1] ,52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa['input_ids'][0] )
self.assertFalse(0 in out_pa['attention_mask'][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa['input_ids'][1] )
self.assertTrue(0 in out_pa['attention_mask'][1] )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = '$$$'
_lowerCAmelCase : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=_A ,add_bos_token=_A )
_lowerCAmelCase : List[Any] = 'This is a simple input'
_lowerCAmelCase : int = ['This is a simple input 1', 'This is a simple input 2']
_lowerCAmelCase : Dict = tokenizer.bos_token_id
_lowerCAmelCase : Any = tokenizer(_A )
_lowerCAmelCase : List[Any] = tokenizer(_A )
self.assertEqual(out_s.input_ids[0] ,_A )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
_lowerCAmelCase : Any = tokenizer.decode(out_s.input_ids )
_lowerCAmelCase : int = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] ,_A )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' )
_lowerCAmelCase : Union[str, Any] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#'
_lowerCAmelCase : str = '\nif len_a > len_b: result = a\nelse: result = b'
_lowerCAmelCase : Optional[Any] = tokenizer.encode(_A )
_lowerCAmelCase : str = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n']
_lowerCAmelCase : List[Any] = tokenizer.decode(_A ,truncate_before_pattern=_A )
self.assertEqual(_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
| 712 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-question_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": 5_1_2,
"""facebook/dpr-reader-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_lowerCAmelCase = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCAmelCase = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(a__ )
class __UpperCamelCase :
def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
elif titles is None or texts is None:
_lowerCAmelCase : Optional[int] = titles if texts is None else texts
return super().__call__(
_A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
_lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles]
_lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts]
_lowerCAmelCase : Union[str, Any] = len(_A )
_lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages
if len(_A ) != len(_A ):
raise ValueError(
F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" )
_lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Optional[int] = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_A ,_A )
]
}
if return_attention_mask is not False:
_lowerCAmelCase : Tuple = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_lowerCAmelCase : List[Any] = attention_mask
return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A )
def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,):
'''simple docstring'''
_lowerCAmelCase : int = reader_input['input_ids']
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3]
_lowerCAmelCase : Optional[Any] = len(_A )
_lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ )
_lowerCAmelCase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_lowerCAmelCase : int = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id )
else:
_lowerCAmelCase : Optional[int] = len(_A )
_lowerCAmelCase : Optional[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(_A ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
for start_index, start_score in enumerate(_A ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A )
_lowerCAmelCase : int = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" )
_lowerCAmelCase : List[str] = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_A ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(a__ )
class __UpperCamelCase ( a__ , a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = ["input_ids", "attention_mask"]
| 16 | 0 |
"""simple docstring"""
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase ( a__ ):
def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=False ,_A=True ,_A="None" ,_A=3 ,_A=4 ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = parent
_lowerCAmelCase : Dict = batch_size
_lowerCAmelCase : List[str] = seq_length
_lowerCAmelCase : List[Any] = is_training
_lowerCAmelCase : Optional[Any] = use_input_mask
_lowerCAmelCase : str = use_token_type_ids
_lowerCAmelCase : str = use_labels
_lowerCAmelCase : Dict = vocab_size
_lowerCAmelCase : Optional[Any] = hidden_size
_lowerCAmelCase : List[str] = num_hidden_layers
_lowerCAmelCase : Union[str, Any] = num_attention_heads
_lowerCAmelCase : Dict = intermediate_size
_lowerCAmelCase : Optional[Any] = hidden_act
_lowerCAmelCase : Any = hidden_dropout_prob
_lowerCAmelCase : List[str] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : List[str] = type_vocab_size
_lowerCAmelCase : Optional[Any] = type_sequence_label_size
_lowerCAmelCase : List[Any] = initializer_range
_lowerCAmelCase : Dict = num_labels
_lowerCAmelCase : Union[str, Any] = num_choices
_lowerCAmelCase : Optional[Any] = relative_attention
_lowerCAmelCase : Tuple = position_biased_input
_lowerCAmelCase : Any = pos_att_type
_lowerCAmelCase : List[Any] = scope
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
_lowerCAmelCase : Optional[Any] = None
if self.use_input_mask:
_lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
_lowerCAmelCase : Optional[int] = None
if self.use_token_type_ids:
_lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : Tuple = None
_lowerCAmelCase : Tuple = None
if self.use_labels:
_lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
_lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices )
_lowerCAmelCase : Tuple = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self ):
'''simple docstring'''
return DebertaVaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,)
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
self.parent.assertListEqual(list(result.loss.size() ) ,[] )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = DebertaVaModel(config=_A )
model.to(_A )
model.eval()
_lowerCAmelCase : Optional[Any] = model(_A ,attention_mask=_A ,token_type_ids=_A )[0]
_lowerCAmelCase : Tuple = model(_A ,token_type_ids=_A )[0]
_lowerCAmelCase : Union[str, Any] = model(_A )[0]
self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = DebertaVaForMaskedLM(config=_A )
model.to(_A )
model.eval()
_lowerCAmelCase : Union[str, Any] = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self.num_labels
_lowerCAmelCase : List[Any] = DebertaVaForSequenceClassification(_A )
model.to(_A )
model.eval()
_lowerCAmelCase : List[Any] = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A )
self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] )
self.check_loss_output(_A )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = self.num_labels
_lowerCAmelCase : Dict = DebertaVaForTokenClassification(config=_A )
model.to(_A )
model.eval()
_lowerCAmelCase : Union[str, Any] = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = DebertaVaForQuestionAnswering(config=_A )
model.to(_A )
model.eval()
_lowerCAmelCase : str = model(
_A ,attention_mask=_A ,token_type_ids=_A ,start_positions=_A ,end_positions=_A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = DebertaVaForMultipleChoice(config=_A )
model.to(_A )
model.eval()
_lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
_lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
_lowerCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
_lowerCAmelCase : Dict = model(
_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.prepare_config_and_inputs()
(
_lowerCAmelCase
) : Tuple = config_and_inputs
_lowerCAmelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( a__ , a__ , unittest.TestCase ):
_UpperCAmelCase = (
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
_UpperCAmelCase = (
{
"feature-extraction": DebertaVaModel,
"fill-mask": DebertaVaForMaskedLM,
"question-answering": DebertaVaForQuestionAnswering,
"text-classification": DebertaVaForSequenceClassification,
"token-classification": DebertaVaForTokenClassification,
"zero-shot": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCAmelCase = True
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = DebertaVaModelTester(self )
_lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,hidden_size=37 )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*_A )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : Union[str, Any] = DebertaVaModel.from_pretrained(_A )
self.assertIsNotNone(_A )
@require_torch
@require_sentencepiece
@require_tokenizers
class __UpperCamelCase ( unittest.TestCase ):
@unittest.skip(reason='Model not available yet' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' )
_lowerCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
_lowerCAmelCase : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_lowerCAmelCase : Tuple = model(_A ,attention_mask=_A )[0]
# compare the actual values for a slice.
_lowerCAmelCase : Optional[Any] = torch.tensor(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_A ,atol=1E-4 ) ,F"""{output[:, 1:4, 1:4]}""" )
| 713 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = DanceDiffusionPipeline
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : List[Any] = UNetaDModel(
block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,)
_lowerCAmelCase : int = IPNDMScheduler()
_lowerCAmelCase : Union[str, Any] = {
'unet': unet,
'scheduler': scheduler,
}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : str = torch.manual_seed(_A )
else:
_lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : int = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A )
_lowerCAmelCase : List[str] = pipe(**_A )
_lowerCAmelCase : List[Any] = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_local()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_optional_components()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_attention_slicing_forward_pass()
def __lowerCamelCase ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = torch_device
_lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Optional[int] = torch.manual_seed(0 )
_lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : str = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = torch_device
_lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[int] = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : Union[str, Any] = output.audios
_lowerCAmelCase : int = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 16 | 0 |
"""simple docstring"""
import flax.linen as nn
import jax
import jax.numpy as jnp
class __UpperCamelCase ( nn.Module ):
_UpperCAmelCase = 42
_UpperCAmelCase = jnp.floataa
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = hidden_states.shape
_lowerCAmelCase : List[str] = jax.image.resize(
_A ,shape=(batch, height * 2, width * 2, channels) ,method='nearest' ,)
_lowerCAmelCase : Tuple = self.conv(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
_UpperCAmelCase = 42
_UpperCAmelCase = jnp.floataa
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.conv(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
_UpperCAmelCase = 42
_UpperCAmelCase = None
_UpperCAmelCase = 0.0
_UpperCAmelCase = None
_UpperCAmelCase = jnp.floataa
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.in_channels if self.out_channels is None else self.out_channels
_lowerCAmelCase : List[str] = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 )
_lowerCAmelCase : Union[str, Any] = nn.Conv(
_A ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
_lowerCAmelCase : Tuple = nn.Dense(_A ,dtype=self.dtype )
_lowerCAmelCase : str = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 )
_lowerCAmelCase : List[str] = nn.Dropout(self.dropout_prob )
_lowerCAmelCase : str = nn.Conv(
_A ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
_lowerCAmelCase : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
_lowerCAmelCase : Tuple = None
if use_nin_shortcut:
_lowerCAmelCase : List[str] = nn.Conv(
_A ,kernel_size=(1, 1) ,strides=(1, 1) ,padding='VALID' ,dtype=self.dtype ,)
def __call__( self ,_A ,_A ,_A=True ):
'''simple docstring'''
_lowerCAmelCase : Dict = hidden_states
_lowerCAmelCase : Optional[Any] = self.norma(_A )
_lowerCAmelCase : Optional[Any] = nn.swish(_A )
_lowerCAmelCase : str = self.conva(_A )
_lowerCAmelCase : List[str] = self.time_emb_proj(nn.swish(_A ) )
_lowerCAmelCase : List[Any] = jnp.expand_dims(jnp.expand_dims(_A ,1 ) ,1 )
_lowerCAmelCase : Dict = hidden_states + temb
_lowerCAmelCase : str = self.norma(_A )
_lowerCAmelCase : Optional[int] = nn.swish(_A )
_lowerCAmelCase : int = self.dropout(_A ,_A )
_lowerCAmelCase : Dict = self.conva(_A )
if self.conv_shortcut is not None:
_lowerCAmelCase : Union[str, Any] = self.conv_shortcut(_A )
return hidden_states + residual
| 714 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = (UniPCMultistepScheduler,)
_UpperCAmelCase = (("num_inference_steps", 25),)
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = {
'num_train_timesteps': 1000,
'beta_start': 0.0_0_0_1,
'beta_end': 0.0_2,
'beta_schedule': 'linear',
'solver_order': 2,
'solver_type': 'bh2',
}
config.update(**_A )
return config
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = dict(self.forward_default_kwargs )
_lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Optional[Any] = self.dummy_sample
_lowerCAmelCase : Union[str, Any] = 0.1 * sample
_lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A )
new_scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase, _lowerCAmelCase : str = sample, sample
for t in range(_A ,time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Union[str, Any] = self.dummy_sample
_lowerCAmelCase : Dict = 0.1 * sample
_lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Any = self.get_scheduler_config()
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : int = scheduler_class.from_pretrained(_A )
# copy over dummy past residuals
new_scheduler.set_timesteps(_A )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=None ,**_A ):
'''simple docstring'''
if scheduler is None:
_lowerCAmelCase : int = self.scheduler_classes[0]
_lowerCAmelCase : List[str] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
_lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : int = scheduler_class(**_A )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : str = self.dummy_model()
_lowerCAmelCase : str = self.dummy_sample_deter
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Any = model(_A ,_A )
_lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample
return sample
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A )
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : str = self.get_scheduler_config()
_lowerCAmelCase : List[str] = scheduler_class(**_A )
_lowerCAmelCase : Any = self.dummy_sample
_lowerCAmelCase : Tuple = 0.1 * sample
if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ):
scheduler.set_timesteps(_A )
elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ):
_lowerCAmelCase : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
_lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order]
_lowerCAmelCase : Any = scheduler.timesteps[5]
_lowerCAmelCase : List[str] = scheduler.timesteps[6]
_lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
_lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=_A )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
_lowerCAmelCase : List[Any] = self.full_loop(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
assert not torch.isnan(_A ).any(), "Samples have nan numbers"
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(lower_order_final=_A )
self.check_over_configs(lower_order_final=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_A ,time_step=0 )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.full_loop()
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' )
_lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 )
_lowerCAmelCase : Tuple = scheduler_class(**_A )
_lowerCAmelCase : Optional[Any] = 10
_lowerCAmelCase : Union[str, Any] = self.dummy_model()
_lowerCAmelCase : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Tuple = model(_A ,_A )
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : str = scheduler_class(**_A )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 16 | 0 |
"""simple docstring"""
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def lowerCamelCase__ ( _lowerCamelCase=32 , _lowerCamelCase=10 , _lowerCamelCase=100 , _lowerCamelCase=1026 , _lowerCamelCase=True , _lowerCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _lowerCamelCase="igf_context_pairs.jbl" , ):
'''simple docstring'''
set_seed(3 )
# generate train_data and objective_set
_lowerCAmelCase : int = generate_datasets(
_lowerCamelCase , _lowerCamelCase , number=_lowerCamelCase , min_len=1026 , trim=_lowerCamelCase )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
_lowerCAmelCase : int = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' )
# load pretrained model
_lowerCAmelCase : Dict = load_gpta('gpt2' ).to(_lowerCamelCase )
print('computing perplexity on objective set' )
_lowerCAmelCase : str = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).item()
print('perplexity on objective set:' , _lowerCamelCase )
# collect igf pairs and save to file demo.jbl
collect_objective_set(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=15 , _lowerCamelCase=128 , _lowerCamelCase=100 , _lowerCamelCase="igf_model.pt" , ):
'''simple docstring'''
set_seed(42 )
# Load pre-trained model
_lowerCAmelCase : int = GPTaLMHeadModel.from_pretrained('gpt2' )
# Initialize secondary learner to use embedding weights of model
_lowerCAmelCase : Optional[int] = SecondaryLearner(_lowerCamelCase )
# Train secondary learner
_lowerCAmelCase : int = train_secondary_learner(
_lowerCamelCase , _lowerCamelCase , max_epochs=_lowerCamelCase , batch_size=_lowerCamelCase , eval_freq=100 , igf_model_path=_lowerCamelCase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=32 , _lowerCamelCase=1000 , _lowerCamelCase=16 , _lowerCamelCase=1.0 , _lowerCamelCase=recopy_gpta , _lowerCamelCase=None , _lowerCamelCase=10 , _lowerCamelCase="gpt2_finetuned.pt" , ):
'''simple docstring'''
_lowerCAmelCase : str = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' )
_lowerCAmelCase : Tuple = RandomSampler(_lowerCamelCase )
_lowerCAmelCase : Tuple = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase )
_lowerCAmelCase : List[str] = max_steps // (len(_lowerCamelCase )) + 1
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Any = torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCamelCase )
_lowerCAmelCase : Tuple = recopy_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
model.train()
if secondary_learner is not None:
secondary_learner.to(_lowerCamelCase )
secondary_learner.eval()
_lowerCAmelCase : Tuple = []
_lowerCAmelCase : int = 0
_lowerCAmelCase : Optional[int] = []
_lowerCAmelCase : str = []
# Compute the performance of the transformer model at the beginning
_lowerCAmelCase : Any = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
test_perps.append(_lowerCamelCase )
print('Test perplexity, step' , _lowerCamelCase , ':' , _lowerCamelCase )
for epoch in range(int(_lowerCamelCase ) ):
for step, example in enumerate(_lowerCamelCase ):
torch.cuda.empty_cache()
_lowerCAmelCase : List[str] = random.randint(0 , example.size(2 ) - context_len - 1 )
_lowerCAmelCase : List[Any] = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
_lowerCAmelCase : Optional[int] = model(_lowerCamelCase , labels=_lowerCamelCase )
_lowerCAmelCase : List[str] = True
if secondary_learner is not None:
_lowerCAmelCase : Dict = secondary_learner.forward(
torch.tensor(_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(_lowerCamelCase ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
_lowerCAmelCase : Union[str, Any] = -1
if predicted_q < threshold:
_lowerCAmelCase : List[Any] = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
_lowerCAmelCase : Optional[Any] = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
_lowerCAmelCase : str = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
_lowerCAmelCase : Tuple = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
test_perps.append(_lowerCamelCase )
print('Test perplexity, step' , _lowerCamelCase , ':' , _lowerCamelCase )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , _lowerCamelCase )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' )
# Required parameters
parser.add_argument(
'--data_dir' , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help='The input data dir. Should contain data files for WikiText.' , )
parser.add_argument(
'--model_name_or_path' , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--data_file' , type=_lowerCamelCase , default=_lowerCamelCase , help=(
'A jbl file containing tokenized data which can be split as objective dataset, '
'train_dataset and test_dataset.'
) , )
parser.add_argument(
'--igf_data_file' , type=_lowerCamelCase , default=_lowerCamelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , )
parser.add_argument(
'--output_dir' , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help='The output directory where the final fine-tuned model is stored.' , )
parser.add_argument(
'--tokenizer_name' , default=_lowerCamelCase , type=_lowerCamelCase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument('--seed' , type=_lowerCamelCase , default=_lowerCamelCase , help='A seed for reproducible training.' )
parser.add_argument(
'--context_len' , default=32 , type=_lowerCamelCase , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--size_objective_set' , default=100 , type=_lowerCamelCase , help='number of articles that are long enough to be used as our objective set' , )
parser.add_argument(
'--eval_freq' , default=100 , type=_lowerCamelCase , help='secondary model evaluation is triggered at eval_freq' )
parser.add_argument('--max_steps' , default=1000 , type=_lowerCamelCase , help='To calculate training epochs' )
parser.add_argument(
'--secondary_learner_batch_size' , default=128 , type=_lowerCamelCase , help='batch size of training data for secondary learner' , )
parser.add_argument(
'--batch_size' , default=16 , type=_lowerCamelCase , help='batch size of training data of language model(gpt2) ' )
parser.add_argument(
'--eval_interval' , default=10 , type=_lowerCamelCase , help=(
'decay the selectivity of our secondary learner filter from'
'1 standard deviation above average to 1 below average after 10 batches'
) , )
parser.add_argument(
'--number' , default=100 , type=_lowerCamelCase , help='The number of examples split to be used as objective_set/test_data' )
parser.add_argument(
'--min_len' , default=1026 , type=_lowerCamelCase , help='The minimum length of the article to be used as objective set' )
parser.add_argument(
'--secondary_learner_max_epochs' , default=15 , type=_lowerCamelCase , help='number of epochs to train secondary learner' )
parser.add_argument('--trim' , default=_lowerCamelCase , type=_lowerCamelCase , help='truncate the example if it exceeds context length' )
parser.add_argument(
'--threshold' , default=1.0 , type=_lowerCamelCase , help=(
'The threshold value used by secondary learner to filter the train_data and allow only'
' informative data as input to the model'
) , )
parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_lowerCamelCase , help='finetuned_model_name' )
parser.add_argument(
'--recopy_model' , default=_lowerCamelCase , type=_lowerCamelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_lowerCamelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , )
# Load train data for secondary learner
_lowerCAmelCase : Optional[int] = joblib.load('data/IGF_values.jbl' )
# Train secondary learner
_lowerCAmelCase : str = training_secondary_learner(
_lowerCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , )
# load pretrained gpt2 model
_lowerCAmelCase : Any = GPTaLMHeadModel.from_pretrained('gpt2' )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
_lowerCAmelCase : Any = generate_datasets(
context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_lowerCamelCase )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCamelCase , secondary_learner=_lowerCamelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , )
if __name__ == "__main__":
main()
| 715 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/"""
_lowerCAmelCase = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' )
elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' )
elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' )
elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' )
if "conditioner_blocks.0." in key:
_lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' )
if "prime_prior" in key:
_lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
_lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' )
if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('.k' , '.codebook' )
if "y_emb." in key:
return key.replace('y_emb.' , 'metadata_embedding.' )
if "x_emb.emb." in key:
_lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' )
if "prime_state_ln" in key:
return key.replace('prime_state_ln' , 'encoder.final_layer_norm' )
if ".ln" in key:
return key.replace('.ln' , '.layer_norm' )
if "_ln" in key:
return key.replace('_ln' , '_layer_norm' )
if "prime_state_proj" in key:
return key.replace('prime_state_proj' , 'encoder.proj_in' )
if "prime_x_out" in key:
return key.replace('prime_x_out' , 'encoder.lm_head' )
if "prior.x_out" in key:
return key.replace('x_out' , 'fc_proj_out' )
if "x_emb" in key:
return key.replace('x_emb' , 'embed_tokens' )
return key
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = {}
import re
_lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(
R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Union[str, Any] = re.compile(
R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(
R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase )
_lowerCAmelCase : int = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = prefix + resnet_block
_lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
_lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Dict = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : List[Any] = prefix + resnet_block
_lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
_lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : Any = regex_match.groups()
_lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Tuple = regex_match.groups()
_lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
_lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = prefix + resnet_block
_lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[str] = regex_match.groups()
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
_lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# keep original key
else:
_lowerCAmelCase : Optional[Any] = original_key
_lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
_lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
_lowerCAmelCase : Optional[int] = original_key
_lowerCAmelCase : Union[str, Any] = original_key
_lowerCAmelCase : Optional[Any] = value
return new_dict
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ):
'''simple docstring'''
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ):
_lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase )
open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content )
_lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]]
_lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase )
_lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase )
_lowerCAmelCase : int = []
_lowerCAmelCase : Any = {}
for i, dict_name in enumerate(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model']
_lowerCAmelCase : Optional[Any] = {}
for k in old_dic.keys():
if k.endswith('.b' ):
_lowerCAmelCase : int = old_dic[k]
elif k.endswith('.w' ):
_lowerCAmelCase : Tuple = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
_lowerCAmelCase : str = old_dic[k]
else:
_lowerCAmelCase : Optional[Any] = old_dic[k]
_lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}"""
_lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase )
weight_dict.append(_lowerCamelCase )
_lowerCAmelCase : List[Any] = weight_dict.pop(0 )
model.vqvae.load_state_dict(_lowerCamelCase )
for i in range(len(_lowerCamelCase ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile:
json.dump(_lowerCamelCase , _lowerCamelCase )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
return weight_dict
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
_lowerCAmelCase = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 16 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""microsoft/trocr-base-handwritten""": (
"""https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"""
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = "trocr"
_UpperCAmelCase = ["past_key_values"]
_UpperCAmelCase = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self ,_A=5_0265 ,_A=1024 ,_A=12 ,_A=16 ,_A=4096 ,_A="gelu" ,_A=512 ,_A=0.1 ,_A=0.0 ,_A=0.0 ,_A=2 ,_A=0.0_2 ,_A=0.0 ,_A=True ,_A=False ,_A=True ,_A=True ,_A=1 ,_A=0 ,_A=2 ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = vocab_size
_lowerCAmelCase : Tuple = d_model
_lowerCAmelCase : List[str] = decoder_layers
_lowerCAmelCase : int = decoder_attention_heads
_lowerCAmelCase : Optional[int] = decoder_ffn_dim
_lowerCAmelCase : Optional[Any] = activation_function
_lowerCAmelCase : List[Any] = max_position_embeddings
_lowerCAmelCase : Tuple = dropout
_lowerCAmelCase : Tuple = attention_dropout
_lowerCAmelCase : str = activation_dropout
_lowerCAmelCase : int = init_std
_lowerCAmelCase : Dict = decoder_layerdrop
_lowerCAmelCase : List[str] = use_cache
_lowerCAmelCase : int = scale_embedding
_lowerCAmelCase : Optional[Any] = use_learned_position_embeddings
_lowerCAmelCase : List[Any] = layernorm_embedding
super().__init__(
pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,decoder_start_token_id=_A ,**_A ,)
| 716 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
_lowerCAmelCase = {"""UserAgent""": UserAgent().random}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = script.contents[0]
_lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/"""
_lowerCAmelCase : str = self.get_json()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text
_lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
'''simple docstring'''
return F"""{self.__class__.__name__}('{self.username}')"""
def __str__( self ):
'''simple docstring'''
return F"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["username"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["full_name"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["biography"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["business_email"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["external_url"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_follow"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_verified"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_private"]
def lowerCamelCase__ ( _lowerCamelCase = "github" ):
'''simple docstring'''
import os
if os.environ.get('CI' ):
return # test failing on GitHub Actions
_lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _lowerCamelCase )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('https://instagram.' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase = InstagramUser("""github""")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 16 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if len(_lowerCamelCase ) == 0:
return array
_lowerCAmelCase : Optional[Any] = min(_lowerCamelCase ), max(_lowerCamelCase )
# Compute the variables
_lowerCAmelCase : Union[str, Any] = _max - _min + 1
_lowerCAmelCase : Any = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
_lowerCAmelCase : Tuple = i - _min
_lowerCAmelCase : Tuple = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
_lowerCAmelCase : int = 0
for i in range(_lowerCamelCase ):
while holes_repeat[i] > 0:
_lowerCAmelCase : Union[str, Any] = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase = input("""Enter numbers separated by comma:\n""")
_lowerCAmelCase = [int(x) for x in user_input.split(""",""")]
print(pigeon_sort(unsorted))
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """spiece.model"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
}
}
_lowerCAmelCase = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
# Segments (not really needed)
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = 2
_lowerCAmelCase = 3
_lowerCAmelCase = 4
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = "left"
def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
_lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,)
_lowerCAmelCase : int = 3
_lowerCAmelCase : Union[str, Any] = do_lower_case
_lowerCAmelCase : Dict = remove_space
_lowerCAmelCase : int = keep_accents
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_A )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.sp_model )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.__dict__.copy()
_lowerCAmelCase : List[str] = None
return state
def __setstate__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_lowerCAmelCase : Union[str, Any] = {}
_lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.remove_space:
_lowerCAmelCase : str = ' '.join(inputs.strip().split() )
else:
_lowerCAmelCase : Dict = inputs
_lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' )
if not self.keep_accents:
_lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A )
_lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] )
if self.do_lower_case:
_lowerCAmelCase : Tuple = outputs.lower()
return outputs
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A )
_lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A )
_lowerCAmelCase : int = []
for piece in pieces:
if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
_lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase : int = cur_pieces[1:]
else:
_lowerCAmelCase : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_A )
else:
new_pieces.append(_A )
return new_pieces
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.PieceToId(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.IdToPiece(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip()
return out_string
def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A )
_lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : int = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
_lowerCAmelCase : Tuple = []
sub_texts.append(_A )
else:
current_sub_text.append(_A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase : List[Any] = ''.join(_A )
_lowerCAmelCase : Tuple = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase : int = self.clean_up_tokenization(_A )
return clean_text
else:
return text
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
if token_ids_a is not None:
return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1]
return ([0] * len(_A )) + [1, 1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Any = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_A )
elif not os.path.isfile(self.vocab_file ):
with open(_A ,'wb' ) as fi:
_lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
| 16 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""caidas/swin2sr-classicalsr-x2-64""": (
"""https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"""
),
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = "swin2sr"
_UpperCAmelCase = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self ,_A=64 ,_A=1 ,_A=3 ,_A=180 ,_A=[6, 6, 6, 6, 6, 6] ,_A=[6, 6, 6, 6, 6, 6] ,_A=8 ,_A=2.0 ,_A=True ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A="gelu" ,_A=False ,_A=0.0_2 ,_A=1E-5 ,_A=2 ,_A=1.0 ,_A="1conv" ,_A="pixelshuffle" ,**_A ,):
'''simple docstring'''
super().__init__(**_A )
_lowerCAmelCase : List[str] = image_size
_lowerCAmelCase : Optional[Any] = patch_size
_lowerCAmelCase : Dict = num_channels
_lowerCAmelCase : int = embed_dim
_lowerCAmelCase : List[Any] = depths
_lowerCAmelCase : List[Any] = len(_A )
_lowerCAmelCase : Optional[int] = num_heads
_lowerCAmelCase : Dict = window_size
_lowerCAmelCase : Tuple = mlp_ratio
_lowerCAmelCase : Dict = qkv_bias
_lowerCAmelCase : List[Any] = hidden_dropout_prob
_lowerCAmelCase : List[Any] = attention_probs_dropout_prob
_lowerCAmelCase : Union[str, Any] = drop_path_rate
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : Dict = use_absolute_embeddings
_lowerCAmelCase : Union[str, Any] = layer_norm_eps
_lowerCAmelCase : List[Any] = initializer_range
_lowerCAmelCase : Tuple = upscale
_lowerCAmelCase : Tuple = img_range
_lowerCAmelCase : Optional[Any] = resi_connection
_lowerCAmelCase : Optional[Any] = upsampler
| 718 |
"""simple docstring"""
import argparse
import struct
import unittest
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = data
# Initialize hash values
_lowerCAmelCase : Any = [
0x6A09_E667,
0xBB67_AE85,
0x3C6E_F372,
0xA54F_F53A,
0x510E_527F,
0x9B05_688C,
0x1F83_D9AB,
0x5BE0_CD19,
]
# Initialize round constants
_lowerCAmelCase : str = [
0x428A_2F98,
0x7137_4491,
0xB5C0_FBCF,
0xE9B5_DBA5,
0x3956_C25B,
0x59F1_11F1,
0x923F_82A4,
0xAB1C_5ED5,
0xD807_AA98,
0x1283_5B01,
0x2431_85BE,
0x550C_7DC3,
0x72BE_5D74,
0x80DE_B1FE,
0x9BDC_06A7,
0xC19B_F174,
0xE49B_69C1,
0xEFBE_4786,
0x0FC1_9DC6,
0x240C_A1CC,
0x2DE9_2C6F,
0x4A74_84AA,
0x5CB0_A9DC,
0x76F9_88DA,
0x983E_5152,
0xA831_C66D,
0xB003_27C8,
0xBF59_7FC7,
0xC6E0_0BF3,
0xD5A7_9147,
0x06CA_6351,
0x1429_2967,
0x27B7_0A85,
0x2E1B_2138,
0x4D2C_6DFC,
0x5338_0D13,
0x650A_7354,
0x766A_0ABB,
0x81C2_C92E,
0x9272_2C85,
0xA2BF_E8A1,
0xA81A_664B,
0xC24B_8B70,
0xC76C_51A3,
0xD192_E819,
0xD699_0624,
0xF40E_3585,
0x106A_A070,
0x19A4_C116,
0x1E37_6C08,
0x2748_774C,
0x34B0_BCB5,
0x391C_0CB3,
0x4ED8_AA4A,
0x5B9C_CA4F,
0x682E_6FF3,
0x748F_82EE,
0x78A5_636F,
0x84C8_7814,
0x8CC7_0208,
0x90BE_FFFA,
0xA450_6CEB,
0xBEF9_A3F7,
0xC671_78F2,
]
_lowerCAmelCase : Any = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64))
_lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) )
return data + padding + big_endian_integer
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) )
# add 48 0-ed integers
words += [0] * 48
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowerCAmelCase : List[str] = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
_lowerCAmelCase : Tuple = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
_lowerCAmelCase : str = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0000_0000
# Compression
_lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 )
_lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g)
_lowerCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0000_0000
_lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 )
_lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c)
_lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = (
g,
f,
e,
((d + tempa) % 0x1_0000_0000),
c,
b,
a,
((tempa + tempa) % 0x1_0000_0000),
)
_lowerCAmelCase : Any = [a, b, c, d, e, f, g, h]
# Modify final values
_lowerCAmelCase : int = [
((element + mutated_hash_values[index]) % 0x1_0000_0000)
for index, element in enumerate(self.hashes )
]
_lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations)
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
import hashlib
_lowerCAmelCase : Any = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() )
def lowerCamelCase__ ( ):
'''simple docstring'''
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
_lowerCAmelCase : Tuple = parser.parse_args()
_lowerCAmelCase : List[str] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowerCAmelCase : int = f.read()
else:
_lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' )
print(SHAaaa(_lowerCamelCase ).hash )
if __name__ == "__main__":
main()
| 16 | 0 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = "char"
_UpperCAmelCase = "bpe"
_UpperCAmelCase = "wp"
_lowerCAmelCase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = ["image_processor", "char_tokenizer"]
_UpperCAmelCase = "ViTImageProcessor"
_UpperCAmelCase = "MgpstrTokenizer"
def __init__( self ,_A=None ,_A=None ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' ,_A ,)
_lowerCAmelCase : Union[str, Any] = kwargs.pop('feature_extractor' )
_lowerCAmelCase : int = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
_lowerCAmelCase : List[Any] = tokenizer
_lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('gpt2' )
_lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(_A ,_A )
def __call__( self ,_A=None ,_A=None ,_A=None ,**_A ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
_lowerCAmelCase : Union[str, Any] = self.image_processor(_A ,return_tensors=_A ,**_A )
if text is not None:
_lowerCAmelCase : Tuple = self.char_tokenizer(_A ,return_tensors=_A ,**_A )
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCAmelCase : Any = encodings['input_ids']
return inputs
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = sequences
_lowerCAmelCase : List[Any] = char_preds.size(0 )
_lowerCAmelCase : Union[str, Any] = self._decode_helper(_A ,'char' )
_lowerCAmelCase : Tuple = self._decode_helper(_A ,'bpe' )
_lowerCAmelCase : int = self._decode_helper(_A ,'wp' )
_lowerCAmelCase : Dict = []
_lowerCAmelCase : int = []
for i in range(_A ):
_lowerCAmelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]]
_lowerCAmelCase : Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]]
_lowerCAmelCase : Optional[Any] = scores.index(max(_A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_lowerCAmelCase : List[Any] = {}
_lowerCAmelCase : Any = final_strs
_lowerCAmelCase : Optional[Any] = final_scores
_lowerCAmelCase : Optional[int] = char_strs
_lowerCAmelCase : int = bpe_strs
_lowerCAmelCase : Any = wp_strs
return out
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
_lowerCAmelCase : int = self.char_decode
_lowerCAmelCase : Any = 1
_lowerCAmelCase : int = '[s]'
elif format == DecodeType.BPE:
_lowerCAmelCase : Optional[Any] = self.bpe_decode
_lowerCAmelCase : Optional[int] = 2
_lowerCAmelCase : Optional[Any] = '#'
elif format == DecodeType.WORDPIECE:
_lowerCAmelCase : str = self.wp_decode
_lowerCAmelCase : Any = 102
_lowerCAmelCase : Any = '[SEP]'
else:
raise ValueError(F"""Format {format} is not supported.""" )
_lowerCAmelCase : str = [], []
_lowerCAmelCase : Union[str, Any] = pred_logits.size(0 )
_lowerCAmelCase : List[str] = pred_logits.size(1 )
_lowerCAmelCase : int = pred_logits.topk(1 ,dim=-1 ,largest=_A ,sorted=_A )
_lowerCAmelCase : Tuple = preds_index.view(-1 ,_A )[:, 1:]
_lowerCAmelCase : Union[str, Any] = decoder(_A )
_lowerCAmelCase : Any = torch.nn.functional.softmax(_A ,dim=2 ).max(dim=2 )
_lowerCAmelCase : Tuple = preds_max_prob[:, 1:]
for index in range(_A ):
_lowerCAmelCase : Any = preds_str[index].find(_A )
_lowerCAmelCase : Dict = preds_str[index][:pred_eos]
_lowerCAmelCase : List[Any] = preds_index[index].cpu().tolist()
_lowerCAmelCase : Dict = pred_index.index(_A ) if eos_token in pred_index else -1
_lowerCAmelCase : int = preds_max_prob[index][: pred_eos_index + 1]
_lowerCAmelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_A )
conf_scores.append(_A )
return dec_strs, conf_scores
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = [seq.replace(' ' ,'' ) for seq in self.char_tokenizer.batch_decode(_A )]
return decode_strs
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [seq.replace(' ' ,'' ) for seq in self.wp_tokenizer.batch_decode(_A )]
return decode_strs
| 719 |
"""simple docstring"""
from collections.abc import Callable
class __UpperCamelCase :
def __init__( self ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : list = []
# Stores indexes of each item for supporting updates and deletion.
_lowerCAmelCase : dict = {}
# Stores current size of heap.
_lowerCAmelCase : Union[str, Any] = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
_lowerCAmelCase : Union[str, Any] = key or (lambda _A : x)
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return int((i - 1) / 2 ) if i > 0 else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = int(2 * i + 2 )
return right if 0 < right < self.size else None
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase : Tuple = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
_lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i]
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return self.arr[i][1] < self.arr[j][1]
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self._left(_A )
_lowerCAmelCase : str = self._right(_A )
_lowerCAmelCase : Tuple = i
if left is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : int = left
if right is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : Optional[int] = right
return valid_parent
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self._parent(_A )
while parent is not None and not self._cmp(_A ,_A ):
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A )
while valid_parent != index:
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : int = self.pos_map[item]
_lowerCAmelCase : Dict = [item, self.key(_A )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : List[str] = self.pos_map[item]
del self.pos_map[item]
_lowerCAmelCase : Dict = self.arr[self.size - 1]
_lowerCAmelCase : Optional[Any] = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(_A )] )
else:
_lowerCAmelCase : Any = [item, self.key(_A )]
_lowerCAmelCase : str = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.arr[0] if self.size else None
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def lowerCamelCase__ ( ):
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
"""simple docstring"""
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [1]
_lowerCAmelCase : List[str] = 0, 0, 0
_lowerCAmelCase : Union[str, Any] = ugly_nums[ia] * 2
_lowerCAmelCase : Union[str, Any] = ugly_nums[ia] * 3
_lowerCAmelCase : Optional[Any] = ugly_nums[ia] * 5
for _ in range(1 , _lowerCamelCase ):
_lowerCAmelCase : List[Any] = min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
ugly_nums.append(_lowerCamelCase )
if next_num == next_a:
ia += 1
_lowerCAmelCase : Optional[Any] = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
_lowerCAmelCase : Optional[Any] = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
_lowerCAmelCase : Union[str, Any] = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(F'''{ugly_numbers(2_0_0) = }''')
| 720 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = 42
class __UpperCamelCase ( a__ , a__ ):
@register_to_config
def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Any = num_attention_heads
_lowerCAmelCase : Optional[int] = attention_head_dim
_lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim
_lowerCAmelCase : Optional[Any] = additional_embeddings
_lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim
_lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim
_lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim
_lowerCAmelCase : int = Timesteps(_A ,_A ,0 )
_lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A )
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
if embedding_proj_norm_type is None:
_lowerCAmelCase : Optional[Any] = None
elif embedding_proj_norm_type == "layer":
_lowerCAmelCase : List[Any] = nn.LayerNorm(_A )
else:
raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
_lowerCAmelCase : Tuple = nn.Linear(_A ,_A )
if encoder_hid_proj_type is None:
_lowerCAmelCase : int = None
elif encoder_hid_proj_type == "linear":
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
else:
raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) )
if added_emb_type == "prd":
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) )
elif added_emb_type is None:
_lowerCAmelCase : List[Any] = None
else:
raise ValueError(
F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
_lowerCAmelCase : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(
_A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,)
for d in range(_A )
] )
if norm_in_type == "layer":
_lowerCAmelCase : Any = nn.LayerNorm(_A )
elif norm_in_type is None:
_lowerCAmelCase : Any = None
else:
raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" )
_lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A )
_lowerCAmelCase : int = nn.Linear(_A ,_A )
_lowerCAmelCase : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
_lowerCAmelCase : Tuple = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' ,_A ,persistent=_A )
_lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {}
def fn_recursive_add_processors(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
_lowerCAmelCase : str = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_A ,_A ,_A )
return processors
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_A ,_A ) and len(_A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
if not isinstance(_A ,_A ):
module.set_processor(_A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A )
for name, module in self.named_children():
fn_recursive_attn_processor(_A ,_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,):
'''simple docstring'''
_lowerCAmelCase : str = hidden_states.shape[0]
_lowerCAmelCase : int = timestep
if not torch.is_tensor(_A ):
_lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device )
elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0:
_lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device )
_lowerCAmelCase : Dict = self.time_proj(_A )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype )
_lowerCAmelCase : Optional[Any] = self.time_embedding(_A )
if self.embedding_proj_norm is not None:
_lowerCAmelCase : int = self.embedding_proj_norm(_A )
_lowerCAmelCase : str = self.embedding_proj(_A )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_lowerCAmelCase : str = self.encoder_hidden_states_proj(_A )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
_lowerCAmelCase : Any = self.proj_in(_A )
_lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype )
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_A )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_lowerCAmelCase : int = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_lowerCAmelCase : Any = hidden_states[:, None, :]
_lowerCAmelCase : int = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 )
additional_embeds.append(_A )
_lowerCAmelCase : List[str] = torch.cat(
_A ,dim=1 ,)
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_lowerCAmelCase : Any = F.pad(
_A ,(
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) ,value=0.0 ,)
_lowerCAmelCase : int = hidden_states + positional_embeddings
if attention_mask is not None:
_lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
_lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 )
_lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 )
if self.norm_in is not None:
_lowerCAmelCase : Any = self.norm_in(_A )
for block in self.transformer_blocks:
_lowerCAmelCase : int = block(_A ,attention_mask=_A )
_lowerCAmelCase : Union[str, Any] = self.norm_out(_A )
if self.prd_embedding is not None:
_lowerCAmelCase : Optional[int] = hidden_states[:, -1]
else:
_lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:]
_lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 16 | 0 |
"""simple docstring"""
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_lowerCAmelCase = get_logger()
_lowerCAmelCase = None
class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
def __init__( self ,_A=None ,_A=None ,**_A ):
'''simple docstring'''
super().__init__(features=_A )
import jax
from jaxlib.xla_client import Device
if isinstance(_A ,_A ):
raise ValueError(
F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
_lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"""Device with string identifier {self.device} not listed among the available """
F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
F"""device: {str(jax.devices()[0] )}.""" )
_lowerCAmelCase : List[str] = str(jax.devices()[0] )
_lowerCAmelCase : int = jnp_array_kwargs
@staticmethod
def __lowerCamelCase ( ):
'''simple docstring'''
import jax
return {str(_A ): device for device in jax.devices()}
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,_A ) and column:
if all(
isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_A ,axis=0 )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,(str, bytes, type(_A )) ):
return value
elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ):
return value.tolist()
_lowerCAmelCase : Optional[Any] = {}
if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_lowerCAmelCase : List[str] = {'dtype': jnp.intaa}
else:
_lowerCAmelCase : Tuple = {'dtype': jnp.intaa}
elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ):
_lowerCAmelCase : Any = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_A ,PIL.Image.Image ):
_lowerCAmelCase : int = np.asarray(_A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Optional[Any] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_A ,torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ):
_lowerCAmelCase : Optional[Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_A ,np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
elif isinstance(_A ,(list, tuple) ):
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
return self._tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return map_nested(self._recursive_tensorize ,_A ,map_list=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A )
_lowerCAmelCase : int = self.python_features_decoder.decode_row(_A )
return self.recursive_tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A )
_lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] )
_lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A )
_lowerCAmelCase : Optional[Any] = self._consolidate(_A )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A )
_lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A )
_lowerCAmelCase : str = self.recursive_tensorize(_A )
for column_name in batch:
_lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 721 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_lowerCAmelCase = get_logger()
_lowerCAmelCase = None
class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
def __init__( self ,_A=None ,_A=None ,**_A ):
'''simple docstring'''
super().__init__(features=_A )
import jax
from jaxlib.xla_client import Device
if isinstance(_A ,_A ):
raise ValueError(
F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
_lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"""Device with string identifier {self.device} not listed among the available """
F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
F"""device: {str(jax.devices()[0] )}.""" )
_lowerCAmelCase : List[str] = str(jax.devices()[0] )
_lowerCAmelCase : int = jnp_array_kwargs
@staticmethod
def __lowerCamelCase ( ):
'''simple docstring'''
import jax
return {str(_A ): device for device in jax.devices()}
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,_A ) and column:
if all(
isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_A ,axis=0 )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,(str, bytes, type(_A )) ):
return value
elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ):
return value.tolist()
_lowerCAmelCase : Optional[Any] = {}
if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_lowerCAmelCase : List[str] = {'dtype': jnp.intaa}
else:
_lowerCAmelCase : Tuple = {'dtype': jnp.intaa}
elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ):
_lowerCAmelCase : Any = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_A ,PIL.Image.Image ):
_lowerCAmelCase : int = np.asarray(_A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Optional[Any] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_A ,torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ):
_lowerCAmelCase : Optional[Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_A ,np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
elif isinstance(_A ,(list, tuple) ):
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
return self._tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return map_nested(self._recursive_tensorize ,_A ,map_list=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A )
_lowerCAmelCase : int = self.python_features_decoder.decode_row(_A )
return self.recursive_tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A )
_lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] )
_lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A )
_lowerCAmelCase : Optional[Any] = self._consolidate(_A )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A )
_lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A )
_lowerCAmelCase : str = self.recursive_tensorize(_A )
for column_name in batch:
_lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 16 | 0 |
"""simple docstring"""
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
_lowerCAmelCase = (
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
_lowerCAmelCase = (
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
_lowerCAmelCase = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
_lowerCAmelCase = (
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
_lowerCAmelCase = (
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]),
("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
_lowerCAmelCase = (
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
_lowerCAmelCase = (
("""JH AH TH KH QH""", 2_3),
("""JH 9H TH KH QH""", 2_2),
("""JC KH JS JD JH""", 2_1),
("""KH KC 3S 3H 3D""", 2_0),
("""8C 9C 5C 3C TC""", 1_9),
("""JS QS 9H TS KH""", 1_8),
("""7C 7S KH 2H 7H""", 1_7),
("""3C KH 5D 5S KH""", 1_6),
("""QH 8H KD JH 8S""", 1_5),
("""2D 6D 9D TH 7D""", 1_4),
)
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) )
_lowerCAmelCase : List[Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)]
_lowerCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCamelCase__ ( _lowerCamelCase = 100 ):
'''simple docstring'''
return (generate_random_hand() for _ in range(_lowerCamelCase ))
@pytest.mark.parametrize('hand, expected' , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
assert PokerHand(_lowerCamelCase )._is_flush() == expected
@pytest.mark.parametrize('hand, expected' , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
assert PokerHand(_lowerCamelCase )._is_straight() == expected
@pytest.mark.parametrize('hand, expected, card_values' , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = PokerHand(_lowerCamelCase )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize('hand, expected' , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
assert PokerHand(_lowerCamelCase )._is_same_kind() == expected
@pytest.mark.parametrize('hand, expected' , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
assert PokerHand(_lowerCamelCase )._hand_type == expected
@pytest.mark.parametrize('hand, other, expected' , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected
@pytest.mark.parametrize('hand, other, expected' , generate_random_hands() )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS]
_lowerCAmelCase : List[str] = poker_hands.copy()
shuffle(_lowerCamelCase )
_lowerCAmelCase : int = chain(sorted(_lowerCamelCase ) )
for index, hand in enumerate(_lowerCamelCase ):
assert hand == poker_hands[index]
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )]
pokerhands.sort(reverse=_lowerCamelCase )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = PokerHand('2C 4S AS 3D 5C' )
_lowerCAmelCase : List[Any] = True
_lowerCAmelCase : Optional[int] = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 0
_lowerCAmelCase : Optional[Any] = os.path.abspath(os.path.dirname(_lowerCamelCase ) )
_lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , 'poker_hands.txt' )
with open(_lowerCamelCase ) as file_hand:
for line in file_hand:
_lowerCAmelCase : Dict = line[:14].strip()
_lowerCAmelCase : List[str] = line[15:].strip()
_lowerCAmelCase : List[str] = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase )
_lowerCAmelCase : Dict = player.compare_with(_lowerCamelCase )
if output == "Win":
answer += 1
assert answer == 376
| 700 |
"""simple docstring"""
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = ["vqvae"]
def __init__( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
super().__init__()
self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
return 50 if isinstance(self.scheduler ,_A ) else 1000
@torch.no_grad()
def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,):
'''simple docstring'''
_lowerCAmelCase : List[str] = steps or self.get_default_steps()
self.scheduler.set_timesteps(_A )
_lowerCAmelCase : Optional[Any] = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
_lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
_lowerCAmelCase : Optional[Any] = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) ,generator=_A ,device=self.device ,)
_lowerCAmelCase : Dict = noise
_lowerCAmelCase : Optional[Any] = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_A ,_A )
_lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A )
_lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
_lowerCAmelCase : int = (input_image / 255) * 2 - 1
_lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device )
if self.vqvae is not None:
_lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample(
generator=_A )[0]
_lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
_lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] )
_lowerCAmelCase : Optional[Any] = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
_lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second )
_lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second )
_lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet ,_A ):
_lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample']
else:
_lowerCAmelCase : Any = self.unet(_A ,_A )['sample']
if isinstance(self.scheduler ,_A ):
_lowerCAmelCase : Union[str, Any] = self.scheduler.step(
model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample']
else:
_lowerCAmelCase : Any = self.scheduler.step(
model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample']
if mask is not None:
if mask_start > 0:
_lowerCAmelCase : Any = mask[:, step, :, :mask_start]
if mask_end > 0:
_lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
_lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images
_lowerCAmelCase : Any = self.vqvae.decode(_A )['sample']
_lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 )
_lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy()
_lowerCAmelCase : Any = (images * 255).round().astype('uint8' )
_lowerCAmelCase : Any = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) )
_lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) )
@torch.no_grad()
def __lowerCamelCase ( self ,_A ,_A = 50 ):
'''simple docstring'''
assert isinstance(self.scheduler ,_A )
self.scheduler.set_timesteps(_A )
_lowerCAmelCase : Dict = np.array(
[np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
_lowerCAmelCase : Dict = (sample / 255) * 2 - 1
_lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ):
_lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
_lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t]
_lowerCAmelCase : Dict = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
_lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t
_lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample']
_lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output
_lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
_lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def __lowerCamelCase ( _A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) )
return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
| 16 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""",
}
class __UpperCamelCase ( a__ , a__ ):
_UpperCAmelCase = "resnet"
_UpperCAmelCase = ["basic", "bottleneck"]
def __init__( self ,_A=3 ,_A=64 ,_A=[256, 512, 1024, 2048] ,_A=[3, 4, 6, 3] ,_A="bottleneck" ,_A="relu" ,_A=False ,_A=None ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(**_A )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
_lowerCAmelCase : Dict = num_channels
_lowerCAmelCase : Optional[int] = embedding_size
_lowerCAmelCase : Optional[int] = hidden_sizes
_lowerCAmelCase : int = depths
_lowerCAmelCase : Optional[int] = layer_type
_lowerCAmelCase : Any = hidden_act
_lowerCAmelCase : Any = downsample_in_first_stage
_lowerCAmelCase : Union[str, Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )]
_lowerCAmelCase : Dict = get_aligned_output_features_output_indices(
out_features=_A ,out_indices=_A ,stage_names=self.stage_names )
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = version.parse("1.11" )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return 1E-3
| 701 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""vocab_file""": """vocab.json""",
"""tokenizer_config_file""": """tokenizer_config.json""",
"""merges_file""": """merges.txt""",
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json"""
),
},
"""tokenizer_config_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json"""
),
},
"""merges_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt"""
),
},
}
_lowerCAmelCase = """</w>"""
_lowerCAmelCase = """@@ """
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = set()
_lowerCAmelCase : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase : Any = char
return pairs
# Speech2Text2 has no max input length
_lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,)
_lowerCAmelCase : List[Any] = do_lower_case
with open(_A ,encoding='utf-8' ) as vocab_handle:
_lowerCAmelCase : Optional[int] = json.load(_A )
_lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : Tuple = None
else:
with open(_A ,encoding='utf-8' ) as merges_handle:
_lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1]
_lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges]
_lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Union[str, Any] = {}
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.decoder )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
_lowerCAmelCase : str = get_pairs(_A )
if not pairs:
return token
while True:
_lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram
_lowerCAmelCase : Union[str, Any] = []
_lowerCAmelCase : Dict = 0
while i < len(_A ):
try:
_lowerCAmelCase : Dict = word.index(_A ,_A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase : Optional[Any] = j
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase : Optional[Any] = tuple(_A )
_lowerCAmelCase : List[str] = new_word
if len(_A ) == 1:
break
else:
_lowerCAmelCase : List[str] = get_pairs(_A )
_lowerCAmelCase : Any = ' '.join(_A )
if word == "\n " + BPE_TOKEN_MERGES:
_lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES
if word.endswith(_A ):
_lowerCAmelCase : Dict = word.replace(_A ,'' )
_lowerCAmelCase : str = word.replace(' ' ,_A )
_lowerCAmelCase : str = word
return word
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.bpe_ranks is None:
raise ValueError(
'This tokenizer was instantiated without a `merges.txt` file, so'
' that it can only be used for decoding, not for encoding.'
'Make sure to provide `merges.txt` file at instantiation to enable '
'encoding.' )
if self.do_lower_case:
_lowerCAmelCase : Optional[Any] = text.lower()
_lowerCAmelCase : Tuple = text.split()
_lowerCAmelCase : Union[str, Any] = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) )
return split_tokens
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.encoder.get(_A ,self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token )
return result
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ' '.join(_A )
# make sure @@ tokens are concatenated
_lowerCAmelCase : int = ''.join(string.split(_A ) )
return string
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : List[Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
_lowerCAmelCase : str = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(_A ,'w' ,encoding='utf-8' ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowerCAmelCase : Dict = token_index
writer.write(' '.join(_A ) + '\n' )
index += 1
return (vocab_file, merges_file)
| 16 | 0 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-question_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": 5_1_2,
"""facebook/dpr-reader-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_lowerCAmelCase = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCAmelCase = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(a__ )
class __UpperCamelCase :
def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
elif titles is None or texts is None:
_lowerCAmelCase : Optional[int] = titles if texts is None else texts
return super().__call__(
_A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
_lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles]
_lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts]
_lowerCAmelCase : Union[str, Any] = len(_A )
_lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages
if len(_A ) != len(_A ):
raise ValueError(
F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" )
_lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Optional[int] = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_A ,_A )
]
}
if return_attention_mask is not False:
_lowerCAmelCase : Tuple = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_lowerCAmelCase : List[Any] = attention_mask
return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A )
def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,):
'''simple docstring'''
_lowerCAmelCase : int = reader_input['input_ids']
_lowerCAmelCase : int = reader_output[:3]
_lowerCAmelCase : Optional[Any] = len(_A )
_lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ )
_lowerCAmelCase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_lowerCAmelCase : int = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id )
else:
_lowerCAmelCase : Optional[int] = len(_A )
_lowerCAmelCase : Optional[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(_A ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
for start_index, start_score in enumerate(_A ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A )
_lowerCAmelCase : int = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" )
_lowerCAmelCase : List[str] = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_A ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(a__ )
class __UpperCamelCase ( a__ , a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = ["input_ids", "attention_mask"]
| 702 |
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __UpperCamelCase ( a__ , a__ ):
@register_to_config
def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : int = nn.Sequential(
nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,)
_lowerCAmelCase : Any = nn.Embedding(_A ,_A )
_lowerCAmelCase : Tuple = False
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : int = nn.Dropout(p=_A )
_lowerCAmelCase : int = nn.ModuleList()
for lyr_num in range(_A ):
# FiLM conditional T5 decoder
_lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A )
self.decoders.append(_A )
_lowerCAmelCase : Optional[Any] = TaLayerNorm(_A )
_lowerCAmelCase : List[str] = nn.Dropout(p=_A )
_lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
_lowerCAmelCase : Any = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype )
_lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
_lowerCAmelCase : str = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
_lowerCAmelCase : Union[str, Any] = torch.broadcast_to(
torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,)
_lowerCAmelCase : Any = self.position_encoding(_A )
_lowerCAmelCase : str = self.continuous_inputs_projection(_A )
inputs += position_encodings
_lowerCAmelCase : int = self.dropout(_A )
# decoder: No padding present.
_lowerCAmelCase : Union[str, Any] = torch.ones(
decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
_lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
_lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 )
_lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 )
for lyr in self.decoders:
_lowerCAmelCase : Tuple = lyr(
_A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0]
_lowerCAmelCase : Any = self.decoder_norm(_A )
_lowerCAmelCase : List[Any] = self.post_dropout(_A )
_lowerCAmelCase : int = self.spec_out(_A )
return spec_out
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[Any] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Any = self.layer[0](
_A ,conditioning_emb=_A ,attention_mask=_A ,)
if encoder_hidden_states is not None:
_lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to(
encoder_hidden_states.dtype )
_lowerCAmelCase : str = self.layer[1](
_A ,key_value_states=_A ,attention_mask=_A ,)
# Apply Film Conditional Feed Forward layer
_lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A )
return (hidden_states,)
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A )
_lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A )
_lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A )
_lowerCAmelCase : Tuple = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : int = self.layer_norm(_A )
if conditioning_emb is not None:
_lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A )
# Self-attention block
_lowerCAmelCase : Union[str, Any] = self.attention(_A )
_lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A )
_lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A )
_lowerCAmelCase : Tuple = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.layer_norm(_A )
_lowerCAmelCase : str = self.attention(
_A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,)
_lowerCAmelCase : Any = hidden_states + self.dropout(_A )
return layer_output
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A )
_lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A )
_lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A )
_lowerCAmelCase : Union[str, Any] = nn.Dropout(_A )
def __lowerCamelCase ( self ,_A ,_A=None ):
'''simple docstring'''
_lowerCAmelCase : int = self.layer_norm(_A )
if conditioning_emb is not None:
_lowerCAmelCase : Union[str, Any] = self.film(_A ,_A )
_lowerCAmelCase : str = self.DenseReluDense(_A )
_lowerCAmelCase : Tuple = hidden_states + self.dropout(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A )
_lowerCAmelCase : Union[str, Any] = nn.Dropout(_A )
_lowerCAmelCase : int = NewGELUActivation()
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) )
_lowerCAmelCase : Optional[int] = self.wi_a(_A )
_lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear
_lowerCAmelCase : Dict = self.dropout(_A )
_lowerCAmelCase : Dict = self.wo(_A )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A=1E-6 ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) )
_lowerCAmelCase : Optional[int] = eps
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A )
_lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
_lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __UpperCamelCase ( nn.Module ):
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) ))
class __UpperCamelCase ( nn.Module ):
def __init__( self ,_A ,_A ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.scale_bias(_A )
_lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 )
_lowerCAmelCase : List[Any] = x * (1 + scale) + shift
return x
| 16 | 0 |
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
if not is_sharded:
_lowerCAmelCase : Optional[Any] = os.path.abspath(_lowerCamelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
_lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location='cpu' )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
_lowerCAmelCase : Optional[Any] = convert_pytorch_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
_lowerCAmelCase : List[str] = convert_pytorch_sharded_state_dict_to_flax(_lowerCamelCase , _lowerCamelCase )
return flax_state_dict
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
'''simple docstring'''
def is_key_or_prefix_key_in_dict(_lowerCamelCase ) -> bool:
return len(set(_lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
_lowerCAmelCase : int = pt_tuple_key[:-1] + ('scale',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
_lowerCAmelCase : int = pt_tuple_key[:-1] + ('mean',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
_lowerCAmelCase : Dict = pt_tuple_key[:-1] + ('var',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
_lowerCAmelCase : List[str] = pt_tuple_key[:-1] + ('embedding',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
_lowerCAmelCase : List[Any] = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCamelCase ):
_lowerCAmelCase : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
_lowerCAmelCase : Any = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCamelCase ):
_lowerCAmelCase : List[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
_lowerCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ('weight',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
_lowerCAmelCase : int = pt_tuple_key[:-1] + ('bias',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
_lowerCAmelCase : Optional[int] = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
_lowerCAmelCase : Union[str, Any] = pt_tuple_key[-2] + '_g'
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
_lowerCAmelCase : List[str] = pt_tuple_key[-2] + '_v'
if name is not None:
_lowerCAmelCase : Any = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
_lowerCAmelCase : Optional[int] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
_lowerCAmelCase : Optional[int] = flax_model.params['params']
else:
_lowerCAmelCase : Union[str, Any] = flax_model.params
_lowerCAmelCase : str = flatten_dict(_lowerCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
_lowerCAmelCase : List[Any] = flatten_dict(flax_model.params['batch_stats'] )
random_flax_state_dict.update(_lowerCamelCase )
_lowerCAmelCase : List[str] = {}
_lowerCAmelCase : Any = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
_lowerCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
_lowerCAmelCase : Any = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
_lowerCAmelCase : List[Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
_lowerCAmelCase : List[str] = pt_tuple_key[1:]
# Correctly rename weight parameters
_lowerCAmelCase : Optional[Any] = rename_key_and_reshape_tensor(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# add model prefix if necessary
_lowerCAmelCase : List[str] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
_lowerCAmelCase : List[str] = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
_lowerCAmelCase : Tuple = jnp.asarray(_lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
_lowerCAmelCase : str = jnp.asarray(_lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
_lowerCAmelCase : int = jnp.asarray(_lowerCamelCase )
return unflatten_dict(_lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
import torch
# Load the index
_lowerCAmelCase : Optional[int] = {}
for shard_file in shard_filenames:
# load using msgpack utils
_lowerCAmelCase : List[str] = torch.load(_lowerCamelCase )
_lowerCAmelCase : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
_lowerCAmelCase : Dict = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
_lowerCAmelCase : Optional[Any] = flax_model.params['params']
_lowerCAmelCase : Union[str, Any] = flatten_dict(_lowerCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) )
else:
_lowerCAmelCase : Optional[Any] = flax_model.params
_lowerCAmelCase : str = flatten_dict(_lowerCamelCase )
_lowerCAmelCase : str = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
_lowerCAmelCase : Tuple = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
_lowerCAmelCase : Tuple = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
_lowerCAmelCase : List[Any] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
_lowerCAmelCase : List[Any] = pt_tuple_key[1:]
# Correctly rename weight parameters
_lowerCAmelCase : int = rename_key_and_reshape_tensor(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# add model prefix if necessary
_lowerCAmelCase : Dict = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
_lowerCAmelCase : List[str] = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
_lowerCAmelCase : str = jnp.asarray(_lowerCamelCase )
continue
if "var" in flax_key[-1]:
_lowerCAmelCase : Optional[Any] = jnp.asarray(_lowerCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(_lowerCamelCase , _lowerCamelCase )
continue
# also add unexpected weight so that warning is thrown
_lowerCAmelCase : Union[str, Any] = jnp.asarray(_lowerCamelCase )
else:
# also add unexpected weight so that warning is thrown
_lowerCAmelCase : List[str] = jnp.asarray(_lowerCamelCase )
return unflatten_dict(_lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = os.path.abspath(_lowerCamelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
_lowerCAmelCase : Union[str, Any] = getattr(_lowerCamelCase , 'Flax' + model.__class__.__name__ )
# load flax weight dict
with open(_lowerCamelCase , 'rb' ) as state_f:
try:
_lowerCAmelCase : Any = from_bytes(_lowerCamelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
_lowerCAmelCase : Tuple = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values()
if any(_lowerCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
_lowerCAmelCase : List[Any] = jax.tree_util.tree_map(
lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase )
_lowerCAmelCase : Optional[int] = flatten_dict(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = pt_model.state_dict()
_lowerCAmelCase : Any = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
_lowerCAmelCase : List[str] = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
_lowerCAmelCase : Tuple = []
_lowerCAmelCase : List[str] = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
_lowerCAmelCase : List[str] = flax_key_tuple[0] == pt_model.base_model_prefix
_lowerCAmelCase : List[Any] = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
_lowerCAmelCase : Tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
_lowerCAmelCase : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCamelCase ) not in pt_model_dict:
# conv layer
_lowerCAmelCase : Tuple = flax_key_tuple[:-1] + ('weight',)
_lowerCAmelCase : Tuple = jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCamelCase ) not in pt_model_dict:
# linear layer
_lowerCAmelCase : List[Any] = flax_key_tuple[:-1] + ('weight',)
_lowerCAmelCase : str = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
_lowerCAmelCase : int = flax_key_tuple[:-1] + ('weight',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
_lowerCAmelCase : List[Any] = flax_key_tuple[:-1] + ('running_mean',)
elif "var" in flax_key_tuple[-1]:
_lowerCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('running_var',)
if "batch_stats" in flax_state:
_lowerCAmelCase : Any = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
_lowerCAmelCase : Tuple = '.'.join(_lowerCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
_lowerCAmelCase : Any = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
_lowerCAmelCase : Optional[Any] = key.split('.' )
_lowerCAmelCase : Dict = None
if key_components[-3::2] == ["parametrizations", "original0"]:
_lowerCAmelCase : List[Any] = key_components[-2] + '_g'
elif key_components[-3::2] == ["parametrizations", "original1"]:
_lowerCAmelCase : Tuple = key_components[-2] + '_v'
if name is not None:
_lowerCAmelCase : int = key_components[:-3] + [name]
_lowerCAmelCase : Optional[Any] = '.'.join(_lowerCamelCase )
_lowerCAmelCase : Optional[Any] = key
if flax_key in special_pt_names:
_lowerCAmelCase : Tuple = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
_lowerCAmelCase : Union[str, Any] = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor
_lowerCAmelCase : Optional[int] = torch.from_numpy(_lowerCamelCase )
# remove from missing keys
missing_keys.remove(_lowerCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(_lowerCamelCase )
pt_model.load_state_dict(_lowerCamelCase )
# re-transform missing_keys to list
_lowerCAmelCase : Dict = list(_lowerCamelCase )
if len(_lowerCamelCase ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(_lowerCamelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
' use it for predictions and inference.' )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
'If your task is similar to the task the model of the checkpoint was trained on, '
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 703 |
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __UpperCamelCase :
def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = parent
_lowerCAmelCase : int = batch_size
_lowerCAmelCase : int = image_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Optional[int] = embeddings_size
_lowerCAmelCase : Optional[int] = hidden_sizes
_lowerCAmelCase : str = depths
_lowerCAmelCase : str = is_training
_lowerCAmelCase : int = use_labels
_lowerCAmelCase : Optional[int] = hidden_act
_lowerCAmelCase : Optional[int] = num_labels
_lowerCAmelCase : Dict = scope
_lowerCAmelCase : Union[str, Any] = len(_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : Optional[Any] = None
if self.use_labels:
_lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels )
_lowerCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCamelCase ( self ):
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,)
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A )
_lowerCAmelCase : List[str] = model(_A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self.num_labels
_lowerCAmelCase : Dict = TFResNetForImageClassification(_A )
_lowerCAmelCase : int = model(_A ,labels=_A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs
_lowerCAmelCase : Any = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __UpperCamelCase ( a__ , a__ , unittest.TestCase ):
_UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_UpperCAmelCase = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = TFResNetModelTester(self )
_lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCamelCase ( self ):
'''simple docstring'''
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : int = model_class(_A )
_lowerCAmelCase : Union[str, Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase : Any = [*signature.parameters.keys()]
_lowerCAmelCase : str = ['pixel_values']
self.assertListEqual(arg_names[:1] ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
def check_hidden_states_output(_A ,_A ,_A ):
_lowerCAmelCase : int = model_class(_A )
_lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) )
_lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCAmelCase : int = self.model_tester.num_stages
self.assertEqual(len(_A ) ,expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
_lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase : Any = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
_lowerCAmelCase : Optional[int] = layer_type
_lowerCAmelCase : Tuple = True
check_hidden_states_output(_A ,_A ,_A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase : Any = True
check_hidden_states_output(_A ,_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_A )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A )
self.assertIsNotNone(_A )
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def __lowerCamelCase ( self ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_lowerCAmelCase : Tuple = self.default_image_processor
_lowerCAmelCase : Optional[Any] = prepare_img()
_lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' )
# forward pass
_lowerCAmelCase : int = model(**_A )
# verify the logits
_lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape ,_A )
_lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
| 16 | 0 |
from numpy import exp, pi, sqrt
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = 1.0 ):
'''simple docstring'''
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
_lowerCAmelCase = list[list[float | int]]
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = len(_lowerCamelCase )
_lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : float
for row in range(_lowerCamelCase ):
for col in range(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = matrix[row][col]
_lowerCAmelCase : Tuple = vector[row][0]
_lowerCAmelCase : Dict = 0
_lowerCAmelCase : Any = 0
while row < size and col < size:
# pivoting
_lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , _lowerCamelCase ):
_lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col]
_lowerCAmelCase : Optional[Any] = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , _lowerCamelCase ):
for row in range(_lowerCamelCase ):
_lowerCAmelCase : int = augmented[row][col] / augmented[col][col]
for cola in range(_lowerCamelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase )
]
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : int = len(_lowerCamelCase )
_lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )]
_lowerCAmelCase : Matrix
_lowerCAmelCase : int
_lowerCAmelCase : int
_lowerCAmelCase : int
for x_val, y_val in enumerate(_lowerCamelCase ):
for col in range(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1)
_lowerCAmelCase : Optional[int] = y_val
_lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase )
def interpolated_func(_lowerCamelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(_lowerCamelCase ) )
return interpolated_func
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ):
'''simple docstring'''
_lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )]
_lowerCAmelCase : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
_lowerCAmelCase : int = 0
_lowerCAmelCase : Callable[[int], int]
_lowerCAmelCase : int
for poly in polynomials:
_lowerCAmelCase : Any = 1
while func(_lowerCamelCase ) == poly(_lowerCamelCase ):
x_val += 1
ret += poly(_lowerCamelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 16 | 0 |
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = ["image_processor", "tokenizer"]
_UpperCAmelCase = "BlipImageProcessor"
_UpperCAmelCase = "AutoTokenizer"
def __init__( self ,_A ,_A ,_A ):
'''simple docstring'''
super().__init__(_A ,_A )
# add QFormer tokenizer
_lowerCAmelCase : str = qformer_tokenizer
def __call__( self ,_A = None ,_A = None ,_A = True ,_A = False ,_A = None ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A = False ,_A = False ,_A = False ,_A = False ,_A = False ,_A = True ,_A = None ,**_A ,):
'''simple docstring'''
if images is None and text is None:
raise ValueError('You have to specify at least images or text.' )
_lowerCAmelCase : List[str] = BatchFeature()
if text is not None:
_lowerCAmelCase : Union[str, Any] = self.tokenizer(
text=_A ,add_special_tokens=_A ,padding=_A ,truncation=_A ,max_length=_A ,stride=_A ,pad_to_multiple_of=_A ,return_attention_mask=_A ,return_overflowing_tokens=_A ,return_special_tokens_mask=_A ,return_offsets_mapping=_A ,return_token_type_ids=_A ,return_length=_A ,verbose=_A ,return_tensors=_A ,**_A ,)
encoding.update(_A )
_lowerCAmelCase : Any = self.qformer_tokenizer(
text=_A ,add_special_tokens=_A ,padding=_A ,truncation=_A ,max_length=_A ,stride=_A ,pad_to_multiple_of=_A ,return_attention_mask=_A ,return_overflowing_tokens=_A ,return_special_tokens_mask=_A ,return_offsets_mapping=_A ,return_token_type_ids=_A ,return_length=_A ,verbose=_A ,return_tensors=_A ,**_A ,)
_lowerCAmelCase : List[str] = qformer_text_encoding.pop('input_ids' )
_lowerCAmelCase : Optional[int] = qformer_text_encoding.pop('attention_mask' )
if images is not None:
_lowerCAmelCase : Optional[Any] = self.image_processor(_A ,return_tensors=_A )
encoding.update(_A )
return encoding
def __lowerCamelCase ( self ,*_A ,**_A ):
'''simple docstring'''
return self.tokenizer.batch_decode(*_A ,**_A )
def __lowerCamelCase ( self ,*_A ,**_A ):
'''simple docstring'''
return self.tokenizer.decode(*_A ,**_A )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer.model_input_names
_lowerCAmelCase : str = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def __lowerCamelCase ( self ,_A ,**_A ):
'''simple docstring'''
if os.path.isfile(_A ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(_A ,exist_ok=_A )
_lowerCAmelCase : Union[str, Any] = os.path.join(_A ,'qformer_tokenizer' )
self.qformer_tokenizer.save_pretrained(_A )
return super().save_pretrained(_A ,**_A )
@classmethod
def __lowerCamelCase ( cls ,_A ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ,subfolder='qformer_tokenizer' )
_lowerCAmelCase : Dict = cls._get_arguments_from_pretrained(_A ,**_A )
args.append(_A )
return cls(*_A )
| 705 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
for char in word:
_lowerCAmelCase : Dict = ord(_lowerCamelCase )
if not _is_chinese_char(_lowerCamelCase ):
return 0
return 1
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Tuple = set()
for token in tokens:
_lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase )
if chinese_word:
word_set.add(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase )
return word_list
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
_lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] )
_lowerCAmelCase : str = bert_tokens
_lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase )
while start < end:
_lowerCAmelCase : Dict = True
if is_chinese(bert_word[start] ):
_lowerCAmelCase : str = min(end - start , _lowerCamelCase )
for i in range(_lowerCamelCase , 1 , -1 ):
_lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_lowerCAmelCase : Tuple = '##' + bert_word[j]
_lowerCAmelCase : Optional[int] = start + i
_lowerCAmelCase : Any = False
break
if single_word:
start += 1
return bert_word
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0]
_lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res]
ltp_res.extend(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : int = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Optional[int] = []
for id in input_ids:
_lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase )
input_tokens.append(_lowerCamelCase )
_lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : List[str] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCamelCase ):
if token[:2] == "##":
_lowerCAmelCase : List[Any] = token[2:]
# save chinese tokens' pos
if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ):
ref_id.append(_lowerCamelCase )
ref_ids.append(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
return ref_ids
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
_lowerCAmelCase : int = f.readlines()
_lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device
_lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert )
_lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids]
f.writelines(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_lowerCAmelCase = parser.parse_args()
main(args)
| 16 | 0 |
"""simple docstring"""
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
_lowerCAmelCase = logging.getLogger(__name__)
def lowerCamelCase__ ( _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase = 10 , _lowerCamelCase = 2 ):
'''simple docstring'''
def get_dataset(_lowerCamelCase ):
_lowerCAmelCase : Optional[Any] = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(_lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
_lowerCAmelCase : Any = get_dataset(_lowerCamelCase )
_lowerCAmelCase : str = get_dataset(_lowerCamelCase )
_lowerCAmelCase : Optional[Any] = DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , batch_size=_lowerCamelCase , num_workers=4 )
_lowerCAmelCase : int = DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , batch_size=_lowerCamelCase , num_workers=4 )
return (train_dataloader, valid_dataloader)
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : int = []
for epoch in range(_lowerCamelCase ):
# Train quickly
model.train()
for batch in dataloader:
_lowerCAmelCase : Union[str, Any] = batch
_lowerCAmelCase : Union[str, Any] = model(_lowerCamelCase )
_lowerCAmelCase : int = torch.nn.functional.mse_loss(_lowerCamelCase , _lowerCamelCase )
accelerator.backward(_lowerCamelCase )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class __UpperCamelCase ( nn.Module ):
def __init__( self ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : int = nn.Parameter(torch.randn(1 ) )
_lowerCAmelCase : Dict = nn.Parameter(torch.randn(1 ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return x * self.a + self.b
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
_lowerCAmelCase : Union[str, Any] = DummyModel()
_lowerCAmelCase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 )
_lowerCAmelCase : Optional[Any] = dummy_dataloaders()
_lowerCAmelCase : str = ProjectConfiguration(total_limit=1 ,project_dir=_A ,automatic_checkpoint_naming=_A )
# Train baseline
_lowerCAmelCase : Any = Accelerator(project_config=_A )
_lowerCAmelCase : str = accelerator.prepare(
_A ,_A ,_A ,_A )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 )
def __lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
_lowerCAmelCase : int = DummyModel()
_lowerCAmelCase : Any = torch.optim.Adam(params=model.parameters() ,lr=1E-3 )
_lowerCAmelCase : Dict = dummy_dataloaders()
# Train baseline
_lowerCAmelCase : Any = Accelerator()
_lowerCAmelCase : List[str] = accelerator.prepare(
_A ,_A ,_A ,_A )
# Save initial
_lowerCAmelCase : Any = os.path.join(_A ,'initial' )
accelerator.save_state(_A )
(_lowerCAmelCase) : List[Any] = model.a.item(), model.b.item()
_lowerCAmelCase : Any = optimizer.state_dict()
_lowerCAmelCase : Any = train(3 ,_A ,_A ,_A ,_A )
(_lowerCAmelCase) : List[Any] = model.a.item(), model.b.item()
_lowerCAmelCase : List[str] = optimizer.state_dict()
# Train partially
set_seed(42 )
_lowerCAmelCase : Dict = DummyModel()
_lowerCAmelCase : Any = torch.optim.Adam(params=model.parameters() ,lr=1E-3 )
_lowerCAmelCase : int = dummy_dataloaders()
_lowerCAmelCase : str = Accelerator()
_lowerCAmelCase : int = accelerator.prepare(
_A ,_A ,_A ,_A )
accelerator.load_state(_A )
(_lowerCAmelCase) : List[str] = model.a.item(), model.b.item()
_lowerCAmelCase : Any = optimizer.state_dict()
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
_lowerCAmelCase : List[str] = train(2 ,_A ,_A ,_A ,_A )
# Save everything
_lowerCAmelCase : List[str] = os.path.join(_A ,'checkpoint' )
accelerator.save_state(_A )
# Load everything back in and make sure all states work
accelerator.load_state(_A )
test_rands += train(1 ,_A ,_A ,_A ,_A )
(_lowerCAmelCase) : Tuple = model.a.item(), model.b.item()
_lowerCAmelCase : str = optimizer.state_dict()
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
_lowerCAmelCase : int = DummyModel()
_lowerCAmelCase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 )
_lowerCAmelCase : List[Any] = dummy_dataloaders()
_lowerCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_A )
# Train baseline
_lowerCAmelCase : List[Any] = Accelerator(project_dir=_A ,project_config=_A )
_lowerCAmelCase : str = accelerator.prepare(
_A ,_A ,_A ,_A )
# Save initial
accelerator.save_state()
(_lowerCAmelCase) : Union[str, Any] = model.a.item(), model.b.item()
_lowerCAmelCase : str = optimizer.state_dict()
_lowerCAmelCase : Optional[Any] = train(3 ,_A ,_A ,_A ,_A )
(_lowerCAmelCase) : int = model.a.item(), model.b.item()
_lowerCAmelCase : Union[str, Any] = optimizer.state_dict()
# Train partially
set_seed(42 )
_lowerCAmelCase : List[Any] = DummyModel()
_lowerCAmelCase : Tuple = torch.optim.Adam(params=model.parameters() ,lr=1E-3 )
_lowerCAmelCase : Dict = dummy_dataloaders()
_lowerCAmelCase : Dict = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=_A )
_lowerCAmelCase : List[str] = Accelerator(project_dir=_A ,project_config=_A )
_lowerCAmelCase : List[Any] = accelerator.prepare(
_A ,_A ,_A ,_A )
accelerator.load_state(os.path.join(_A ,'checkpoints' ,'checkpoint_0' ) )
(_lowerCAmelCase) : List[str] = model.a.item(), model.b.item()
_lowerCAmelCase : List[str] = optimizer.state_dict()
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
_lowerCAmelCase : Dict = train(2 ,_A ,_A ,_A ,_A )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(_A ,'checkpoints' ,'checkpoint_1' ) )
test_rands += train(1 ,_A ,_A ,_A ,_A )
(_lowerCAmelCase) : str = model.a.item(), model.b.item()
_lowerCAmelCase : Dict = optimizer.state_dict()
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
self.assertEqual(_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = torch.tensor([1, 2, 3] )
_lowerCAmelCase : Union[str, Any] = torch.tensor([2, 3, 4] )
_lowerCAmelCase : str = DummyModel()
_lowerCAmelCase : Union[str, Any] = torch.optim.Adam(net.parameters() )
_lowerCAmelCase : Any = Accelerator()
with self.assertRaises(_A ) as ve:
accelerator.register_for_checkpointing(_A ,_A ,_A ,_A )
_lowerCAmelCase : int = str(ve.exception )
self.assertTrue('Item at index 0' in message )
self.assertTrue('Item at index 1' in message )
self.assertFalse('Item at index 2' in message )
self.assertFalse('Item at index 3' in message )
def __lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
_lowerCAmelCase : str = DummyModel()
_lowerCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 )
_lowerCAmelCase : Any = torch.optim.lr_scheduler.StepLR(_A ,step_size=1 ,gamma=0.9_9 )
_lowerCAmelCase : Optional[Any] = dummy_dataloaders()
_lowerCAmelCase : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=_A )
# Train baseline
_lowerCAmelCase : Optional[Any] = Accelerator(project_dir=_A ,project_config=_A )
_lowerCAmelCase : Optional[int] = accelerator.prepare(
_A ,_A ,_A ,_A ,_A )
# Save initial
accelerator.save_state()
_lowerCAmelCase : str = scheduler.state_dict()
train(3 ,_A ,_A ,_A ,_A ,_A )
self.assertNotEqual(_A ,scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(_A ,'checkpoints' ,'checkpoint_0' ) )
self.assertEqual(_A ,scheduler.state_dict() )
def __lowerCamelCase ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
_lowerCAmelCase : Any = DummyModel()
_lowerCAmelCase : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_A ,total_limit=2 )
# Train baseline
_lowerCAmelCase : int = Accelerator(project_dir=_A ,project_config=_A )
_lowerCAmelCase : Dict = accelerator.prepare(_A )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(_A ,'checkpoints' ,'checkpoint_0' ) ) )
self.assertTrue(os.path.exists(os.path.join(_A ,'checkpoints' ,'checkpoint_9' ) ) )
self.assertTrue(os.path.exists(os.path.join(_A ,'checkpoints' ,'checkpoint_10' ) ) )
@require_cuda
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
execute_subprocess_async(_A ,env=os.environ.copy() )
if __name__ == "__main__":
_lowerCAmelCase = """/tmp/accelerate/state_checkpointing"""
_lowerCAmelCase = DummyModel()
_lowerCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3)
_lowerCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
_lowerCAmelCase , _lowerCAmelCase = dummy_dataloaders()
_lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
_lowerCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
_lowerCAmelCase , _lowerCAmelCase = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
_lowerCAmelCase = group["""params"""][0].device
break
assert param_device.type == accelerator.device.type
_lowerCAmelCase = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""")
for group in optimizer.param_groups:
_lowerCAmelCase = group["""params"""][0].device
break
assert (
param_device.type == torch.device("""cpu""").type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""")
for group in optimizer.param_groups:
_lowerCAmelCase = group["""params"""][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""):
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 706 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = LDMTextToImagePipeline
_UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
_UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,)
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,)
torch.manual_seed(0 )
_lowerCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,)
torch.manual_seed(0 )
_lowerCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
_lowerCAmelCase : Tuple = CLIPTextModel(_A )
_lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowerCAmelCase : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vqvae': vae,
'bert': text_encoder,
'tokenizer': tokenizer,
}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : int = torch.manual_seed(_A )
else:
_lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : str = LDMTextToImagePipeline(**_A )
pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A )
_lowerCAmelCase : Any = pipe(**_A ).images
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = torch.manual_seed(_A )
_lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A )
_lowerCAmelCase : List[str] = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Optional[Any] = self.get_inputs(_A )
_lowerCAmelCase : List[Any] = pipe(**_A ).images
_lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] )
_lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ):
'''simple docstring'''
_lowerCAmelCase : List[str] = torch.manual_seed(_A )
_lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A )
_lowerCAmelCase : int = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 50,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : str = self.get_inputs(_A )
_lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0]
_lowerCAmelCase : int = load_numpy(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' )
_lowerCAmelCase : List[str] = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 16 | 0 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""vocab_file""": """vocab.json""",
"""tokenizer_config_file""": """tokenizer_config.json""",
"""merges_file""": """merges.txt""",
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json"""
),
},
"""tokenizer_config_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json"""
),
},
"""merges_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt"""
),
},
}
_lowerCAmelCase = """</w>"""
_lowerCAmelCase = """@@ """
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = set()
_lowerCAmelCase : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_lowerCAmelCase : Any = char
return pairs
# Speech2Text2 has no max input length
_lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,)
_lowerCAmelCase : List[Any] = do_lower_case
with open(_A ,encoding='utf-8' ) as vocab_handle:
_lowerCAmelCase : Optional[int] = json.load(_A )
_lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : Tuple = None
else:
with open(_A ,encoding='utf-8' ) as merges_handle:
_lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1]
_lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges]
_lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) )
_lowerCAmelCase : Union[str, Any] = {}
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.decoder )
def __lowerCamelCase ( self ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
_lowerCAmelCase : str = get_pairs(_A )
if not pairs:
return token
while True:
_lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_lowerCAmelCase : Optional[int] = bigram
_lowerCAmelCase : Union[str, Any] = []
_lowerCAmelCase : Dict = 0
while i < len(_A ):
try:
_lowerCAmelCase : Dict = word.index(_A ,_A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_lowerCAmelCase : Optional[Any] = j
if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_lowerCAmelCase : Optional[Any] = tuple(_A )
_lowerCAmelCase : List[str] = new_word
if len(_A ) == 1:
break
else:
_lowerCAmelCase : List[str] = get_pairs(_A )
_lowerCAmelCase : Any = ' '.join(_A )
if word == "\n " + BPE_TOKEN_MERGES:
_lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES
if word.endswith(_A ):
_lowerCAmelCase : Dict = word.replace(_A ,'' )
_lowerCAmelCase : str = word.replace(' ' ,_A )
_lowerCAmelCase : str = word
return word
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.bpe_ranks is None:
raise ValueError(
'This tokenizer was instantiated without a `merges.txt` file, so'
' that it can only be used for decoding, not for encoding.'
'Make sure to provide `merges.txt` file at instantiation to enable '
'encoding.' )
if self.do_lower_case:
_lowerCAmelCase : Optional[Any] = text.lower()
_lowerCAmelCase : Tuple = text.split()
_lowerCAmelCase : Union[str, Any] = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) )
return split_tokens
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.encoder.get(_A ,self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token )
return result
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ' '.join(_A )
# make sure @@ tokens are concatenated
_lowerCAmelCase : int = ''.join(string.split(_A ) )
return string
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : List[Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_A ,'w' ,encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' )
_lowerCAmelCase : str = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(_A ,'w' ,encoding='utf-8' ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
_lowerCAmelCase : Dict = token_index
writer.write(' '.join(_A ) + '\n' )
index += 1
return (vocab_file, merges_file)
| 707 |
"""simple docstring"""
import baseaa
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return baseaa.aaaencode(string.encode('utf-8' ) )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""",
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = "xlnet"
_UpperCAmelCase = ["mems"]
_UpperCAmelCase = {
"n_token": "vocab_size", # Backward compatibility
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self ,_A=3_2000 ,_A=1024 ,_A=24 ,_A=16 ,_A=4096 ,_A="gelu" ,_A=True ,_A="bi" ,_A=0.0_2 ,_A=1E-12 ,_A=0.1 ,_A=512 ,_A=None ,_A=True ,_A=False ,_A=False ,_A=-1 ,_A=False ,_A="last" ,_A=True ,_A="tanh" ,_A=0.1 ,_A=5 ,_A=5 ,_A=5 ,_A=1 ,_A=2 ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Any = vocab_size
_lowerCAmelCase : Optional[int] = d_model
_lowerCAmelCase : Dict = n_layer
_lowerCAmelCase : int = n_head
if d_model % n_head != 0:
raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
_lowerCAmelCase : List[Any] = d_model // n_head
_lowerCAmelCase : List[Any] = ff_activation
_lowerCAmelCase : List[str] = d_inner
_lowerCAmelCase : int = untie_r
_lowerCAmelCase : int = attn_type
_lowerCAmelCase : Tuple = initializer_range
_lowerCAmelCase : Tuple = layer_norm_eps
_lowerCAmelCase : Optional[Any] = dropout
_lowerCAmelCase : Any = mem_len
_lowerCAmelCase : List[str] = reuse_len
_lowerCAmelCase : List[str] = bi_data
_lowerCAmelCase : Any = clamp_len
_lowerCAmelCase : Dict = same_length
_lowerCAmelCase : List[str] = summary_type
_lowerCAmelCase : Optional[Any] = summary_use_proj
_lowerCAmelCase : int = summary_activation
_lowerCAmelCase : str = summary_last_dropout
_lowerCAmelCase : Any = start_n_top
_lowerCAmelCase : List[Any] = end_n_top
_lowerCAmelCase : Dict = bos_token_id
_lowerCAmelCase : List[Any] = pad_token_id
_lowerCAmelCase : Any = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' ,_A ,)
_lowerCAmelCase : List[Any] = kwargs['use_cache']
_lowerCAmelCase : str = use_mems_eval
_lowerCAmelCase : Optional[int] = use_mems_train
super().__init__(pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,**_A )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
raise NotImplementedError(
F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 708 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""bert-base-uncased""": 5_1_2,
"""bert-large-uncased""": 5_1_2,
"""bert-base-cased""": 5_1_2,
"""bert-large-cased""": 5_1_2,
"""bert-base-multilingual-uncased""": 5_1_2,
"""bert-base-multilingual-cased""": 5_1_2,
"""bert-base-chinese""": 5_1_2,
"""bert-base-german-cased""": 5_1_2,
"""bert-large-uncased-whole-word-masking""": 5_1_2,
"""bert-large-cased-whole-word-masking""": 5_1_2,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-base-cased-finetuned-mrpc""": 5_1_2,
"""bert-base-german-dbmdz-cased""": 5_1_2,
"""bert-base-german-dbmdz-uncased""": 5_1_2,
"""TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2,
"""wietsedv/bert-base-dutch-cased""": 5_1_2,
}
_lowerCAmelCase = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = BertTokenizer
def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
_A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,)
_lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,_A ) != do_lower_case
or normalizer_state.get('strip_accents' ,_A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars
):
_lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) )
_lowerCAmelCase : Dict = do_lower_case
_lowerCAmelCase : Optional[int] = strip_accents
_lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars
_lowerCAmelCase : Dict = normalizer_class(**_A )
_lowerCAmelCase : Union[str, Any] = do_lower_case
def __lowerCamelCase ( self ,_A ,_A=None ):
'''simple docstring'''
_lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.sep_token_id]
_lowerCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A )
return tuple(_A )
| 16 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = """▁"""
_lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"""
),
}
}
_lowerCAmelCase = {
"""xlm-roberta-base""": 5_1_2,
"""xlm-roberta-large""": 5_1_2,
"""xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2,
"""xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2,
"""xlm-roberta-large-finetuned-conll03-english""": 5_1_2,
"""xlm-roberta-large-finetuned-conll03-german""": 5_1_2,
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = ["input_ids", "attention_mask"]
def __init__( self ,_A ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A = None ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
_lowerCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,)
_lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_A ) )
_lowerCAmelCase : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
_lowerCAmelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_lowerCAmelCase : List[str] = 1
_lowerCAmelCase : Union[str, Any] = len(self.sp_model ) + self.fairseq_offset
_lowerCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.__dict__.copy()
_lowerCAmelCase : List[Any] = None
_lowerCAmelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_lowerCAmelCase : int = {}
_lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase : Tuple = [self.cls_token_id]
_lowerCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
if token_ids_a is None:
return [1] + ([0] * len(_A )) + [1]
return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : int = [self.sep_token_id]
_lowerCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.encode(_A ,out_type=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_lowerCAmelCase : Any = self.sp_model.PieceToId(_A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : int = ''.join(_A ).replace(_A ,' ' ).strip()
return out_string
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : Optional[Any] = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_A )
elif not os.path.isfile(self.vocab_file ):
with open(_A ,'wb' ) as fi:
_lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,) | 709 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils )
_lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
_lowerCAmelCase : int = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
_lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices.""" )
_lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(F"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_A ,env=os.environ.copy() )
@require_multi_gpu
def __lowerCamelCase ( self ):
'''simple docstring'''
print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
_lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ):
execute_subprocess_async(_A ,env=os.environ.copy() )
if __name__ == "__main__":
_lowerCAmelCase = Accelerator()
_lowerCAmelCase = (accelerator.state.process_index + 2, 1_0)
_lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device)
_lowerCAmelCase = """"""
_lowerCAmelCase = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 16 | 0 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self ,_A ,_A = True ,_A = None ,_A = 32 ,_A = True ,_A = 1 / 255 ,_A = True ,_A = True ,_A = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] ,_A = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] ,_A = True ,_A=7 ,_A=30 ,_A=400 ,_A=3 ,):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = parent
_lowerCAmelCase : List[Any] = do_resize
_lowerCAmelCase : Dict = size if size is not None else {'shortest_edge': 288}
_lowerCAmelCase : str = size_divisor
_lowerCAmelCase : List[str] = do_rescale
_lowerCAmelCase : int = rescale_factor
_lowerCAmelCase : Dict = do_normalize
_lowerCAmelCase : str = do_center_crop
_lowerCAmelCase : Optional[int] = image_mean
_lowerCAmelCase : Dict = image_std
_lowerCAmelCase : int = do_pad
_lowerCAmelCase : Union[str, Any] = batch_size
_lowerCAmelCase : Tuple = num_channels
_lowerCAmelCase : List[str] = min_resolution
_lowerCAmelCase : Dict = max_resolution
def __lowerCamelCase ( self ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __lowerCamelCase ( self ,_A ,_A=False ):
'''simple docstring'''
if not batched:
_lowerCAmelCase : Optional[Any] = self.size['shortest_edge']
_lowerCAmelCase : Tuple = image_inputs[0]
if isinstance(_A ,Image.Image ):
_lowerCAmelCase : Optional[Any] = image.size
else:
_lowerCAmelCase : Union[str, Any] = image.shape[1], image.shape[2]
_lowerCAmelCase : Union[str, Any] = size / min(_A ,_A )
if h < w:
_lowerCAmelCase : List[str] = size, scale * w
else:
_lowerCAmelCase : Tuple = scale * h, size
_lowerCAmelCase : Optional[int] = int((1333 / 800) * size )
if max(_A ,_A ) > max_size:
_lowerCAmelCase : Union[str, Any] = max_size / max(_A ,_A )
_lowerCAmelCase : Optional[Any] = newh * scale
_lowerCAmelCase : Any = neww * scale
_lowerCAmelCase : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 )
_lowerCAmelCase : Optional[Any] = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
_lowerCAmelCase : List[Any] = []
for image in image_inputs:
_lowerCAmelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowerCAmelCase : Union[str, Any] = max(_A ,key=lambda _A : item[0] )[0]
_lowerCAmelCase : List[str] = max(_A ,key=lambda _A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = BridgeTowerImageProcessor if is_vision_available() else None
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = BridgeTowerImageProcessingTester(self )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A ,'image_mean' ) )
self.assertTrue(hasattr(_A ,'image_std' ) )
self.assertTrue(hasattr(_A ,'do_normalize' ) )
self.assertTrue(hasattr(_A ,'do_resize' ) )
self.assertTrue(hasattr(_A ,'size' ) )
self.assertTrue(hasattr(_A ,'size_divisor' ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A ,Image.Image )
# Test not batched input
_lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values
_lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
_lowerCAmelCase : Optional[int] = image_processing(_A ,return_tensors='pt' ).pixel_values
_lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ,batched=_A )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A ,np.ndarray )
# Test not batched input
_lowerCAmelCase : int = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values
_lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
_lowerCAmelCase : str = image_processing(_A ,return_tensors='pt' ).pixel_values
_lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(_A ,batched=_A )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A ,torch.Tensor )
# Test not batched input
_lowerCAmelCase : int = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values
_lowerCAmelCase : int = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
_lowerCAmelCase : List[str] = image_processing(_A ,return_tensors='pt' ).pixel_values
_lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(_A ,batched=_A )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
| 710 |
"""simple docstring"""
from __future__ import annotations
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
'''simple docstring'''
if index == len(_lowerCamelCase ):
print(_lowerCamelCase )
return
for i in range(len(_lowerCamelCase ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_lowerCAmelCase : List[str] = True
create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase )
current_sequence.pop()
_lowerCAmelCase : int = False
_lowerCAmelCase = [3, 1, 2, 4]
generate_all_permutations(sequence)
_lowerCAmelCase = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 16 | 0 |
"""simple docstring"""
from __future__ import annotations
from scipy.special import comb # type: ignore
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
_lowerCAmelCase : List[Any] = len(_A ) - 1
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
_lowerCAmelCase : list[float] = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree ,_A ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(_A ) ,5 ) == 1
return output_values
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
_lowerCAmelCase : Tuple = self.basis_function(_A )
_lowerCAmelCase : Optional[Any] = 0.0
_lowerCAmelCase : str = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def __lowerCamelCase ( self ,_A = 0.0_1 ):
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
_lowerCAmelCase : list[float] = [] # x coordinates of points to plot
_lowerCAmelCase : list[float] = [] # y coordinates of points to plot
_lowerCAmelCase : Any = 0.0
while t <= 1:
_lowerCAmelCase : str = self.bezier_curve_function(_A )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
_lowerCAmelCase : Any = [i[0] for i in self.list_of_points]
_lowerCAmelCase : Any = [i[1] for i in self.list_of_points]
plt.plot(
_A ,_A ,color='blue' ,label='Curve of Degree ' + str(self.degree ) ,)
plt.scatter(_A ,_A ,color='red' ,label='Control Points' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 711 |
"""simple docstring"""
import logging
import os
from .state import PartialState
class __UpperCamelCase ( logging.LoggerAdapter ):
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ):
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
_lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A )
_lowerCAmelCase : Any = kwargs.pop('in_order' ,_A )
if self.isEnabledFor(_A ):
if self._should_log(_A ):
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
elif in_order:
_lowerCAmelCase : str = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A )
self.logger.log(_A ,_A ,*_A ,**_A )
state.wait_for_everyone()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ):
'''simple docstring'''
if log_level is None:
_lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase )
_lowerCAmelCase : int = logging.getLogger(_lowerCamelCase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_lowerCamelCase , {} )
| 16 | 0 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_lowerCAmelCase = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = state_dict.pop(_lowerCamelCase )
_lowerCAmelCase : Tuple = val
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Tuple = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
_lowerCAmelCase : Dict = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' )
_lowerCAmelCase : Dict = value
else:
_lowerCAmelCase : Any = value
return new_state_dict
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ''
if is_panoptic:
_lowerCAmelCase : Optional[Any] = 'conditional_detr.'
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_lowerCAmelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
_lowerCAmelCase : Tuple = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_lowerCAmelCase : Dict = in_proj_weight[:256, :]
_lowerCAmelCase : List[Any] = in_proj_bias[:256]
_lowerCAmelCase : Dict = in_proj_weight[256:512, :]
_lowerCAmelCase : Union[str, Any] = in_proj_bias[256:512]
_lowerCAmelCase : Any = in_proj_weight[-256:, :]
_lowerCAmelCase : Any = in_proj_bias[-256:]
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
_lowerCAmelCase : Dict = 'resnet101'
if "dc5" in model_name:
_lowerCAmelCase : List[Any] = True
_lowerCAmelCase : Dict = 'panoptic' in model_name
if is_panoptic:
_lowerCAmelCase : List[str] = 250
else:
_lowerCAmelCase : str = 91
_lowerCAmelCase : Any = 'huggingface/label-files'
_lowerCAmelCase : List[str] = 'coco-detection-id2label.json'
_lowerCAmelCase : int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) )
_lowerCAmelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase : Union[str, Any] = idalabel
_lowerCAmelCase : Any = {v: k for k, v in idalabel.items()}
# load image processor
_lowerCAmelCase : Optional[int] = 'coco_panoptic' if is_panoptic else 'coco_detection'
_lowerCAmelCase : str = ConditionalDetrImageProcessor(format=_lowerCamelCase )
# prepare image
_lowerCAmelCase : List[str] = prepare_img()
_lowerCAmelCase : int = image_processor(images=_lowerCamelCase , return_tensors='pt' )
_lowerCAmelCase : Dict = encoding['pixel_values']
logger.info(f"""Converting model {model_name}...""" )
# load original model from torch hub
_lowerCAmelCase : Any = torch.hub.load('DeppMeng/ConditionalDETR' , _lowerCamelCase , pretrained=_lowerCamelCase ).eval()
_lowerCAmelCase : Union[str, Any] = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
_lowerCAmelCase : Optional[Any] = 'conditional_detr.' + src
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = rename_backbone_keys(_lowerCamelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(_lowerCamelCase , is_panoptic=_lowerCamelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_lowerCAmelCase : Dict = 'conditional_detr.model.' if is_panoptic else 'model.'
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('conditional_detr' )
and not key.startswith('class_labels_classifier' )
and not key.startswith('bbox_predictor' )
):
_lowerCAmelCase : List[Any] = state_dict.pop(_lowerCamelCase )
_lowerCAmelCase : Tuple = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
_lowerCAmelCase : Any = state_dict.pop(_lowerCamelCase )
_lowerCAmelCase : Dict = val
elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ):
continue
else:
_lowerCAmelCase : str = state_dict.pop(_lowerCamelCase )
_lowerCAmelCase : List[str] = val
else:
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
_lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase )
_lowerCAmelCase : List[Any] = val
# finally, create HuggingFace model and load state dict
_lowerCAmelCase : str = ConditionalDetrForSegmentation(_lowerCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
model.eval()
model.push_to_hub(repo_id=_lowerCamelCase , organization='DepuMeng' , commit_message='Add model' )
# verify our conversion
_lowerCAmelCase : List[Any] = conditional_detr(_lowerCamelCase )
_lowerCAmelCase : Dict = model(_lowerCamelCase )
assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 )
# Save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
image_processor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
_lowerCAmelCase = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 712 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-ctx_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": 5_1_2,
"""facebook/dpr-question_encoder-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": 5_1_2,
"""facebook/dpr-reader-multiset-base""": 5_1_2,
}
_lowerCAmelCase = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCAmelCase = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_lowerCAmelCase = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCAmelCase = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(a__ )
class __UpperCamelCase :
def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,):
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
elif titles is None or texts is None:
_lowerCAmelCase : Optional[int] = titles if texts is None else texts
return super().__call__(
_A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,)
_lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles]
_lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts]
_lowerCAmelCase : Union[str, Any] = len(_A )
_lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages
if len(_A ) != len(_A ):
raise ValueError(
F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" )
_lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids']
_lowerCAmelCase : Optional[int] = {
'input_ids': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_A ,_A )
]
}
if return_attention_mask is not False:
_lowerCAmelCase : Tuple = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_lowerCAmelCase : List[Any] = attention_mask
return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A )
def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,):
'''simple docstring'''
_lowerCAmelCase : int = reader_input['input_ids']
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3]
_lowerCAmelCase : Optional[Any] = len(_A )
_lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ )
_lowerCAmelCase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_lowerCAmelCase : int = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id )
else:
_lowerCAmelCase : Optional[int] = len(_A )
_lowerCAmelCase : Optional[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(_A ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
for start_index, start_score in enumerate(_A ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A )
_lowerCAmelCase : int = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" )
_lowerCAmelCase : List[str] = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_A ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(a__ )
class __UpperCamelCase ( a__ , a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = ["input_ids", "attention_mask"]
| 16 | 0 |
"""simple docstring"""
import qiskit
def lowerCamelCase__ ( _lowerCamelCase = 2 ):
'''simple docstring'''
_lowerCAmelCase : List[str] = qubits
# Using Aer's simulator
_lowerCAmelCase : List[str] = qiskit.Aer.get_backend('aer_simulator' )
# Creating a Quantum Circuit acting on the q register
_lowerCAmelCase : Optional[int] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1 , _lowerCamelCase ):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , _lowerCamelCase )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(_lowerCamelCase ) ) , list(range(_lowerCamelCase ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
_lowerCAmelCase : List[Any] = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1000 )
return job.result().get_counts(_lowerCamelCase )
if __name__ == "__main__":
print(F'''Total count for various states are: {quantum_entanglement(3)}''')
| 713 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( a__ , unittest.TestCase ):
_UpperCAmelCase = DanceDiffusionPipeline
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
_UpperCAmelCase = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
_UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
_UpperCAmelCase = False
_UpperCAmelCase = False
def __lowerCamelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : List[Any] = UNetaDModel(
block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,)
_lowerCAmelCase : int = IPNDMScheduler()
_lowerCAmelCase : Union[str, Any] = {
'unet': unet,
'scheduler': scheduler,
}
return components
def __lowerCamelCase ( self ,_A ,_A=0 ):
'''simple docstring'''
if str(_A ).startswith('mps' ):
_lowerCAmelCase : str = torch.manual_seed(_A )
else:
_lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A )
_lowerCAmelCase : int = {
'batch_size': 1,
'generator': generator,
'num_inference_steps': 4,
}
return inputs
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A )
_lowerCAmelCase : List[str] = pipe(**_A )
_lowerCAmelCase : List[Any] = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_local()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_save_load_optional_components()
@skip_mps
def __lowerCamelCase ( self ):
'''simple docstring'''
return super().test_attention_slicing_forward_pass()
def __lowerCamelCase ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = torch_device
_lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' )
_lowerCAmelCase : int = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Optional[int] = torch.manual_seed(0 )
_lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : str = output.audios
_lowerCAmelCase : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = torch_device
_lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[int] = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
_lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 )
_lowerCAmelCase : Union[str, Any] = output.audios
_lowerCAmelCase : int = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 16 | 0 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = None
if token is not None:
_lowerCAmelCase : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""}
_lowerCAmelCase : List[str] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_lowerCAmelCase : List[Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json()
_lowerCAmelCase : int = {}
try:
job_links.update({job['name']: job['html_url'] for job in result['jobs']} )
_lowerCAmelCase : Union[str, Any] = math.ceil((result['total_count'] - 100) / 100 )
for i in range(_lowerCamelCase ):
_lowerCAmelCase : List[Any] = requests.get(url + f"""&page={i + 2}""" , headers=_lowerCamelCase ).json()
job_links.update({job['name']: job['html_url'] for job in result['jobs']} )
return job_links
except Exception:
print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Dict = None
if token is not None:
_lowerCAmelCase : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""}
_lowerCAmelCase : Optional[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
_lowerCAmelCase : List[Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json()
_lowerCAmelCase : Union[str, Any] = {}
try:
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} )
_lowerCAmelCase : int = math.ceil((result['total_count'] - 100) / 100 )
for i in range(_lowerCamelCase ):
_lowerCAmelCase : str = requests.get(url + f"""&page={i + 2}""" , headers=_lowerCamelCase ).json()
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} )
return artifacts
except Exception:
print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = None
if token is not None:
_lowerCAmelCase : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""}
_lowerCAmelCase : Union[str, Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = result.headers['Location']
_lowerCAmelCase : Optional[Any] = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase )
_lowerCAmelCase : Any = os.path.join(_lowerCamelCase , f"""{artifact_name}.zip""" )
with open(_lowerCamelCase , 'wb' ) as fp:
fp.write(response.content )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Any = []
_lowerCAmelCase : Dict = []
_lowerCAmelCase : Union[str, Any] = None
with zipfile.ZipFile(_lowerCamelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(_lowerCamelCase ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_lowerCamelCase ) as f:
for line in f:
_lowerCAmelCase : Any = line.decode('UTF-8' ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_lowerCAmelCase : Any = line[: line.index(': ' )]
_lowerCAmelCase : List[str] = line[line.index(': ' ) + len(': ' ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith('FAILED ' ):
# `test` is the test method that failed
_lowerCAmelCase : List[Any] = line[len('FAILED ' ) :]
failed_tests.append(_lowerCamelCase )
elif filename == "job_name.txt":
_lowerCAmelCase : List[str] = line
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError(
f"""`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase )} for `errors` """
f"""and {len(_lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
' problem.' )
_lowerCAmelCase : Dict = None
if job_name and job_links:
_lowerCAmelCase : Tuple = job_links.get(_lowerCamelCase , _lowerCamelCase )
# A list with elements of the form (line of error, error, failed test)
_lowerCAmelCase : List[str] = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase )]
return result
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
_lowerCAmelCase : int = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if p.endswith('.zip' )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase ) )
return errors
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Tuple = Counter()
counter.update([x[1] for x in logs] )
_lowerCAmelCase : Optional[Any] = counter.most_common()
_lowerCAmelCase : Optional[int] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_lowerCAmelCase : Optional[int] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]}
_lowerCAmelCase : List[Any] = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) )
return r
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = test.split('::' )[0]
if test.startswith('tests/models/' ):
_lowerCAmelCase : List[str] = test.split('/' )[2]
else:
_lowerCAmelCase : Tuple = None
return test
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
_lowerCAmelCase : List[Any] = [x for x in logs if x[2] is not None]
_lowerCAmelCase : Optional[Any] = {x[2] for x in logs}
_lowerCAmelCase : Optional[Any] = {}
for test in tests:
_lowerCAmelCase : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_lowerCAmelCase : List[str] = counter.most_common()
_lowerCAmelCase : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_lowerCAmelCase : Dict = sum(error_counts.values() )
if n_errors > 0:
_lowerCAmelCase : Union[str, Any] = {'count': n_errors, 'errors': error_counts}
_lowerCAmelCase : Optional[Any] = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) )
return r
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : List[str] = '| no. | error | status |'
_lowerCAmelCase : Any = '|-:|:-|:-|'
_lowerCAmelCase : Dict = [header, sep]
for error in reduced_by_error:
_lowerCAmelCase : Optional[Any] = reduced_by_error[error]['count']
_lowerCAmelCase : Any = f"""| {count} | {error[:100]} | |"""
lines.append(_lowerCamelCase )
return "\n".join(_lowerCamelCase )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Tuple = '| model | no. of errors | major error | count |'
_lowerCAmelCase : Dict = '|-:|-:|-:|-:|'
_lowerCAmelCase : str = [header, sep]
for model in reduced_by_model:
_lowerCAmelCase : Dict = reduced_by_model[model]['count']
_lowerCAmelCase : Tuple = list(reduced_by_model[model]['errors'].items() )[0]
_lowerCAmelCase : Union[str, Any] = f"""| {model} | {count} | {error[:60]} | {_count} |"""
lines.append(_lowerCamelCase )
return "\n".join(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
parser.add_argument(
"""--output_dir""",
type=str,
required=True,
help="""Where to store the downloaded artifacts and other result files.""",
)
parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""")
_lowerCAmelCase = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_lowerCAmelCase = get_job_links(args.workflow_run_id, token=args.token)
_lowerCAmelCase = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_lowerCAmelCase = k.find(""" / """)
_lowerCAmelCase = k[index + len(""" / """) :]
_lowerCAmelCase = v
with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_lowerCAmelCase = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_lowerCAmelCase = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_lowerCAmelCase = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_lowerCAmelCase = reduce_by_error(errors)
_lowerCAmelCase = reduce_by_model(errors)
_lowerCAmelCase = make_github_table(reduced_by_error)
_lowerCAmelCase = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
| 714 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = (UniPCMultistepScheduler,)
_UpperCAmelCase = (("num_inference_steps", 25),)
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = {
'num_train_timesteps': 1000,
'beta_start': 0.0_0_0_1,
'beta_end': 0.0_2,
'beta_schedule': 'linear',
'solver_order': 2,
'solver_type': 'bh2',
}
config.update(**_A )
return config
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = dict(self.forward_default_kwargs )
_lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Optional[Any] = self.dummy_sample
_lowerCAmelCase : Union[str, Any] = 0.1 * sample
_lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A )
new_scheduler.set_timesteps(_A )
# copy over dummy past residuals
_lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase, _lowerCAmelCase : str = sample, sample
for t in range(_A ,time_step + scheduler.config.solver_order + 1 ):
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=0 ,**_A ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A )
_lowerCAmelCase : Union[str, Any] = self.dummy_sample
_lowerCAmelCase : Dict = 0.1 * sample
_lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Any = self.get_scheduler_config()
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
scheduler.set_timesteps(_A )
# copy over dummy past residuals (must be after setting timesteps)
_lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_A )
_lowerCAmelCase : int = scheduler_class.from_pretrained(_A )
# copy over dummy past residuals
new_scheduler.set_timesteps(_A )
# copy over dummy past residual (must be after setting timesteps)
_lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order]
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCamelCase ( self ,_A=None ,**_A ):
'''simple docstring'''
if scheduler is None:
_lowerCAmelCase : int = self.scheduler_classes[0]
_lowerCAmelCase : List[str] = self.get_scheduler_config(**_A )
_lowerCAmelCase : Union[str, Any] = scheduler_class(**_A )
_lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : int = scheduler_class(**_A )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : str = self.dummy_model()
_lowerCAmelCase : str = self.dummy_sample_deter
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Any = model(_A ,_A )
_lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample
return sample
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs )
_lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A )
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : str = self.get_scheduler_config()
_lowerCAmelCase : List[str] = scheduler_class(**_A )
_lowerCAmelCase : Any = self.dummy_sample
_lowerCAmelCase : Tuple = 0.1 * sample
if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ):
scheduler.set_timesteps(_A )
elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ):
_lowerCAmelCase : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
_lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order]
_lowerCAmelCase : Any = scheduler.timesteps[5]
_lowerCAmelCase : List[str] = scheduler.timesteps[6]
_lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
_lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() )
_lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
_lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config )
_lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A )
_lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=_A )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,)
def __lowerCamelCase ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
_lowerCAmelCase : List[Any] = self.full_loop(
solver_order=_A ,solver_type=_A ,prediction_type=_A ,)
assert not torch.isnan(_A ).any(), "Samples have nan numbers"
def __lowerCamelCase ( self ):
'''simple docstring'''
self.check_over_configs(lower_order_final=_A )
self.check_over_configs(lower_order_final=_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_A ,time_step=0 )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.full_loop()
_lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' )
_lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.scheduler_classes[0]
_lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 )
_lowerCAmelCase : Tuple = scheduler_class(**_A )
_lowerCAmelCase : Optional[Any] = 10
_lowerCAmelCase : Union[str, Any] = self.dummy_model()
_lowerCAmelCase : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(_A )
for i, t in enumerate(scheduler.timesteps ):
_lowerCAmelCase : Tuple = model(_A ,_A )
_lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCamelCase ( self ,**_A ):
'''simple docstring'''
for scheduler_class in self.scheduler_classes:
_lowerCAmelCase : Dict = self.get_scheduler_config(**_A )
_lowerCAmelCase : str = scheduler_class(**_A )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 16 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if num <= 0:
_lowerCAmelCase : int = f"""{num}: Invalid input, please enter a positive integer."""
raise ValueError(_lowerCamelCase )
_lowerCAmelCase : Optional[Any] = [True] * (num + 1)
_lowerCAmelCase : List[str] = []
_lowerCAmelCase : Dict = 2
_lowerCAmelCase : str = int(math.sqrt(_lowerCamelCase ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(_lowerCamelCase )
# Set multiples of start be False
for i in range(start * start , num + 1 , _lowerCamelCase ):
if sieve[i] is True:
_lowerCAmelCase : List[Any] = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(_lowerCamelCase )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
| 715 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/"""
_lowerCAmelCase = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' )
elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' )
elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' )
elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10:
_lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' )
if "conditioner_blocks.0." in key:
_lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' )
if "prime_prior" in key:
_lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
_lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' )
if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('.k' , '.codebook' )
if "y_emb." in key:
return key.replace('y_emb.' , 'metadata_embedding.' )
if "x_emb.emb." in key:
_lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' )
if "prime_state_ln" in key:
return key.replace('prime_state_ln' , 'encoder.final_layer_norm' )
if ".ln" in key:
return key.replace('.ln' , '.layer_norm' )
if "_ln" in key:
return key.replace('_ln' , '_layer_norm' )
if "prime_state_proj" in key:
return key.replace('prime_state_proj' , 'encoder.proj_in' )
if "prime_x_out" in key:
return key.replace('prime_x_out' , 'encoder.lm_head' )
if "prior.x_out" in key:
return key.replace('x_out' , 'fc_proj_out' )
if "x_emb" in key:
return key.replace('x_emb' , 'embed_tokens' )
return key
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = {}
import re
_lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(
R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Union[str, Any] = re.compile(
R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' )
_lowerCAmelCase : Dict = re.compile(
R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase )
_lowerCAmelCase : int = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] )
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Optional[int] = prefix + resnet_block
_lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = regex_match.groups()
_lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"""
_lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Dict = regex_match.groups()
_lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2
_lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."""
_lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : List[Any] = prefix + resnet_block
_lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[Any] = regex_match.groups()
_lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"""
_lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase )
_lowerCAmelCase : Any = regex_match.groups()
_lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"""
_lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase )
_lowerCAmelCase : Tuple = regex_match.groups()
_lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2
_lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]]
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}."""
_lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"""
_lowerCAmelCase : Dict = prefix + resnet_block
_lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase )
elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ):
_lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase )
_lowerCAmelCase : List[str] = regex_match.groups()
_lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}"""
_lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase )
# keep original key
else:
_lowerCAmelCase : Optional[Any] = original_key
_lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase )
if f"""{key_prefix}.{key}""" not in model_state_dict or key is None:
print(f"""failed converting {original_key} to {key}, does not match""" )
# handle missmatched shape
elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape:
_lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""]
print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" )
_lowerCAmelCase : Optional[int] = original_key
_lowerCAmelCase : Union[str, Any] = original_key
_lowerCAmelCase : Optional[Any] = value
return new_dict
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ):
'''simple docstring'''
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ):
_lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase )
os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase )
open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content )
_lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]]
_lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase )
_lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase )
_lowerCAmelCase : int = []
_lowerCAmelCase : Any = {}
for i, dict_name in enumerate(_lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model']
_lowerCAmelCase : Optional[Any] = {}
for k in old_dic.keys():
if k.endswith('.b' ):
_lowerCAmelCase : int = old_dic[k]
elif k.endswith('.w' ):
_lowerCAmelCase : Tuple = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
_lowerCAmelCase : str = old_dic[k]
else:
_lowerCAmelCase : Optional[Any] = old_dic[k]
_lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}"""
_lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase )
weight_dict.append(_lowerCamelCase )
_lowerCAmelCase : List[Any] = weight_dict.pop(0 )
model.vqvae.load_state_dict(_lowerCamelCase )
for i in range(len(_lowerCamelCase ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase )
with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile:
json.dump(_lowerCamelCase , _lowerCamelCase )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCamelCase )
return weight_dict
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
_lowerCAmelCase = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 16 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"""
),
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"""
),
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""",
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""",
"""bert-base-multilingual-uncased""": (
"""https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"""
),
"""bert-base-multilingual-cased""": (
"""https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"""
),
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"""
),
"""bert-base-cased-finetuned-mrpc""": (
"""https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-cased""": (
"""https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"""
),
"""bert-base-german-dbmdz-uncased""": (
"""https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"""
),
"""wietsedv/bert-base-dutch-cased""": (
"""https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"""
),
},
}
_lowerCAmelCase = {
"""bert-base-uncased""": 5_1_2,
"""bert-large-uncased""": 5_1_2,
"""bert-base-cased""": 5_1_2,
"""bert-large-cased""": 5_1_2,
"""bert-base-multilingual-uncased""": 5_1_2,
"""bert-base-multilingual-cased""": 5_1_2,
"""bert-base-chinese""": 5_1_2,
"""bert-base-german-cased""": 5_1_2,
"""bert-large-uncased-whole-word-masking""": 5_1_2,
"""bert-large-cased-whole-word-masking""": 5_1_2,
"""bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2,
"""bert-base-cased-finetuned-mrpc""": 5_1_2,
"""bert-base-german-dbmdz-cased""": 5_1_2,
"""bert-base-german-dbmdz-uncased""": 5_1_2,
"""TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2,
"""TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2,
"""wietsedv/bert-base-dutch-cased""": 5_1_2,
}
_lowerCAmelCase = {
"""bert-base-uncased""": {"""do_lower_case""": True},
"""bert-large-uncased""": {"""do_lower_case""": True},
"""bert-base-cased""": {"""do_lower_case""": False},
"""bert-large-cased""": {"""do_lower_case""": False},
"""bert-base-multilingual-uncased""": {"""do_lower_case""": True},
"""bert-base-multilingual-cased""": {"""do_lower_case""": False},
"""bert-base-chinese""": {"""do_lower_case""": False},
"""bert-base-german-cased""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking""": {"""do_lower_case""": False},
"""bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True},
"""bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False},
"""bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-cased""": {"""do_lower_case""": False},
"""bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True},
"""TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False},
"""TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True},
"""wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False},
}
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = BertTokenizer
def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,):
'''simple docstring'''
super().__init__(
_A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,)
_lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,_A ) != do_lower_case
or normalizer_state.get('strip_accents' ,_A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars
):
_lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) )
_lowerCAmelCase : Dict = do_lower_case
_lowerCAmelCase : Optional[int] = strip_accents
_lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars
_lowerCAmelCase : Dict = normalizer_class(**_A )
_lowerCAmelCase : Union[str, Any] = do_lower_case
def __lowerCamelCase ( self ,_A ,_A=None ):
'''simple docstring'''
_lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.sep_token_id]
_lowerCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A )
return tuple(_A )
| 716 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
_lowerCAmelCase = {"""UserAgent""": UserAgent().random}
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Any = script.contents[0]
_lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/"""
_lowerCAmelCase : str = self.get_json()
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text
_lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ):
'''simple docstring'''
return F"""{self.__class__.__name__}('{self.username}')"""
def __str__( self ):
'''simple docstring'''
return F"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["username"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["full_name"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["biography"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["business_email"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["external_url"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_followed_by"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_follow"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["profile_pic_url_hd"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_verified"]
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.user_data["is_private"]
def lowerCamelCase__ ( _lowerCamelCase = "github" ):
'''simple docstring'''
import os
if os.environ.get('CI' ):
return # test failing on GitHub Actions
_lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _lowerCamelCase )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('https://instagram.' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase = InstagramUser("""github""")
print(instagram_user)
print(F'''{instagram_user.number_of_posts = }''')
print(F'''{instagram_user.number_of_followers = }''')
print(F'''{instagram_user.number_of_followings = }''')
print(F'''{instagram_user.email = }''')
print(F'''{instagram_user.website = }''')
print(F'''{instagram_user.profile_picture_url = }''')
print(F'''{instagram_user.is_verified = }''')
print(F'''{instagram_user.is_private = }''')
| 16 | 0 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
_lowerCAmelCase = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
_lowerCAmelCase = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
_lowerCAmelCase = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> wer = datasets.load_metric(\"wer\")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def __lowerCamelCase ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/jitsi/jiwer/'] ,reference_urls=[
'https://en.wikipedia.org/wiki/Word_error_rate',
] ,)
def __lowerCamelCase ( self ,_A=None ,_A=None ,_A=False ):
'''simple docstring'''
if concatenate_texts:
return compute_measures(_A ,_A )["wer"]
else:
_lowerCAmelCase : List[str] = 0
_lowerCAmelCase : Any = 0
for prediction, reference in zip(_A ,_A ):
_lowerCAmelCase : List[str] = compute_measures(_A ,_A )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 717 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {"""vocab_file""": """spiece.model"""}
_lowerCAmelCase = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
}
}
_lowerCAmelCase = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
# Segments (not really needed)
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = 2
_lowerCAmelCase = 3
_lowerCAmelCase = 4
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = VOCAB_FILES_NAMES
_UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase = "left"
def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token
_lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,)
_lowerCAmelCase : int = 3
_lowerCAmelCase : Union[str, Any] = do_lower_case
_lowerCAmelCase : Dict = remove_space
_lowerCAmelCase : int = keep_accents
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_A )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return len(self.sp_model )
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.__dict__.copy()
_lowerCAmelCase : List[str] = None
return state
def __setstate__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_lowerCAmelCase : Union[str, Any] = {}
_lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if self.remove_space:
_lowerCAmelCase : str = ' '.join(inputs.strip().split() )
else:
_lowerCAmelCase : Dict = inputs
_lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' )
if not self.keep_accents:
_lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A )
_lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] )
if self.do_lower_case:
_lowerCAmelCase : Tuple = outputs.lower()
return outputs
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A )
_lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A )
_lowerCAmelCase : int = []
for piece in pieces:
if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
_lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_lowerCAmelCase : int = cur_pieces[1:]
else:
_lowerCAmelCase : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_A )
else:
new_pieces.append(_A )
return new_pieces
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.PieceToId(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return self.sp_model.IdToPiece(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip()
return out_string
def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,):
'''simple docstring'''
_lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A )
_lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : int = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
_lowerCAmelCase : Tuple = []
sub_texts.append(_A )
else:
current_sub_text.append(_A )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_A ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_lowerCAmelCase : List[Any] = ''.join(_A )
_lowerCAmelCase : Tuple = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_lowerCAmelCase : int = self.clean_up_tokenization(_A )
return clean_text
else:
return text
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A )
if token_ids_a is not None:
return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1]
return ([0] * len(_A )) + [1, 1]
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Any = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
if not os.path.isdir(_A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_lowerCAmelCase : str = os.path.join(
_A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_A )
elif not os.path.isfile(self.vocab_file ):
with open(_A ,'wb' ) as fi:
_lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(_A )
return (out_vocab_file,)
| 16 | 0 |
"""simple docstring"""
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
_lowerCAmelCase = 2_9_9_7_9_2_4_5_8
# Symbols
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = symbols("""ct x y z""")
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if velocity > c:
raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('Speed must be greater than or equal to 1!' )
return velocity / c
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return 1 / sqrt(1 - beta(_lowerCamelCase ) ** 2 )
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
return np.array(
[
[gamma(_lowerCamelCase ), -gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), 0, 0],
[-gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), gamma(_lowerCamelCase ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ):
'''simple docstring'''
if event is None:
_lowerCAmelCase : Optional[Any] = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(_lowerCamelCase ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
_lowerCAmelCase = transform(2_9_9_7_9_2_4_5)
print("""Example of four vector: """)
print(F'''ct\' = {four_vector[0]}''')
print(F'''x\' = {four_vector[1]}''')
print(F'''y\' = {four_vector[2]}''')
print(F'''z\' = {four_vector[3]}''')
# Substitute symbols with numerical values
_lowerCAmelCase = {ct: c, x: 1, y: 1, z: 1}
_lowerCAmelCase = [four_vector[i].subs(sub_dict) for i in range(4)]
print(F'''\n{numerical_vector}''')
| 718 |
"""simple docstring"""
import argparse
import struct
import unittest
class __UpperCamelCase :
def __init__( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = data
# Initialize hash values
_lowerCAmelCase : Any = [
0x6A09_E667,
0xBB67_AE85,
0x3C6E_F372,
0xA54F_F53A,
0x510E_527F,
0x9B05_688C,
0x1F83_D9AB,
0x5BE0_CD19,
]
# Initialize round constants
_lowerCAmelCase : str = [
0x428A_2F98,
0x7137_4491,
0xB5C0_FBCF,
0xE9B5_DBA5,
0x3956_C25B,
0x59F1_11F1,
0x923F_82A4,
0xAB1C_5ED5,
0xD807_AA98,
0x1283_5B01,
0x2431_85BE,
0x550C_7DC3,
0x72BE_5D74,
0x80DE_B1FE,
0x9BDC_06A7,
0xC19B_F174,
0xE49B_69C1,
0xEFBE_4786,
0x0FC1_9DC6,
0x240C_A1CC,
0x2DE9_2C6F,
0x4A74_84AA,
0x5CB0_A9DC,
0x76F9_88DA,
0x983E_5152,
0xA831_C66D,
0xB003_27C8,
0xBF59_7FC7,
0xC6E0_0BF3,
0xD5A7_9147,
0x06CA_6351,
0x1429_2967,
0x27B7_0A85,
0x2E1B_2138,
0x4D2C_6DFC,
0x5338_0D13,
0x650A_7354,
0x766A_0ABB,
0x81C2_C92E,
0x9272_2C85,
0xA2BF_E8A1,
0xA81A_664B,
0xC24B_8B70,
0xC76C_51A3,
0xD192_E819,
0xD699_0624,
0xF40E_3585,
0x106A_A070,
0x19A4_C116,
0x1E37_6C08,
0x2748_774C,
0x34B0_BCB5,
0x391C_0CB3,
0x4ED8_AA4A,
0x5B9C_CA4F,
0x682E_6FF3,
0x748F_82EE,
0x78A5_636F,
0x84C8_7814,
0x8CC7_0208,
0x90BE_FFFA,
0xA450_6CEB,
0xBEF9_A3F7,
0xC671_78F2,
]
_lowerCAmelCase : Any = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __lowerCamelCase ( _A ):
'''simple docstring'''
_lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64))
_lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) )
return data + padding + big_endian_integer
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) )
# add 48 0-ed integers
words += [0] * 48
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowerCAmelCase : List[str] = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
_lowerCAmelCase : Tuple = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
_lowerCAmelCase : str = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0000_0000
# Compression
_lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 )
_lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g)
_lowerCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0000_0000
_lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 )
_lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c)
_lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = (
g,
f,
e,
((d + tempa) % 0x1_0000_0000),
c,
b,
a,
((tempa + tempa) % 0x1_0000_0000),
)
_lowerCAmelCase : Any = [a, b, c, d, e, f, g, h]
# Modify final values
_lowerCAmelCase : int = [
((element + mutated_hash_values[index]) % 0x1_0000_0000)
for index, element in enumerate(self.hashes )
]
_lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations)
class __UpperCamelCase ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
import hashlib
_lowerCAmelCase : Any = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() )
def lowerCamelCase__ ( ):
'''simple docstring'''
import doctest
doctest.testmod()
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
_lowerCAmelCase : Tuple = parser.parse_args()
_lowerCAmelCase : List[str] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowerCAmelCase : int = f.read()
else:
_lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' )
print(SHAaaa(_lowerCamelCase ).hash )
if __name__ == "__main__":
main()
| 16 | 0 |
"""simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = TapasConfig.from_json_file(_lowerCamelCase )
# set absolute/relative position embeddings parameter
_lowerCAmelCase : Optional[int] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
_lowerCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_lowerCamelCase )
elif task == "WTQ":
# run_task_main.py hparams
_lowerCAmelCase : Any = 4
_lowerCAmelCase : Optional[int] = True
# hparam_utils.py hparams
_lowerCAmelCase : Any = 0.664694
_lowerCAmelCase : str = 0.207951
_lowerCAmelCase : List[Any] = 0.121194
_lowerCAmelCase : Optional[int] = True
_lowerCAmelCase : Optional[int] = True
_lowerCAmelCase : Optional[int] = False
_lowerCAmelCase : str = 0.0352513
_lowerCAmelCase : int = TapasForQuestionAnswering(config=_lowerCamelCase )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
_lowerCAmelCase : Tuple = 4
_lowerCAmelCase : Any = False
# hparam_utils.py hparams
_lowerCAmelCase : List[Any] = 36.4519
_lowerCAmelCase : List[Any] = 0.903421
_lowerCAmelCase : int = 222.088
_lowerCAmelCase : Dict = True
_lowerCAmelCase : Tuple = True
_lowerCAmelCase : List[str] = True
_lowerCAmelCase : Tuple = 0.763141
_lowerCAmelCase : Optional[int] = TapasForQuestionAnswering(config=_lowerCamelCase )
elif task == "TABFACT":
_lowerCAmelCase : Optional[Any] = TapasForSequenceClassification(config=_lowerCamelCase )
elif task == "MLM":
_lowerCAmelCase : Union[str, Any] = TapasForMaskedLM(config=_lowerCamelCase )
elif task == "INTERMEDIATE_PRETRAINING":
_lowerCAmelCase : List[Any] = TapasModel(config=_lowerCamelCase )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(_lowerCamelCase )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
_lowerCAmelCase : List[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(_lowerCamelCase )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_lowerCAmelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 719 |
"""simple docstring"""
from collections.abc import Callable
class __UpperCamelCase :
def __init__( self ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : list = []
# Stores indexes of each item for supporting updates and deletion.
_lowerCAmelCase : dict = {}
# Stores current size of heap.
_lowerCAmelCase : Union[str, Any] = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
_lowerCAmelCase : Union[str, Any] = key or (lambda _A : x)
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return int((i - 1) / 2 ) if i > 0 else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : str = int(2 * i + 2 )
return right if 0 < right < self.size else None
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase, _lowerCAmelCase : Tuple = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
_lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i]
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
return self.arr[i][1] < self.arr[j][1]
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self._left(_A )
_lowerCAmelCase : str = self._right(_A )
_lowerCAmelCase : Tuple = i
if left is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : int = left
if right is not None and not self._cmp(_A ,_A ):
_lowerCAmelCase : Optional[int] = right
return valid_parent
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Any = self._parent(_A )
while parent is not None and not self._cmp(_A ,_A ):
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A )
while valid_parent != index:
self._swap(_A ,_A )
_lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : int = self.pos_map[item]
_lowerCAmelCase : Dict = [item, self.key(_A )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
if item not in self.pos_map:
return
_lowerCAmelCase : List[str] = self.pos_map[item]
del self.pos_map[item]
_lowerCAmelCase : Dict = self.arr[self.size - 1]
_lowerCAmelCase : Optional[Any] = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(_A )
self._heapify_down(_A )
def __lowerCamelCase ( self ,_A ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(_A )] )
else:
_lowerCAmelCase : Any = [item, self.key(_A )]
_lowerCAmelCase : str = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.arr[0] if self.size else None
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def lowerCamelCase__ ( ):
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 | 0 |
"""simple docstring"""
from datetime import datetime as dt
import os
from github import Github
_lowerCAmelCase = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""feature request""",
"""new model""",
"""wip""",
]
def lowerCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = Github(os.environ['GITHUB_TOKEN'] )
_lowerCAmelCase : Union[str, Any] = g.get_repo('huggingface/transformers' )
_lowerCAmelCase : List[Any] = repo.get_issues(state='open' )
for issue in open_issues:
_lowerCAmelCase : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase : i.created_at , reverse=_lowerCamelCase )
_lowerCAmelCase : Tuple = comments[0] if len(_lowerCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state='closed' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
if __name__ == "__main__":
main()
| 720 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __UpperCamelCase ( a__ ):
_UpperCAmelCase = 42
class __UpperCamelCase ( a__ , a__ ):
@register_to_config
def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Any = num_attention_heads
_lowerCAmelCase : Optional[int] = attention_head_dim
_lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim
_lowerCAmelCase : Optional[Any] = additional_embeddings
_lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim
_lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim
_lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim
_lowerCAmelCase : int = Timesteps(_A ,_A ,0 )
_lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A )
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
if embedding_proj_norm_type is None:
_lowerCAmelCase : Optional[Any] = None
elif embedding_proj_norm_type == "layer":
_lowerCAmelCase : List[Any] = nn.LayerNorm(_A )
else:
raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
_lowerCAmelCase : Tuple = nn.Linear(_A ,_A )
if encoder_hid_proj_type is None:
_lowerCAmelCase : int = None
elif encoder_hid_proj_type == "linear":
_lowerCAmelCase : List[Any] = nn.Linear(_A ,_A )
else:
raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) )
if added_emb_type == "prd":
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) )
elif added_emb_type is None:
_lowerCAmelCase : List[Any] = None
else:
raise ValueError(
F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
_lowerCAmelCase : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(
_A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,)
for d in range(_A )
] )
if norm_in_type == "layer":
_lowerCAmelCase : Any = nn.LayerNorm(_A )
elif norm_in_type is None:
_lowerCAmelCase : Any = None
else:
raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" )
_lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A )
_lowerCAmelCase : int = nn.Linear(_A ,_A )
_lowerCAmelCase : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
_lowerCAmelCase : Tuple = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' ,_A ,persistent=_A )
_lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) )
_lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __lowerCamelCase ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {}
def fn_recursive_add_processors(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
_lowerCAmelCase : str = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_A ,_A ,_A )
return processors
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_A ,_A ) and len(_A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(_A ,_A ,_A ):
if hasattr(_A ,'set_processor' ):
if not isinstance(_A ,_A ):
module.set_processor(_A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A )
for name, module in self.named_children():
fn_recursive_attn_processor(_A ,_A ,_A )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,):
'''simple docstring'''
_lowerCAmelCase : str = hidden_states.shape[0]
_lowerCAmelCase : int = timestep
if not torch.is_tensor(_A ):
_lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device )
elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0:
_lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device )
_lowerCAmelCase : Dict = self.time_proj(_A )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype )
_lowerCAmelCase : Optional[Any] = self.time_embedding(_A )
if self.embedding_proj_norm is not None:
_lowerCAmelCase : int = self.embedding_proj_norm(_A )
_lowerCAmelCase : str = self.embedding_proj(_A )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_lowerCAmelCase : str = self.encoder_hidden_states_proj(_A )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
_lowerCAmelCase : Any = self.proj_in(_A )
_lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype )
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_A )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_lowerCAmelCase : int = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_lowerCAmelCase : Any = hidden_states[:, None, :]
_lowerCAmelCase : int = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 )
additional_embeds.append(_A )
_lowerCAmelCase : List[str] = torch.cat(
_A ,dim=1 ,)
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_lowerCAmelCase : Any = F.pad(
_A ,(
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) ,value=0.0 ,)
_lowerCAmelCase : int = hidden_states + positional_embeddings
if attention_mask is not None:
_lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
_lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 )
_lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 )
if self.norm_in is not None:
_lowerCAmelCase : Any = self.norm_in(_A )
for block in self.transformer_blocks:
_lowerCAmelCase : int = block(_A ,attention_mask=_A )
_lowerCAmelCase : Union[str, Any] = self.norm_out(_A )
if self.prd_embedding is not None:
_lowerCAmelCase : Optional[int] = hidden_states[:, -1]
else:
_lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:]
_lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 16 | 0 |
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = OrderedDict(
[
# Base model mapping
("""albert""", """FlaxAlbertModel"""),
("""bart""", """FlaxBartModel"""),
("""beit""", """FlaxBeitModel"""),
("""bert""", """FlaxBertModel"""),
("""big_bird""", """FlaxBigBirdModel"""),
("""blenderbot""", """FlaxBlenderbotModel"""),
("""blenderbot-small""", """FlaxBlenderbotSmallModel"""),
("""clip""", """FlaxCLIPModel"""),
("""distilbert""", """FlaxDistilBertModel"""),
("""electra""", """FlaxElectraModel"""),
("""gpt-sw3""", """FlaxGPT2Model"""),
("""gpt2""", """FlaxGPT2Model"""),
("""gpt_neo""", """FlaxGPTNeoModel"""),
("""gptj""", """FlaxGPTJModel"""),
("""longt5""", """FlaxLongT5Model"""),
("""marian""", """FlaxMarianModel"""),
("""mbart""", """FlaxMBartModel"""),
("""mt5""", """FlaxMT5Model"""),
("""opt""", """FlaxOPTModel"""),
("""pegasus""", """FlaxPegasusModel"""),
("""regnet""", """FlaxRegNetModel"""),
("""resnet""", """FlaxResNetModel"""),
("""roberta""", """FlaxRobertaModel"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""),
("""roformer""", """FlaxRoFormerModel"""),
("""t5""", """FlaxT5Model"""),
("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""),
("""vit""", """FlaxViTModel"""),
("""wav2vec2""", """FlaxWav2Vec2Model"""),
("""whisper""", """FlaxWhisperModel"""),
("""xglm""", """FlaxXGLMModel"""),
("""xlm-roberta""", """FlaxXLMRobertaModel"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for pre-training mapping
("""albert""", """FlaxAlbertForPreTraining"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForPreTraining"""),
("""big_bird""", """FlaxBigBirdForPreTraining"""),
("""electra""", """FlaxElectraForPreTraining"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Masked LM mapping
("""albert""", """FlaxAlbertForMaskedLM"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForMaskedLM"""),
("""big_bird""", """FlaxBigBirdForMaskedLM"""),
("""distilbert""", """FlaxDistilBertForMaskedLM"""),
("""electra""", """FlaxElectraForMaskedLM"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("""bart""", """FlaxBartForConditionalGeneration"""),
("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""),
("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""),
("""encoder-decoder""", """FlaxEncoderDecoderModel"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""marian""", """FlaxMarianMTModel"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""pegasus""", """FlaxPegasusForConditionalGeneration"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Image-classsification
("""beit""", """FlaxBeitForImageClassification"""),
("""regnet""", """FlaxRegNetForImageClassification"""),
("""resnet""", """FlaxResNetForImageClassification"""),
("""vit""", """FlaxViTForImageClassification"""),
]
)
_lowerCAmelCase = OrderedDict(
[
("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Causal LM mapping
("""bart""", """FlaxBartForCausalLM"""),
("""bert""", """FlaxBertForCausalLM"""),
("""big_bird""", """FlaxBigBirdForCausalLM"""),
("""electra""", """FlaxElectraForCausalLM"""),
("""gpt-sw3""", """FlaxGPT2LMHeadModel"""),
("""gpt2""", """FlaxGPT2LMHeadModel"""),
("""gpt_neo""", """FlaxGPTNeoForCausalLM"""),
("""gptj""", """FlaxGPTJForCausalLM"""),
("""opt""", """FlaxOPTForCausalLM"""),
("""roberta""", """FlaxRobertaForCausalLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""),
("""xglm""", """FlaxXGLMForCausalLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Sequence Classification mapping
("""albert""", """FlaxAlbertForSequenceClassification"""),
("""bart""", """FlaxBartForSequenceClassification"""),
("""bert""", """FlaxBertForSequenceClassification"""),
("""big_bird""", """FlaxBigBirdForSequenceClassification"""),
("""distilbert""", """FlaxDistilBertForSequenceClassification"""),
("""electra""", """FlaxElectraForSequenceClassification"""),
("""mbart""", """FlaxMBartForSequenceClassification"""),
("""roberta""", """FlaxRobertaForSequenceClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""),
("""roformer""", """FlaxRoFormerForSequenceClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Question Answering mapping
("""albert""", """FlaxAlbertForQuestionAnswering"""),
("""bart""", """FlaxBartForQuestionAnswering"""),
("""bert""", """FlaxBertForQuestionAnswering"""),
("""big_bird""", """FlaxBigBirdForQuestionAnswering"""),
("""distilbert""", """FlaxDistilBertForQuestionAnswering"""),
("""electra""", """FlaxElectraForQuestionAnswering"""),
("""mbart""", """FlaxMBartForQuestionAnswering"""),
("""roberta""", """FlaxRobertaForQuestionAnswering"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""),
("""roformer""", """FlaxRoFormerForQuestionAnswering"""),
("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Token Classification mapping
("""albert""", """FlaxAlbertForTokenClassification"""),
("""bert""", """FlaxBertForTokenClassification"""),
("""big_bird""", """FlaxBigBirdForTokenClassification"""),
("""distilbert""", """FlaxDistilBertForTokenClassification"""),
("""electra""", """FlaxElectraForTokenClassification"""),
("""roberta""", """FlaxRobertaForTokenClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""),
("""roformer""", """FlaxRoFormerForTokenClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""),
]
)
_lowerCAmelCase = OrderedDict(
[
# Model for Multiple Choice mapping
("""albert""", """FlaxAlbertForMultipleChoice"""),
("""bert""", """FlaxBertForMultipleChoice"""),
("""big_bird""", """FlaxBigBirdForMultipleChoice"""),
("""distilbert""", """FlaxDistilBertForMultipleChoice"""),
("""electra""", """FlaxElectraForMultipleChoice"""),
("""roberta""", """FlaxRobertaForMultipleChoice"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""),
("""roformer""", """FlaxRoFormerForMultipleChoice"""),
("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""),
]
)
_lowerCAmelCase = OrderedDict(
[
("""bert""", """FlaxBertForNextSentencePrediction"""),
]
)
_lowerCAmelCase = OrderedDict(
[
("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
]
)
_lowerCAmelCase = OrderedDict(
[
("""whisper""", """FlaxWhisperForAudioClassification"""),
]
)
_lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
_lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
_lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
_lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
_lowerCAmelCase = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_MAPPING
_lowerCAmelCase = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING
_lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""")
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
_lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""")
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING
_lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""")
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowerCAmelCase = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
_lowerCAmelCase = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="""sequence classification"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
_lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""")
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
_lowerCAmelCase = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="""token classification"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
_lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""")
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
_lowerCAmelCase = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
_lowerCAmelCase = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="""image classification"""
)
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
_lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""")
class __UpperCamelCase ( _BaseAutoModelClass ):
_UpperCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
_lowerCAmelCase = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling"""
)
| 721 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_lowerCAmelCase = get_logger()
_lowerCAmelCase = None
class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
def __init__( self ,_A=None ,_A=None ,**_A ):
'''simple docstring'''
super().__init__(features=_A )
import jax
from jaxlib.xla_client import Device
if isinstance(_A ,_A ):
raise ValueError(
F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
_lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F"""Device with string identifier {self.device} not listed among the available """
F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
F"""device: {str(jax.devices()[0] )}.""" )
_lowerCAmelCase : List[str] = str(jax.devices()[0] )
_lowerCAmelCase : int = jnp_array_kwargs
@staticmethod
def __lowerCamelCase ( ):
'''simple docstring'''
import jax
return {str(_A ): device for device in jax.devices()}
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,_A ) and column:
if all(
isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_A ,axis=0 )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(_A ,(str, bytes, type(_A )) ):
return value
elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ):
return value.tolist()
_lowerCAmelCase : Optional[Any] = {}
if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_lowerCAmelCase : List[str] = {'dtype': jnp.intaa}
else:
_lowerCAmelCase : Tuple = {'dtype': jnp.intaa}
elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ):
_lowerCAmelCase : Any = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_A ,PIL.Image.Image ):
_lowerCAmelCase : int = np.asarray(_A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Optional[Any] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_A ,torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ):
_lowerCAmelCase : Optional[Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_A ,np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
elif isinstance(_A ,(list, tuple) ):
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
return self._tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
return map_nested(self._recursive_tensorize ,_A ,map_list=_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A )
_lowerCAmelCase : int = self.python_features_decoder.decode_row(_A )
return self.recursive_tensorize(_A )
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A )
_lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] )
_lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A )
_lowerCAmelCase : Optional[Any] = self._consolidate(_A )
return column
def __lowerCamelCase ( self ,_A ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A )
_lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A )
_lowerCAmelCase : str = self.recursive_tensorize(_A )
for column_name in batch:
_lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] )
return batch
| 16 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase_ ( _A ,unittest.TestCase ):
'''simple docstring'''
a__ = ShapEPipeline
a__ = ["prompt"]
a__ = ["prompt"]
a__ = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
a__ = False
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any:
return 32
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
return 32
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]:
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int:
return 8
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple:
A : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
return tokenizer
@property
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int:
torch.manual_seed(0 )
A : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(__lowerCamelCase )
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str:
torch.manual_seed(0 )
A : Tuple = {
"num_attention_heads": 2,
"attention_head_dim": 16,
"embedding_dim": self.time_input_dim,
"num_embeddings": 32,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
A : List[Any] = PriorTransformer(**__lowerCamelCase )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]:
torch.manual_seed(0 )
A : Dict = {
"param_shapes": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 12,
"background": (
0.1,
0.1,
0.1,
),
}
A : Optional[Any] = ShapERenderer(**__lowerCamelCase )
return model
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]:
A : List[str] = self.dummy_prior
A : Dict = self.dummy_text_encoder
A : Optional[Any] = self.dummy_tokenizer
A : Union[str, Any] = self.dummy_renderer
A : str = HeunDiscreteScheduler(
beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=__lowerCamelCase , clip_sample=__lowerCamelCase , clip_sample_range=1.0 , )
A : Union[str, Any] = {
"prior": prior,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"renderer": renderer,
"scheduler": scheduler,
}
return components
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[int]=0 ) -> List[Any]:
if str(__lowerCamelCase ).startswith("mps" ):
A : Dict = torch.manual_seed(__lowerCamelCase )
else:
A : List[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
A : List[Any] = {
"prompt": "horse",
"generator": generator,
"num_inference_steps": 1,
"frame_size": 32,
"output_type": "np",
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str:
A : List[Any] = "cpu"
A : Optional[Any] = self.get_dummy_components()
A : int = self.pipeline_class(**__lowerCamelCase )
A : List[Any] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : Optional[int] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
A : str = output.images[0]
A : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
A : int = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple:
A : List[Any] = torch_device == "cpu"
A : Optional[int] = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=__lowerCamelCase , relax_max_difference=__lowerCamelCase , )
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]:
A : str = self.get_dummy_components()
A : Tuple = self.pipeline_class(**__lowerCamelCase )
A : int = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : List[Any] = 1
A : Tuple = 2
A : str = self.get_dummy_inputs(__lowerCamelCase )
for key in inputs.keys():
if key in self.batch_params:
A : str = batch_size * [inputs[key]]
A : Union[str, Any] = pipe(**__lowerCamelCase , num_images_per_prompt=__lowerCamelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]:
A : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_np_out.npy" )
A : str = ShapEPipeline.from_pretrained("openai/shap-e" )
A : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
A : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
A : Dict = pipe(
"a shark" , generator=__lowerCamelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) | 17 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE = {
"""configuration_instructblip""": [
"""INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""InstructBlipConfig""",
"""InstructBlipQFormerConfig""",
"""InstructBlipVisionConfig""",
],
"""processing_instructblip""": ["""InstructBlipProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
"""INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""InstructBlipQFormerModel""",
"""InstructBlipPreTrainedModel""",
"""InstructBlipForConditionalGeneration""",
"""InstructBlipVisionModel""",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 17 | 1 |
def UpperCAmelCase ( _lowerCamelCase ):
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("Input value must be an 'int' type" )
A : Tuple = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Optional[int]:
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
for a, b in zip(__lowerCamelCase , __lowerCamelCase ):
self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]:
A : List[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(__lowerCamelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]:
A : Union[str, Any] = None
ops.enable_eager_execution_internal()
A : Tuple = tf.config.list_physical_devices("CPU" )
if len(__lowerCamelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
A : Dict = tf.config.list_logical_devices(device_type="CPU" )
A : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
A : Optional[int] = GradientAccumulator()
A : Tuple = tf.Variable([4.0, 3.0] )
A , A : List[Any] = create_optimizer(5e-5 , 10 , 5 )
A : List[str] = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase )
def accumulate_on_replica(__lowerCamelCase : Tuple ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(__lowerCamelCase : Any , __lowerCamelCase : Optional[int] ):
with strategy.scope():
A : int = strategy.experimental_local_results(__lowerCamelCase )
local_variables[0].assign(__lowerCamelCase )
local_variables[1].assign(__lowerCamelCase )
strategy.run(__lowerCamelCase , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(__lowerCamelCase )
def _check_local_values(__lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ):
A : Optional[int] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2 )
self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] ) | 17 | 1 |
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase = False ):
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
A : List[str] = f"""Expected string as input, found {type(_lowerCamelCase )}"""
raise ValueError(_lowerCamelCase )
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
A : str = f"""Expected boolean as use_pascal parameter, found {type(_lowerCamelCase )}"""
raise ValueError(_lowerCamelCase )
A : List[Any] = input_str.split("_" )
A : int = 0 if use_pascal else 1
A : Any = words[start_index:]
A : Union[str, Any] = [word[0].upper() + word[1:] for word in words_to_capitalize]
A : Optional[int] = "" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__SCREAMING_SNAKE_CASE = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 17 | 1 |
def UpperCAmelCase ( _lowerCamelCase ):
A : List[str] = len(_lowerCamelCase )
for i in range(length - 1 ):
A : Tuple = i
for k in range(i + 1 , _lowerCamelCase ):
if collection[k] < collection[least]:
A : str = k
if least != i:
A , A : int = (collection[i], collection[least])
return collection
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip()
__SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")]
print(selection_sort(unsorted)) | 17 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
__SCREAMING_SNAKE_CASE = (
"""https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"""
)
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCAmelCase ( ):
A : Union[str, Any] = "https://pypi.org/pypi/diffusers/json"
A : List[Any] = json.loads(request.urlopen(_lowerCamelCase ).read() )["releases"].keys()
return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : version.Version(_lowerCamelCase ) )
def UpperCAmelCase ( ):
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(_lowerCamelCase )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
A : List[Any] = Path(_lowerCamelCase ) / "__init__.py"
if not init_path.exists():
init_path.touch()
def UpperCAmelCase ( _lowerCamelCase ):
init_hf_modules()
A : Tuple = Path(_lowerCamelCase ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
A : Optional[int] = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
def UpperCAmelCase ( _lowerCamelCase ):
with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f:
A : Union[str, Any] = f.read()
# Imports of the form `import .xxx`
A : Union[str, Any] = re.findall("^\s*import\s+\.(\S+)\s*$" , _lowerCamelCase , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , _lowerCamelCase , flags=re.MULTILINE )
# Unique-ify
return list(set(_lowerCamelCase ) )
def UpperCAmelCase ( _lowerCamelCase ):
A : Optional[int] = False
A : Tuple = [module_file]
A : Optional[int] = []
# Let's recurse through all relative imports
while not no_change:
A : Optional[Any] = []
for f in files_to_check:
new_imports.extend(get_relative_imports(_lowerCamelCase ) )
A : Optional[Any] = Path(_lowerCamelCase ).parent
A : List[str] = [str(module_path / m ) for m in new_imports]
A : Optional[Any] = [f for f in new_import_files if f not in all_relative_imports]
A : Union[str, Any] = [f"""{f}.py""" for f in new_import_files]
A : Tuple = len(_lowerCamelCase ) == 0
all_relative_imports.extend(_lowerCamelCase )
return all_relative_imports
def UpperCAmelCase ( _lowerCamelCase ):
with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f:
A : Dict = f.read()
# Imports of the form `import xxx`
A : List[str] = re.findall("^\s*import\s+(\S+)\s*$" , _lowerCamelCase , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("^\s*from\s+(\S+)\s+import" , _lowerCamelCase , flags=re.MULTILINE )
# Only keep the top-level module
A : Optional[int] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )]
# Unique-ify and test we got them all
A : Any = list(set(_lowerCamelCase ) )
A : Tuple = []
for imp in imports:
try:
importlib.import_module(_lowerCamelCase )
except ImportError:
missing_packages.append(_lowerCamelCase )
if len(_lowerCamelCase ) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
f"""{", ".join(_lowerCamelCase )}. Run `pip install {" ".join(_lowerCamelCase )}`""" )
return get_relative_imports(_lowerCamelCase )
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
A : int = module_path.replace(os.path.sep , "." )
A : Optional[Any] = importlib.import_module(_lowerCamelCase )
if class_name is None:
return find_pipeline_class(_lowerCamelCase )
return getattr(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase ( _lowerCamelCase ):
from ..pipelines import DiffusionPipeline
A : int = dict(inspect.getmembers(_lowerCamelCase , inspect.isclass ) )
A : Union[str, Any] = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , _lowerCamelCase )
and cls.__module__.split("." )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"""
f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"""
f""" {loaded_module}.""" )
A : Any = cls
return pipeline_class
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , ):
A : List[Any] = str(_lowerCamelCase )
A : Any = os.path.join(_lowerCamelCase , _lowerCamelCase )
if os.path.isfile(_lowerCamelCase ):
A : Union[str, Any] = module_file_or_url
A : Any = "local"
elif pretrained_model_name_or_path.count("/" ) == 0:
A : Optional[Any] = get_diffusers_versions()
# cut ".dev0"
A : Union[str, Any] = "v" + ".".join(__version__.split("." )[:3] )
# retrieve github version that matches
if revision is None:
A : List[Any] = latest_version if latest_version[1:] in available_versions else "main"
logger.info(f"""Defaulting to latest_version: {revision}.""" )
elif revision in available_versions:
A : Optional[Any] = f"""v{revision}"""
elif revision == "main":
A : Dict = revision
else:
raise ValueError(
f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of"""
f""" {", ".join(available_versions + ["main"] )}.""" )
# community pipeline on GitHub
A : Dict = COMMUNITY_PIPELINES_URL.format(revision=_lowerCamelCase , pipeline=_lowerCamelCase )
try:
A : Optional[int] = cached_download(
_lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , local_files_only=_lowerCamelCase , use_auth_token=_lowerCamelCase , )
A : Optional[Any] = "git"
A : Any = pretrained_model_name_or_path + ".py"
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
else:
try:
# Load from URL or cache if already cached
A : Any = hf_hub_download(
_lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , local_files_only=_lowerCamelCase , use_auth_token=_lowerCamelCase , )
A : Optional[Any] = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) )
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
# Check we have all the requirements in our environment
A : List[str] = check_imports(_lowerCamelCase )
# Now we move the module inside our cached dynamic modules.
A : List[str] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(_lowerCamelCase )
A : Optional[int] = Path(_lowerCamelCase ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(_lowerCamelCase , submodule_path / module_file )
for module_needed in modules_needed:
A : int = f"""{module_needed}.py"""
shutil.copy(os.path.join(_lowerCamelCase , _lowerCamelCase ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(_lowerCamelCase , _lowerCamelCase ):
A : Optional[Any] = use_auth_token
elif use_auth_token is True:
A : Dict = HfFolder.get_token()
else:
A : Tuple = None
A : List[str] = model_info(_lowerCamelCase , revision=_lowerCamelCase , token=_lowerCamelCase ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
A : str = submodule_path / commit_hash
A : List[str] = full_submodule + os.path.sep + commit_hash
create_dynamic_module(_lowerCamelCase )
if not (submodule_path / module_file).exists():
shutil.copy(_lowerCamelCase , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
_lowerCamelCase , f"""{module_needed}.py""" , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , )
return os.path.join(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ):
A : int = get_cached_module_file(
_lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , )
return get_class_in_module(_lowerCamelCase , final_module.replace(".py" , "" ) ) | 17 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel | 17 |
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
__SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE = """sshleifer/student_marian_en_ro_6_1"""
__SCREAMING_SNAKE_CASE = """sshleifer/tiny-mbart"""
@require_torch
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=True , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=True , ) -> Dict:
A : str = self.run_trainer(
eval_steps=1 , max_len=12 , model_name=__lowerCamelCase , num_train_epochs=1 , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , predict_with_generate=__lowerCamelCase , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , )
A : Dict = TrainerState.load_from_json(os.path.join(__lowerCamelCase , "trainer_state.json" ) ).log_history
if not do_eval:
return
A : List[Any] = [log for log in logs if "eval_loss" in log.keys()]
A : Any = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
A : List[str] = eval_metrics[-1]
assert isinstance(last_step_stats["eval_bleu"] , __lowerCamelCase )
assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]:
self.run_seqaseq_quick()
@require_torch_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
self.run_seqaseq_quick(distributed=__lowerCamelCase )
@require_torch_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str:
self.run_seqaseq_quick(distributed=__lowerCamelCase )
@unittest.skip("Requires an update of the env running those tests" )
@require_torch_multi_gpu
@require_fairscale
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]:
self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--sharded_ddp simple" )
@unittest.skip("Requires an update of the env running those tests" )
@require_torch_multi_gpu
@require_fairscale
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str:
self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--sharded_ddp simple --fp16" )
@unittest.skip("Requires an update of the env running those tests" )
@require_torch_multi_gpu
@require_fairscale
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=__lowerCamelCase )
@unittest.skip("Requires an update of the env running those tests" )
@require_torch_multi_gpu
@require_fairscale
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]:
self.run_seqaseq_quick(
distributed=__lowerCamelCase , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=__lowerCamelCase )
@require_apex
@require_torch_gpu
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict:
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--fp16 --fp16_backend=apex" )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="--fp16 --fp16_backend=apex" )
@parameterized.expand(["base", "low", "high", "mixed"] )
@require_torch_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : List[str] ) -> Tuple:
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
A : Dict = {
# test with the default log_level - should be info and thus log info once
"base": {"extra_args_str": "", "n_matches": 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
"low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
"high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1},
# test with high log_level and log_level_replica - should be quiet on all processes
"mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0},
}
A : List[str] = experiments[experiment_id]
A : Union[str, Any] = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False}
A : Union[str, Any] = "Running training"
with CaptureStderr() as cl:
self.run_seqaseq_quick(**__lowerCamelCase , extra_args_str=data["extra_args_str"] )
A : Dict = len(re.findall(__lowerCamelCase , cl.err ) )
self.assertEqual(__lowerCamelCase , data["n_matches"] )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]:
A : int = self.run_trainer(
eval_steps=2 , max_len=1_28 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=10 , distributed=__lowerCamelCase , )
# Check metrics
A : str = TrainerState.load_from_json(os.path.join(__lowerCamelCase , "trainer_state.json" ) ).log_history
A : Dict = [log for log in logs if "eval_loss" in log.keys()]
A : Dict = eval_metrics[0]
A : int = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats["eval_bleu"] , __lowerCamelCase )
# test if do_predict saves generations and metrics
A : Optional[Any] = os.listdir(__lowerCamelCase )
A : Any = {os.path.basename(__lowerCamelCase ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]:
from transformers.training_args import OptimizerNames
def train_and_return_metrics(__lowerCamelCase : str ) -> Tuple[int, float]:
A : Optional[int] = "--skip_memory_metrics 0"
A : str = self.run_trainer(
max_len=1_28 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=__lowerCamelCase , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , n_gpus_to_use=1 , )
# Check metrics
A : Union[str, Any] = TrainerState.load_from_json(Path(__lowerCamelCase , "trainer_state.json" ) ).log_history
A : str = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 )
A : List[Any] = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 )
A : int = logs[0]["train_loss"]
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
A , A , A : int = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
A , A , A : Optional[int] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
A : Tuple = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
A : Dict = gpu_peak_mem_orig + gpu_alloc_mem_orig
A : Dict = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
A : int = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
A : Tuple = 1_20
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
__lowerCamelCase , __lowerCamelCase , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got"
F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and"""
F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , )
self.assertGreater(
__lowerCamelCase , __lowerCamelCase , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got"
F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and"""
F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , )
self.assertEqual(
__lowerCamelCase , __lowerCamelCase , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" )
def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : float = 3e-3 , __lowerCamelCase : str = "adafactor" , __lowerCamelCase : bool = False , __lowerCamelCase : str = None , __lowerCamelCase : int = 0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = None , ) -> List[str]:
A : Optional[int] = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro"
A : Optional[int] = self.get_auto_remove_tmp_dir()
A : int = F"""
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(__lowerCamelCase )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(__lowerCamelCase )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
""".split()
A : Optional[Any] = F"""
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(__lowerCamelCase )}
""".split()
A : Optional[Any] = "\n --do_predict\n ".split()
A : Optional[int] = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += F"""--optim {optim}""".split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
A : Dict = get_gpu_count()
A : Any = get_torch_dist_unique_port()
A : Optional[Any] = F"""
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
""".split()
A : Any = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__lowerCamelCase , env=self.get_env() )
else:
A : List[Any] = ["run_translation.py"] + args
with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ):
main()
return output_dir | 17 | 1 |
from diffusers.utils.testing_utils import require_onnxruntime
@require_onnxruntime
class lowerCamelCase_ :
'''simple docstring'''
pass | 17 |
from collections.abc import Sequence
def UpperCAmelCase ( _lowerCamelCase = None ):
if nums is None or not nums:
raise ValueError("Input sequence should not be empty" )
A : Dict = nums[0]
for i in range(1 , len(_lowerCamelCase ) ):
A : Tuple = nums[i]
A : List[Any] = max(_lowerCamelCase , ans + num , _lowerCamelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
__SCREAMING_SNAKE_CASE = int(input("""Enter number of elements : """).strip())
__SCREAMING_SNAKE_CASE = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n]
print(max_subsequence_sum(array)) | 17 | 1 |
from __future__ import annotations
import pandas as pd
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A : str = [0] * no_of_processes
A : Any = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(_lowerCamelCase ):
A : str = burst_time[i]
A : int = 0
A : Optional[int] = 0
A : Dict = 9_9999_9999
A : Optional[Any] = 0
A : Optional[Any] = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(_lowerCamelCase ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
A : str = remaining_time[j]
A : Tuple = j
A : Optional[int] = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
A : int = remaining_time[short]
if minm == 0:
A : Optional[Any] = 9_9999_9999
if remaining_time[short] == 0:
complete += 1
A : Optional[int] = False
# Find finish time of current process
A : Union[str, Any] = increment_time + 1
# Calculate waiting time
A : Optional[int] = finish_time - arrival_time[short]
A : Dict = finar - burst_time[short]
if waiting_time[short] < 0:
A : Tuple = 0
# Increment time
increment_time += 1
return waiting_time
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A : Any = [0] * no_of_processes
for i in range(_lowerCamelCase ):
A : Optional[Any] = burst_time[i] + waiting_time[i]
return turn_around_time
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A : Any = 0
A : Optional[Any] = 0
for i in range(_lowerCamelCase ):
A : List[Any] = total_waiting_time + waiting_time[i]
A : str = total_turn_around_time + turn_around_time[i]
print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" )
print("Average turn around time =" , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print("""Enter how many process you want to analyze""")
__SCREAMING_SNAKE_CASE = int(input())
__SCREAMING_SNAKE_CASE = [0] * no_of_processes
__SCREAMING_SNAKE_CASE = [0] * no_of_processes
__SCREAMING_SNAKE_CASE = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print("""Enter the arrival time and burst time for process:--""" + str(i + 1))
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = map(int, input().split())
__SCREAMING_SNAKE_CASE = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__SCREAMING_SNAKE_CASE = burst_time
__SCREAMING_SNAKE_CASE = no_of_processes
__SCREAMING_SNAKE_CASE = waiting_time
__SCREAMING_SNAKE_CASE = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
__SCREAMING_SNAKE_CASE = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
"""Process""",
"""BurstTime""",
"""ArrivalTime""",
"""WaitingTime""",
"""TurnAroundTime""",
],
)
# Printing the dataFrame
pd.set_option("""display.max_rows""", fcfs.shape[0] + 1)
print(fcfs) | 17 |
from math import sqrt
def UpperCAmelCase ( _lowerCamelCase = 100_0000 ):
A : int = 0
A : int = 0
A : int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(_lowerCamelCase , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(F"""{solution() = }""") | 17 | 1 |
from __future__ import annotations
from typing import Any
class lowerCamelCase_ ( _A ):
'''simple docstring'''
pass
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Any ) -> None:
A : Any = data
A : Node | None = None
def __iter__( self : Optional[int] ) -> Optional[Any]:
A : int = self
A : Dict = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(__lowerCamelCase )
yield node.data
A : int = node.next_node
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> bool:
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = Node(1)
__SCREAMING_SNAKE_CASE = Node(2)
__SCREAMING_SNAKE_CASE = Node(3)
__SCREAMING_SNAKE_CASE = Node(4)
print(root_node.has_loop) # False
__SCREAMING_SNAKE_CASE = root_node.next_node
print(root_node.has_loop) # True
__SCREAMING_SNAKE_CASE = Node(5)
__SCREAMING_SNAKE_CASE = Node(6)
__SCREAMING_SNAKE_CASE = Node(5)
__SCREAMING_SNAKE_CASE = Node(6)
print(root_node.has_loop) # False
__SCREAMING_SNAKE_CASE = Node(1)
print(root_node.has_loop) # False | 17 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__SCREAMING_SNAKE_CASE = """."""
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, """utils/documentation_tests.txt""")
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
with open(doctest_file_path) as fp:
for line in fp:
__SCREAMING_SNAKE_CASE = line.strip()
__SCREAMING_SNAKE_CASE = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__SCREAMING_SNAKE_CASE = """\n""".join(non_existent_paths)
raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""")
if all_paths != sorted(all_paths):
raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""") | 17 | 1 |
def UpperCAmelCase ( _lowerCamelCase ):
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
A : Dict = f"""Input value of [number={number}] must be an integer"""
raise TypeError(_lowerCamelCase )
if number < 1:
A : Tuple = f"""Input value of [number={number}] must be > 0"""
raise ValueError(_lowerCamelCase )
A : int = 1
for i in range(1 , _lowerCamelCase ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 |
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Tuple=13 , __lowerCamelCase : List[str]=30 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Any=3 , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=32 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=2 , ) -> str:
A : List[Any] = parent
A : Optional[int] = batch_size
A : Any = image_size
A : Optional[Any] = patch_size
A : Optional[Any] = num_channels
A : Tuple = is_training
A : Optional[Any] = use_labels
A : Union[str, Any] = hidden_size
A : Tuple = num_hidden_layers
A : Union[str, Any] = num_attention_heads
A : Union[str, Any] = intermediate_size
A : Any = hidden_act
A : Tuple = hidden_dropout_prob
A : Dict = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Tuple = initializer_range
A : List[Any] = scope
A : Optional[int] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A : List[str] = (image_size // patch_size) ** 2
A : List[str] = num_patches + 2
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int:
A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : List[Any] = None
if self.use_labels:
A : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Dict = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] ) -> int:
A : Optional[int] = DeiTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any ) -> Any:
A : List[Any] = DeiTForMaskedImageModeling(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A : List[str] = 1
A : Optional[int] = DeiTForMaskedImageModeling(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : int ) -> Dict:
A : str = self.type_sequence_label_size
A : List[str] = DeiTForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Any = 1
A : str = DeiTForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]:
A : Dict = self.prepare_config_and_inputs()
(
(
A
) , (
A
) , (
A
) ,
) : Tuple = config_and_inputs
A : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase_ ( _A ,_A ,unittest.TestCase ):
'''simple docstring'''
a__ = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
a__ = (
{
"feature-extraction": DeiTModel,
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
a__ = False
a__ = False
a__ = False
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]:
A : str = DeiTModelTester(self )
A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int:
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]:
A , A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Dict = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]:
A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Union[str, Any] = model_class(__lowerCamelCase )
A : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Any = [*signature.parameters.keys()]
A : Any = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any:
A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict:
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]:
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=False ) -> str:
A : Union[str, Any] = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]:
if not self.model_tester.is_training:
return
A , A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
A : Dict = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
A : Union[str, Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
A : Dict = model(**__lowerCamelCase ).loss
loss.backward()
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict:
A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
A : Tuple = False
A : Any = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
A : List[str] = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
A : Dict = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
A : Tuple = model(**__lowerCamelCase ).loss
loss.backward()
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any:
A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
A : int = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ):
A : Tuple = problem_type["title"]
A : Optional[Any] = problem_type["num_labels"]
A : List[str] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
A : List[str] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
A : int = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
A : Optional[Any] = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F"""Something is going wrong in the regression problem: intercepted {w.message}""" )
loss.backward()
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : Optional[Any] = DeiTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def UpperCAmelCase ( ):
A : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]:
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]:
A : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to(
__lowerCamelCase )
A : List[Any] = self.default_image_processor
A : List[Any] = prepare_img()
A : Optional[Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
A : List[str] = model(**__lowerCamelCase )
# verify the logits
A : str = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
A : List[str] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]:
A : str = DeiTModel.from_pretrained(
"facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" )
A : Dict = self.default_image_processor
A : Optional[int] = prepare_img()
A : Union[str, Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" )
A : Union[str, Any] = inputs.pixel_values.to(__lowerCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
A : List[str] = model(__lowerCamelCase ) | 17 | 1 |
from __future__ import annotations
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ):
if start is None:
A : Union[str, Any] = 0
if end is None:
A : Optional[int] = len(_lowerCamelCase ) - 1
if start >= end:
return
A : str = (start + end) // 2
slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase )
if sequence[end] < sequence[mid]:
A , A : Optional[int] = sequence[mid], sequence[end]
slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 |
from sklearn.metrics import recall_score
import datasets
__SCREAMING_SNAKE_CASE = """
Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:
Recall = TP / (TP + FN)
Where TP is the true positives and FN is the false negatives.
"""
__SCREAMING_SNAKE_CASE = """
Args:
- **predictions** (`list` of `int`): The predicted labels.
- **references** (`list` of `int`): The ground truth labels.
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.
- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.
- `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.
- `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.
- `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
- `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.
- `0`: If there is a zero division, the return value is `0`.
- `1`: If there is a zero division, the return value is `1`.
Returns:
- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.
Examples:
Example 1-A simple example with some errors
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])
>>> print(results)
{'recall': 0.6666666666666666}
Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.
>>> recall_metric = datasets.load_metric('recall')
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)
>>> print(results)
{'recall': 0.5}
Example 3-The same example as Example 1, but with `sample_weight` included.
>>> recall_metric = datasets.load_metric('recall')
>>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]
>>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)
>>> print(results)
{'recall': 0.55}
Example 4-A multiclass example, using different averages.
>>> recall_metric = datasets.load_metric('recall')
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')
>>> print(results)
{'recall': 0.3333333333333333}
>>> results = recall_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'recall': array([1., 0., 0.])}
"""
__SCREAMING_SNAKE_CASE = """
@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32" ) ),
"references": datasets.Sequence(datasets.Value("int32" ) ),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , )
def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Tuple="binary" , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple="warn" , ) -> Optional[Any]:
A : str = recall_score(
__lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , )
return {"recall": float(__lowerCamelCase ) if score.size == 1 else score} | 17 | 1 |
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
A : List[str] = len(_lowerCamelCase )
A : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
A : str = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
A : str = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
A : int = subset[i - 1][j]
if arr[i - 1] <= j:
A : Tuple = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 |
from collections import deque
from .hash_table import HashTable
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : int ) -> Optional[int]:
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]:
A : Optional[Any] = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
A : Dict = self.values[key]
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str:
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> Optional[int]:
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 17 | 1 |
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def UpperCAmelCase ( _lowerCamelCase ):
A : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase )
A : Dict = flatten_dict(_lowerCamelCase )
return flax_params
def UpperCAmelCase ( _lowerCamelCase ):
A : Optional[Any] = {}
A : Union[str, Any] = {
"token_embedder": "embeddings",
"encoder_norm": "layernorm",
"kernel": "weight",
".out": ".output",
"scale": "weight",
"embedders_0.pos_embedding": "row_embedder.weight",
"embedders_1.pos_embedding": "column_embedder.weight",
}
A : Tuple = {
"query": "attention.query",
"key": "attention.key",
"value": "attention.value",
"output.dense": "output",
"encoder_decoder_attention.o": "encoder_decoder_attention.attention.o",
"pre_self_attention_layer_norm": "self_attention.layer_norm",
"pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm",
"mlp.": "mlp.DenseReluDense.",
"pre_mlp_layer_norm": "mlp.layer_norm",
"self_attention.o": "self_attention.attention.o",
"decoder.embeddings.embedding": "decoder.embed_tokens.weight",
"decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight",
"decoder.decoder_norm.weight": "decoder.final_layer_norm.weight",
"decoder.logits_dense.weight": "decoder.lm_head.weight",
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
A : Any = ".".join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
A : List[str] = new_key.replace(_lowerCamelCase , _lowerCamelCase )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
A : Dict = new_key.replace(_lowerCamelCase , _lowerCamelCase )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
A : int = re.sub(R"layers_(\d+)" , R"layer.\1" , _lowerCamelCase )
A : List[str] = new_key.replace("encoder" , "encoder.encoder" )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
A : int = re.sub(R"layers_(\d+)" , R"layer.\1" , _lowerCamelCase )
A : str = flax_dict[key]
A : Any = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
A : Union[str, Any] = torch.from_numpy(converted_dict[key].T )
else:
A : Union[str, Any] = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ):
A : Any = get_flax_param(_lowerCamelCase )
if not use_large:
A : Optional[Any] = PixaStructVisionConfig()
A : str = PixaStructTextConfig()
else:
A : Any = PixaStructVisionConfig(
hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 )
A : List[Any] = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 )
A : str = PixaStructConfig(
vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowerCamelCase )
A : Dict = PixaStructForConditionalGeneration(_lowerCamelCase )
A : Tuple = rename_and_convert_flax_params(_lowerCamelCase )
model.load_state_dict(_lowerCamelCase )
A : Optional[int] = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" )
A : List[str] = PixaStructImageProcessor()
A : int = PixaStructProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase )
if use_large:
A : Dict = 4096
A : List[Any] = True
# mkdir if needed
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
model.save_pretrained(_lowerCamelCase )
processor.save_pretrained(_lowerCamelCase )
print("Model saved in {}".format(_lowerCamelCase ) )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""")
parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""")
__SCREAMING_SNAKE_CASE = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
) | 17 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCamelCase_ :
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str:
return self.get_dummy_input()
@property
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]:
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" )
def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , ) -> Dict:
A : Optional[Any] = 4
A : List[str] = 32
A : Any = (32, 32)
A : str = torch.manual_seed(0 )
A : int = torch.device(__lowerCamelCase )
A : List[str] = (batch_size, num_channels) + sizes
A : Dict = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase )
A : int = {"hidden_states": hidden_states}
if include_temb:
A : Any = 1_28
A : List[str] = randn_tensor((batch_size, temb_channels) , generator=__lowerCamelCase , device=__lowerCamelCase )
if include_res_hidden_states_tuple:
A : str = torch.manual_seed(1 )
A : Tuple = (randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ),)
if include_encoder_hidden_states:
A : Dict = floats_tensor((batch_size, 32, 32) ).to(__lowerCamelCase )
if include_skip_sample:
A : Optional[int] = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCamelCase , device=__lowerCamelCase )
return dummy_input
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]:
A : Dict = {
"in_channels": 32,
"out_channels": 32,
"temb_channels": 1_28,
}
if self.block_type == "up":
A : Dict = 32
if self.block_type == "mid":
init_dict.pop("out_channels" )
A : str = self.dummy_input
return init_dict, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Optional[int] ) -> Union[str, Any]:
A , A : str = self.prepare_init_args_and_inputs_for_common()
A : List[Any] = self.block_class(**__lowerCamelCase )
unet_block.to(__lowerCamelCase )
unet_block.eval()
with torch.no_grad():
A : int = unet_block(**__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
A : Union[str, Any] = output[0]
self.assertEqual(output.shape , self.output_shape )
A : Any = output[0, -1, -3:, -3:]
A : Union[str, Any] = torch.tensor(__lowerCamelCase ).to(__lowerCamelCase )
assert torch_all_close(output_slice.flatten() , __lowerCamelCase , atol=5e-3 )
@unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict:
A , A : Tuple = self.prepare_init_args_and_inputs_for_common()
A : str = self.block_class(**__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
A : Optional[int] = model(**__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
A : Optional[Any] = output[0]
A : List[str] = torch.device(__lowerCamelCase )
A : List[str] = randn_tensor(output.shape , device=__lowerCamelCase )
A : Dict = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase )
loss.backward() | 17 | 1 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
__SCREAMING_SNAKE_CASE = {
# 1536-bit
5: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 2048-bit
14: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AACAA68FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 3072-bit
15: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 4096-bit
16: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"""
+ """FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 6144-bit
17: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"""
+ """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"""
+ """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"""
+ """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"""
+ """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"""
+ """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"""
+ """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"""
+ """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"""
+ """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"""
+ """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"""
+ """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"""
+ """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"""
+ """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"""
+ """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"""
+ """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"""
+ """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"""
+ """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"""
+ """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"""
+ """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"""
+ """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"""
+ """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"""
+ """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"""
+ """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"""
+ """6DCC4024FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 8192-bit
18: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"""
+ """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"""
+ """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"""
+ """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"""
+ """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"""
+ """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"""
+ """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"""
+ """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"""
+ """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"""
+ """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"""
+ """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"""
+ """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"""
+ """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"""
+ """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"""
+ """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"""
+ """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"""
+ """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"""
+ """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"""
+ """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"""
+ """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"""
+ """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
}
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , __lowerCamelCase : int = 14 ) -> None:
if group not in primes:
raise ValueError("Unsupported Group" )
A : Any = primes[group]["prime"]
A : str = primes[group]["generator"]
A : List[str] = int(hexlify(urandom(32 ) ) , base=16 )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> str:
return hex(self.__private_key )[2:]
def SCREAMING_SNAKE_CASE__ ( self : int ) -> str:
A : Dict = pow(self.generator , self.__private_key , self.prime )
return hex(__lowerCamelCase )[2:]
def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : int ) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(__lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1
)
def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str ) -> str:
A : List[str] = int(__lowerCamelCase , base=16 )
if not self.is_valid_public_key(__lowerCamelCase ):
raise ValueError("Invalid public key" )
A : str = pow(__lowerCamelCase , self.__private_key , self.prime )
return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest()
@staticmethod
def SCREAMING_SNAKE_CASE__ ( __lowerCamelCase : int , __lowerCamelCase : int ) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(__lowerCamelCase , (prime - 1) // 2 , __lowerCamelCase ) == 1
)
@staticmethod
def SCREAMING_SNAKE_CASE__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 14 ) -> str:
A : Any = int(__lowerCamelCase , base=16 )
A : Tuple = int(__lowerCamelCase , base=16 )
A : Optional[Any] = primes[group]["prime"]
if not DiffieHellman.is_valid_public_key_static(__lowerCamelCase , __lowerCamelCase ):
raise ValueError("Invalid public key" )
A : Dict = pow(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return shaaaa(str(__lowerCamelCase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 |
import time
import warnings
from abc import ABC
from copy import deepcopy
from typing import Optional
import torch
from ..utils import add_start_docstrings, logging
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax.
kwargs (`Dict[str, Any]`, *optional*):
Additional stopping criteria specific kwargs.
Return:
`bool`. `False` indicates we should continue, `True` indicates we should stop.
"""
class lowerCamelCase_ ( _A ):
'''simple docstring'''
@add_start_docstrings(__lowerCamelCase )
def __call__( self : Optional[int] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Optional[Any] ) -> bool:
raise NotImplementedError("StoppingCriteria needs to be subclassed" )
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = None ) -> List[Any]:
A : str = max_length
A : Optional[int] = max_position_embeddings
@add_start_docstrings(__lowerCamelCase )
def __call__( self : List[str] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Any ) -> bool:
A : List[Any] = input_ids.shape[-1]
A : Any = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
"This is a friendly reminder - the current text generation call will exceed the model's predefined "
F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """
"exceptions, performance degradation, or nothing at all." )
return is_done
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> List[Any]:
warnings.warn(
"The class `MaxNewTokensCriteria` is deprecated. "
F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """
"with `max_length = start_length + max_new_tokens` instead." , __lowerCamelCase , )
A : str = start_length
A : Optional[Any] = max_new_tokens
A : Dict = start_length + max_new_tokens
@add_start_docstrings(__lowerCamelCase )
def __call__( self : int , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Tuple ) -> bool:
return input_ids.shape[-1] >= self.max_length
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Optional[int] , __lowerCamelCase : float , __lowerCamelCase : Optional[float] = None ) -> List[Any]:
A : str = max_time
A : Dict = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(__lowerCamelCase )
def __call__( self : Any , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : Tuple ) -> bool:
return time.time() - self.initial_timestamp > self.max_time
class lowerCamelCase_ ( _A ):
'''simple docstring'''
@add_start_docstrings(__lowerCamelCase )
def __call__( self : Union[str, Any] , __lowerCamelCase : torch.LongTensor , __lowerCamelCase : torch.FloatTensor , **__lowerCamelCase : int ) -> bool:
return any(criteria(__lowerCamelCase , __lowerCamelCase ) for criteria in self )
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]:
for stopping_criterium in self:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
return stopping_criterium.max_length
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
return stopping_criterium.max_length
return None
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
A : Optional[int] = stopping_criteria.max_length
A : Any = deepcopy(_lowerCamelCase )
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCamelCase )
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCamelCase ) )
return new_stopping_criteria | 17 | 1 |
import numpy as np
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Dict ) -> Optional[Any]:
A : str = (0, 0)
A : List[Any] = None
A : Dict = 0
A : List[str] = 0
A : Dict = 0
def __eq__( self : Tuple , __lowerCamelCase : int ) -> List[str]:
return self.position == cell.position
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]:
print(self.position )
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : List[Any]=(5, 5) ) -> int:
A : Tuple = np.zeros(__lowerCamelCase )
A : str = world_size[0]
A : Dict = world_size[1]
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple:
print(self.w )
def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Tuple ) -> List[str]:
A : Any = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
A : Optional[Any] = cell.position[0]
A : Optional[Any] = cell.position[1]
A : Tuple = []
for n in neughbour_cord:
A : Any = current_x + n[0]
A : Union[str, Any] = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
A : Optional[Any] = Cell()
A : Union[str, Any] = (x, y)
A : List[Any] = cell
neighbours.append(__lowerCamelCase )
return neighbours
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
A : Union[str, Any] = []
A : List[str] = []
_open.append(_lowerCamelCase )
while _open:
A : List[str] = np.argmin([n.f for n in _open] )
A : Dict = _open[min_f]
_closed.append(_open.pop(_lowerCamelCase ) )
if current == goal:
break
for n in world.get_neigbours(_lowerCamelCase ):
for c in _closed:
if c == n:
continue
A : Optional[int] = current.g + 1
A , A : List[str] = n.position
A , A : Dict = goal.position
A : List[str] = (ya - ya) ** 2 + (xa - xa) ** 2
A : List[str] = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(_lowerCamelCase )
A : int = []
while current.parent is not None:
path.append(current.position )
A : List[Any] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = Gridworld()
# Start position and goal
__SCREAMING_SNAKE_CASE = Cell()
__SCREAMING_SNAKE_CASE = (0, 0)
__SCREAMING_SNAKE_CASE = Cell()
__SCREAMING_SNAKE_CASE = (4, 4)
print(F"""path from {start.position} to {goal.position}""")
__SCREAMING_SNAKE_CASE = astar(world, start, goal)
# Just for visual reasons.
for i in s:
__SCREAMING_SNAKE_CASE = 1
print(world.w) | 17 |
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "x" , _lowerCamelCase = 10**-10 , _lowerCamelCase = 1 , ):
A : str = symbols(_lowerCamelCase )
A : int = lambdify(_lowerCamelCase , _lowerCamelCase )
A : List[str] = lambdify(_lowerCamelCase , diff(_lowerCamelCase , _lowerCamelCase ) )
A : Optional[int] = starting_point
while True:
if diff_function(_lowerCamelCase ) != 0:
A : Optional[Any] = prev_guess - multiplicity * func(_lowerCamelCase ) / diff_function(
_lowerCamelCase )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
A : int = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""")
# Find root of polynomial
# Find fourth Root of 5
print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""")
# Find value of e
print(
"""The root of log(y) - 1 = 0 is """,
F"""{newton_raphson('log(y) - 1', 2, variable='y')}""",
)
# Exponential Roots
print(
"""The root of exp(x) - 1 = 0 is""",
F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""",
)
# Find root of cos(x)
print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""") | 17 | 1 |
import torch
from diffusers import DiffusionPipeline
class lowerCamelCase_ ( _A ):
'''simple docstring'''
def __init__( self : int , __lowerCamelCase : str , __lowerCamelCase : List[str] ) -> Tuple:
super().__init__()
self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
def __call__( self : int ) -> List[Any]:
A : Dict = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
A : Optional[Any] = 1
A : Tuple = self.unet(__lowerCamelCase , __lowerCamelCase ).sample
A : Any = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
A : List[str] = scheduler_output - scheduler_output + torch.ones_like(__lowerCamelCase )
return result | 17 |
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
__SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
__SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
__SCREAMING_SNAKE_CASE = {
"""allenai/led-base-16384""": 16384,
}
class lowerCamelCase_ ( _A ):
'''simple docstring'''
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = LEDTokenizer
a__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str="replace" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str=True , **__lowerCamelCase : Union[str, Any] , ) -> Optional[int]:
super().__init__(
__lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , )
A : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space:
A : Any = getattr(__lowerCamelCase , pre_tok_state.pop("type" ) )
A : Any = add_prefix_space
A : Tuple = pre_tok_class(**__lowerCamelCase )
A : str = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
A : List[str] = "post_processor"
A : Union[str, Any] = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase )
if tokenizer_component_instance:
A : Dict = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
A : Union[str, Any] = tuple(state["sep"] )
if "cls" in state:
A : str = tuple(state["cls"] )
A : int = False
if state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space:
A : List[Any] = add_prefix_space
A : Dict = True
if state.get("trim_offsets" , __lowerCamelCase ) != trim_offsets:
A : Dict = trim_offsets
A : str = True
if changes_to_apply:
A : int = getattr(__lowerCamelCase , state.pop("type" ) )
A : Dict = component_class(**__lowerCamelCase )
setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : Any ) -> Dict:
A : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value
A : Tuple = value
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ) -> BatchEncoding:
A : List[str] = kwargs.get("is_split_into_words" , __lowerCamelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ) -> BatchEncoding:
A : List[str] = kwargs.get("is_split_into_words" , __lowerCamelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs." )
return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]:
A : Optional[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase )
return tuple(__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=None ) -> List[str]:
A : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]:
A : str = [self.sep_token_id]
A : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ) -> dict:
A : Dict = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
A : List[Any] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
A : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
A : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
A : Any = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
A : Tuple = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
A : Tuple = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs | 17 | 1 |
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]:
A : str = 0
@slow
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]:
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
A : Any = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(__lowerCamelCase ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
A : Any = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(__lowerCamelCase ) , 0 )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]:
A : str = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]:
A : Optional[int] = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 20 )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]:
A : Optional[int] = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
# Check that tokenizer_type ≠ model_type
A : Optional[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int:
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowerCamelCase , "vocab.txt" ) )
A : Optional[int] = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="bert" , use_fast=__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowerCamelCase , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowerCamelCase , "merges.txt" ) )
A : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="gpt2" , use_fast=__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]:
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(__lowerCamelCase , "vocab.txt" ) )
A : str = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="bert" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(__lowerCamelCase , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(__lowerCamelCase , "merges.txt" ) )
A : Optional[int] = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type="gpt2" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict:
with pytest.raises(__lowerCamelCase ):
AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any:
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
A : Optional[int] = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" )
self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) )
if isinstance(__lowerCamelCase , __lowerCamelCase ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase )
else:
self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase )
self.assertEqual(tokenizer.model_max_length , 5_12 )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : int ) -> str:
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
__lowerCamelCase , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ):
A : Dict = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str:
# tests: https://github.com/huggingface/transformers/pull/13251
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
A : List[Any] = TOKENIZER_MAPPING.values()
A : List[Any] = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(__lowerCamelCase )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=__lowerCamelCase ) , __lowerCamelCase )
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , __lowerCamelCase )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple:
A : int = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=__lowerCamelCase )
A : List[str] = "Hello, world. How are you?"
A : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual("[UNK]" , tokens[0] )
A : Dict = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=__lowerCamelCase )
A : Any = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual("[UNK]" , tokens[0] )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple:
A : List[str] = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" )
self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(tokenizer.model_max_length , 5_12 )
self.assertEqual(tokenizer.vocab_size , 3_00_00 )
self.assertEqual(tokenizer.unk_token , "[UNK]" )
self.assertEqual(tokenizer.padding_side , "right" )
self.assertEqual(tokenizer.truncation_side , "right" )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]:
A : Tuple = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__lowerCamelCase )
A : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any:
A : int = AutoTokenizer.from_pretrained("ctrl" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]:
# Check we can load the tokenizer config of an online model.
A : List[Any] = get_tokenizer_config("bert-base-cased" )
A : str = config.pop("_commit_hash" , __lowerCamelCase )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(__lowerCamelCase , {"do_lower_case": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
A : Optional[Any] = get_tokenizer_config(__lowerCamelCase )
self.assertDictEqual(__lowerCamelCase , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
A : Optional[int] = AutoTokenizer.from_pretrained(__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__lowerCamelCase )
A : Dict = get_tokenizer_config(__lowerCamelCase )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["tokenizer_class"] , "BertTokenizer" )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]:
try:
AutoConfig.register("custom" , __lowerCamelCase )
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCamelCase ):
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase )
A : Dict = CustomTokenizer.from_pretrained(__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__lowerCamelCase )
A : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple:
try:
AutoConfig.register("custom" , __lowerCamelCase )
# Can register in two steps
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCamelCase ):
AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
A : Dict = BertTokenizerFast.from_pretrained(__lowerCamelCase )
bert_tokenizer.save_pretrained(__lowerCamelCase )
A : List[str] = CustomTokenizerFast.from_pretrained(__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__lowerCamelCase )
A : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
A : Tuple = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]:
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(__lowerCamelCase ):
A : Optional[int] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__lowerCamelCase ):
A : Dict = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase )
A : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__lowerCamelCase )
A : str = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
A : int = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__lowerCamelCase )
A : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any:
class lowerCamelCase_ ( _A ):
'''simple docstring'''
a__ = False
class lowerCamelCase_ ( _A ):
'''simple docstring'''
a__ = NewTokenizer
a__ = False
try:
AutoConfig.register("custom" , __lowerCamelCase )
AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase )
AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase )
# If remote code is not set, the default is to use local
A : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
A : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=__lowerCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
A : Optional[int] = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
A : List[str] = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
A : Any = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertTrue(tokenizer.special_attribute_present )
A : List[str] = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int:
A : Any = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowerCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
A : Optional[Any] = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple:
with self.assertRaisesRegex(
__lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ):
A : Optional[int] = AutoTokenizer.from_pretrained("bert-base" )
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]:
with self.assertRaisesRegex(
__lowerCamelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
A : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase , revision="aaaaaa" )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict:
# Make sure we have cached the tokenizer.
A : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
A : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 ) | 17 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=_A )
class lowerCamelCase_ ( _A ):
'''simple docstring'''
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
a__ = field(default="question-answering-extractive" ,metadata={"include_in_asdict_even_if_is_default": True} )
a__ = Features({"question": Value("string" ), "context": Value("string" )} )
a__ = Features(
{
"answers": Sequence(
{
"text": Value("string" ),
"answer_start": Value("int32" ),
} )
} )
a__ = "question"
a__ = "context"
a__ = "answers"
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict[str, str]:
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"} | 17 | 1 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=13 , __lowerCamelCase : Any=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=True , __lowerCamelCase : int=99 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : int=5 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Tuple=5_12 , __lowerCamelCase : Any=16 , __lowerCamelCase : Any=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=4 , ) -> Optional[Any]:
A : Any = parent
A : List[str] = batch_size
A : List[Any] = seq_length
A : Union[str, Any] = is_training
A : Union[str, Any] = use_attention_mask
A : Dict = use_token_type_ids
A : List[str] = use_labels
A : Tuple = vocab_size
A : str = hidden_size
A : Dict = num_hidden_layers
A : Optional[Any] = num_attention_heads
A : Optional[Any] = intermediate_size
A : Union[str, Any] = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : List[Any] = attention_probs_dropout_prob
A : List[str] = max_position_embeddings
A : str = type_vocab_size
A : Any = type_sequence_label_size
A : Any = initializer_range
A : int = num_choices
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict:
A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_attention_mask:
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
A : str = None
if self.use_token_type_ids:
A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : str = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]:
A : int = self.prepare_config_and_inputs()
A , A , A , A : Dict = config_and_inputs
A : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]:
A : Dict = self.prepare_config_and_inputs()
A , A , A , A : Tuple = config_and_inputs
A : Union[str, Any] = True
A : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class lowerCamelCase_ ( _A ,unittest.TestCase ):
'''simple docstring'''
a__ = True
a__ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]:
A : int = FlaxRobertaPreLayerNormModelTester(self )
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any:
for model_class_name in self.all_model_classes:
A : str = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__lowerCamelCase )
A : List[str] = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict:
A : str = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__lowerCamelCase )
A : Tuple = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
A : Union[str, Any] = model(__lowerCamelCase )[0]
A : Optional[int] = [1, 11, 5_02_65]
self.assertEqual(list(output.shape ) , __lowerCamelCase )
# compare the actual values for a slice.
A : Dict = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]:
A : str = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__lowerCamelCase )
A : List[Any] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
A : List[Any] = model(__lowerCamelCase )[0]
# compare the actual values for a slice.
A : List[Any] = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) | 17 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : int , __lowerCamelCase : Any , __lowerCamelCase : Dict=3 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : str=[8, 16, 32, 64] , __lowerCamelCase : Dict=[1, 1, 2, 1] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]="relu" , __lowerCamelCase : str=3 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : Any=1 , ) -> int:
A : Optional[int] = parent
A : List[str] = batch_size
A : Tuple = image_size
A : List[str] = num_channels
A : List[str] = embeddings_size
A : List[str] = hidden_sizes
A : str = depths
A : Optional[Any] = is_training
A : int = use_labels
A : Optional[int] = hidden_act
A : List[Any] = num_labels
A : List[str] = scope
A : str = len(__lowerCamelCase )
A : Optional[int] = out_features
A : str = out_indices
A : Optional[int] = num_groups
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]:
A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Optional[int] = None
if self.use_labels:
A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
A : Tuple = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Optional[int]:
A : Any = BitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Dict ) -> Tuple:
A : Union[str, Any] = self.num_labels
A : List[str] = BitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : str = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ) -> List[Any]:
A : Dict = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : Optional[Any] = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
A : Optional[Any] = None
A : Optional[int] = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
A : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict:
A : List[str] = self.prepare_config_and_inputs()
A , A , A : Tuple = config_and_inputs
A : Tuple = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase_ ( _A ,_A ,unittest.TestCase ):
'''simple docstring'''
a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
a__ = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict:
A : Any = BitModelTester(self )
A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]:
return
@unittest.skip(reason="Bit does not output attentions" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]:
pass
@unittest.skip(reason="Bit does not use inputs_embeds" )
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]:
pass
@unittest.skip(reason="Bit does not support input and output embeddings" )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]:
pass
def SCREAMING_SNAKE_CASE__ ( self : int ) -> str:
A , A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Dict = model_class(__lowerCamelCase )
A : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Optional[Any] = [*signature.parameters.keys()]
A : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]:
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]:
A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]:
A , A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Optional[int] = model_class(config=__lowerCamelCase )
for name, module in model.named_modules():
if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]:
def check_hidden_states_output(__lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ):
A : Dict = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
A : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
A : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A : List[Any] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
A , A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
A : Dict = ["preactivation", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
A : Dict = layer_type
A : Union[str, Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A : Union[str, Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip(reason="Bit does not use feedforward chunking" )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]:
A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : Optional[Any] = BitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def UpperCAmelCase ( ):
A : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict:
A : Union[str, Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase )
A : List[Any] = self.default_image_processor
A : List[Any] = prepare_img()
A : Tuple = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
A : Union[str, Any] = model(**__lowerCamelCase )
# verify the logits
A : str = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
A : Optional[Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
@require_torch
class lowerCamelCase_ ( _A ,unittest.TestCase ):
'''simple docstring'''
a__ = (BitBackbone,) if is_torch_available() else ()
a__ = BitConfig
a__ = False
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]:
A : Union[str, Any] = BitModelTester(self ) | 17 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def UpperCAmelCase ( _lowerCamelCase ):
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def UpperCAmelCase ( _lowerCamelCase ):
A : List[str] = create_tensor(_lowerCamelCase )
A : Any = gather(_lowerCamelCase )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def UpperCAmelCase ( _lowerCamelCase ):
A : List[str] = [state.process_index]
A : Optional[int] = gather_object(_lowerCamelCase )
assert len(_lowerCamelCase ) == state.num_processes, f"""{gathered_obj}, {len(_lowerCamelCase )} != {state.num_processes}"""
assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}"""
def UpperCAmelCase ( _lowerCamelCase ):
A : List[Any] = create_tensor(_lowerCamelCase )
A : int = broadcast(_lowerCamelCase )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def UpperCAmelCase ( _lowerCamelCase ):
# We need to pad the tensor with one more element if we are the main process
# to ensure that we can pad
if state.is_main_process:
A : Dict = torch.arange(state.num_processes + 1 ).to(state.device )
else:
A : Dict = torch.arange(state.num_processes ).to(state.device )
A : int = pad_across_processes(_lowerCamelCase )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def UpperCAmelCase ( _lowerCamelCase ):
# For now runs on only two processes
if state.num_processes != 2:
return
A : Any = create_tensor(_lowerCamelCase )
A : int = reduce(_lowerCamelCase , "sum" )
A : str = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}"""
def UpperCAmelCase ( _lowerCamelCase ):
# For now runs on only two processes
if state.num_processes != 2:
return
A : Any = create_tensor(_lowerCamelCase )
A : Any = reduce(_lowerCamelCase , "mean" )
A : Union[str, Any] = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(_lowerCamelCase , _lowerCamelCase ), f"""{reduced_tensor} != {truth_tensor}"""
def UpperCAmelCase ( _lowerCamelCase ):
# For xla_spawn (TPUs)
main()
def UpperCAmelCase ( ):
A : List[Any] = PartialState()
state.print(f"""State: {state}""" )
state.print("testing gather" )
test_gather(_lowerCamelCase )
state.print("testing gather_object" )
test_gather_object(_lowerCamelCase )
state.print("testing broadcast" )
test_broadcast(_lowerCamelCase )
state.print("testing pad_across_processes" )
test_pad_across_processes(_lowerCamelCase )
state.print("testing reduce_sum" )
test_reduce_sum(_lowerCamelCase )
state.print("testing reduce_mean" )
test_reduce_mean(_lowerCamelCase )
if __name__ == "__main__":
main() | 17 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]:
A : Union[str, Any] = XLMRobertaModel.from_pretrained("xlm-roberta-base" )
A : Tuple = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
A : Tuple = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
A : List[str] = torch.tensor(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
A : Tuple = model(__lowerCamelCase )["last_hidden_state"].detach()
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int:
A : str = XLMRobertaModel.from_pretrained("xlm-roberta-large" )
A : List[Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
A : Optional[Any] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
A : List[Any] = torch.tensor(
[[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
A : Optional[int] = model(__lowerCamelCase )["last_hidden_state"].detach()
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3 ) ) | 17 | 1 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""",
datefmt="""%m/%d/%Y %H:%M:%S""",
level=logging.INFO,
)
__SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
def UpperCAmelCase ( _lowerCamelCase ):
A : List[str] = git.Repo(search_parent_directories=_lowerCamelCase )
A : Dict = {
"repo_id": str(_lowerCamelCase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(_lowerCamelCase , "git_log.json" ) , "w" ) as f:
json.dump(_lowerCamelCase , _lowerCamelCase , indent=4 )
def UpperCAmelCase ( _lowerCamelCase ):
if params.n_gpu <= 0:
A : List[str] = 0
A : Tuple = -1
A : int = True
A : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
A : Tuple = int(os.environ["WORLD_SIZE"] )
A : Dict = int(os.environ["N_GPU_NODE"] )
A : Optional[Any] = int(os.environ["RANK"] )
# number of nodes / node ID
A : Optional[Any] = params.world_size // params.n_gpu_per_node
A : Optional[int] = params.global_rank // params.n_gpu_per_node
A : List[Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
A : Dict = 1
A : Union[str, Any] = 0
A : Any = 0
A : List[str] = 0
A : Tuple = 1
A : Any = 1
A : str = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
A : Any = params.node_id == 0 and params.local_rank == 0
A : Union[str, Any] = params.n_nodes > 1
# summary
A : Optional[int] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def UpperCAmelCase ( _lowerCamelCase ):
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed ) | 17 |
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase : Tuple=[1, 1, 2, 1] , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : List[str]="relu" , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Union[str, Any]=None , ) -> str:
A : Optional[Any] = parent
A : Optional[int] = batch_size
A : List[str] = image_size
A : List[str] = num_channels
A : Tuple = embeddings_size
A : Optional[int] = hidden_sizes
A : Dict = depths
A : Optional[int] = is_training
A : List[str] = use_labels
A : List[Any] = hidden_act
A : Optional[int] = num_labels
A : int = scope
A : List[Any] = len(__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]:
A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Optional[Any] = None
if self.use_labels:
A : Any = ids_tensor([self.batch_size] , self.num_labels )
A : List[Any] = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Tuple:
A : List[str] = TFRegNetModel(config=__lowerCamelCase )
A : str = model(__lowerCamelCase , training=__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> List[str]:
A : List[Any] = self.num_labels
A : int = TFRegNetForImageClassification(__lowerCamelCase )
A : str = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict:
A : Any = self.prepare_config_and_inputs()
A , A , A : str = config_and_inputs
A : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase_ ( _A ,_A ,unittest.TestCase ):
'''simple docstring'''
a__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
a__ = (
{"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification}
if is_tf_available()
else {}
)
a__ = False
a__ = False
a__ = False
a__ = False
a__ = False
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]:
A : Optional[Any] = TFRegNetModelTester(self )
A : int = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple:
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , )
@slow
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any:
super().test_keras_fit()
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple:
A , A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Union[str, Any] = model_class(__lowerCamelCase )
A : int = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : Optional[int] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple:
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]:
def check_hidden_states_output(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
A : int = model_class(__lowerCamelCase )
A : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) , training=__lowerCamelCase )
A : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A : Dict = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
A , A : int = self.model_tester.prepare_config_and_inputs_for_common()
A : str = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
A : List[str] = layer_type
A : List[Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A : Union[str, Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict:
A , A : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]={} ):
A : Optional[int] = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase )
A : int = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ).to_tuple()
def recursive_check(__lowerCamelCase : List[str] , __lowerCamelCase : Any ):
if isinstance(__lowerCamelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase ):
recursive_check(__lowerCamelCase , __lowerCamelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__lowerCamelCase , __lowerCamelCase ) ) , msg=(
"Tuple and dict output are not equal. Difference:"
F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__lowerCamelCase , __lowerCamelCase )
for model_class in self.all_model_classes:
A : Tuple = model_class(__lowerCamelCase )
A : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
A : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} )
A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]:
A : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : Union[str, Any] = TFRegNetModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def UpperCAmelCase ( ):
A : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]:
A : List[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
A : Optional[int] = self.default_image_processor
A : List[Any] = prepare_img()
A : str = image_processor(images=__lowerCamelCase , return_tensors="tf" )
# forward pass
A : List[Any] = model(**__lowerCamelCase , training=__lowerCamelCase )
# verify the logits
A : Dict = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
A : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) | 17 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE = {
"""configuration_instructblip""": [
"""INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""InstructBlipConfig""",
"""InstructBlipQFormerConfig""",
"""InstructBlipVisionConfig""",
],
"""processing_instructblip""": ["""InstructBlipProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
"""INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""InstructBlipQFormerModel""",
"""InstructBlipPreTrainedModel""",
"""InstructBlipForConditionalGeneration""",
"""InstructBlipVisionModel""",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 17 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase_ ( _A ):
'''simple docstring'''
a__ = (PNDMScheduler,)
a__ = (("num_inference_steps", 50),)
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , **__lowerCamelCase : str ) -> Optional[Any]:
A : Union[str, Any] = {
"num_train_timesteps": 10_00,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**__lowerCamelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : List[str]=0 , **__lowerCamelCase : Any ) -> Tuple:
A : Dict = dict(self.forward_default_kwargs )
A : Dict = kwargs.pop("num_inference_steps" , __lowerCamelCase )
A : Union[str, Any] = self.dummy_sample
A : List[Any] = 0.1 * sample
A : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
A : Any = self.get_scheduler_config(**__lowerCamelCase )
A : int = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residuals
A : Tuple = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowerCamelCase )
A : Dict = scheduler_class.from_pretrained(__lowerCamelCase )
new_scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residuals
A : Tuple = dummy_past_residuals[:]
A : Dict = scheduler.step_prk(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
A : str = new_scheduler.step_prk(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
A : int = scheduler.step_plms(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
A : List[str] = new_scheduler.step_plms(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : Optional[Any]=0 , **__lowerCamelCase : Tuple ) -> str:
A : List[str] = dict(self.forward_default_kwargs )
A : Optional[int] = kwargs.pop("num_inference_steps" , __lowerCamelCase )
A : List[str] = self.dummy_sample
A : Any = 0.1 * sample
A : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
A : Tuple = self.get_scheduler_config()
A : Optional[int] = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
A : Optional[int] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowerCamelCase )
A : str = scheduler_class.from_pretrained(__lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
A : Optional[Any] = dummy_past_residuals[:]
A : Union[str, Any] = scheduler.step_prk(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
A : Dict = new_scheduler.step_prk(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
A : Union[str, Any] = scheduler.step_plms(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
A : List[Any] = new_scheduler.step_plms(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : Tuple , **__lowerCamelCase : Any ) -> Union[str, Any]:
A : Optional[Any] = self.scheduler_classes[0]
A : List[Any] = self.get_scheduler_config(**__lowerCamelCase )
A : str = scheduler_class(**__lowerCamelCase )
A : List[str] = 10
A : Union[str, Any] = self.dummy_model()
A : int = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCamelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
A : Optional[int] = model(__lowerCamelCase , __lowerCamelCase )
A : Optional[int] = scheduler.step_prk(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
A : Tuple = model(__lowerCamelCase , __lowerCamelCase )
A : Tuple = scheduler.step_plms(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any:
A : Union[str, Any] = dict(self.forward_default_kwargs )
A : Union[str, Any] = kwargs.pop("num_inference_steps" , __lowerCamelCase )
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config()
A : List[str] = scheduler_class(**__lowerCamelCase )
A : List[Any] = self.dummy_sample
A : List[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(__lowerCamelCase , "set_timesteps" ):
scheduler.set_timesteps(__lowerCamelCase )
elif num_inference_steps is not None and not hasattr(__lowerCamelCase , "set_timesteps" ):
A : List[str] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
A : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
A : Tuple = dummy_past_residuals[:]
A : Dict = scheduler.step_prk(__lowerCamelCase , 0 , __lowerCamelCase , **__lowerCamelCase ).prev_sample
A : List[Any] = scheduler.step_prk(__lowerCamelCase , 1 , __lowerCamelCase , **__lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
A : Any = scheduler.step_plms(__lowerCamelCase , 0 , __lowerCamelCase , **__lowerCamelCase ).prev_sample
A : str = scheduler.step_plms(__lowerCamelCase , 1 , __lowerCamelCase , **__lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple:
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__lowerCamelCase )
A : Dict = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(steps_offset=1 )
A : Optional[int] = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict:
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]:
for t in [1, 5, 10]:
self.check_over_forward(time_step=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int:
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any:
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
A : str = 27
for scheduler_class in self.scheduler_classes:
A : Tuple = self.dummy_sample
A : List[Any] = 0.1 * sample
A : List[Any] = self.get_scheduler_config()
A : List[str] = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(__lowerCamelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
A : Dict = scheduler.step_prk(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : str ) -> int:
with self.assertRaises(__lowerCamelCase ):
A : Union[str, Any] = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config()
A : List[str] = scheduler_class(**__lowerCamelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Dict:
A : Optional[Any] = self.full_loop()
A : Tuple = torch.sum(torch.abs(__lowerCamelCase ) )
A : Optional[int] = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1e-2
assert abs(result_mean.item() - 0.2580 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any:
A : Any = self.full_loop(prediction_type="v_prediction" )
A : Union[str, Any] = torch.sum(torch.abs(__lowerCamelCase ) )
A : List[str] = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1e-2
assert abs(result_mean.item() - 0.0878 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]:
# We specify different beta, so that the first alpha is 0.99
A : Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 )
A : Dict = torch.sum(torch.abs(__lowerCamelCase ) )
A : Any = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1e-2
assert abs(result_mean.item() - 0.2995 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any:
# We specify different beta, so that the first alpha is 0.99
A : Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 )
A : List[Any] = torch.sum(torch.abs(__lowerCamelCase ) )
A : Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1e-2
assert abs(result_mean.item() - 0.2434 ) < 1e-3 | 17 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__SCREAMING_SNAKE_CASE = {
"""configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""],
"""feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""],
"""processing_mctct""": ["""MCTCTProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__SCREAMING_SNAKE_CASE = [
"""MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MCTCTForCTC""",
"""MCTCTModel""",
"""MCTCTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 17 |
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
__SCREAMING_SNAKE_CASE = 1.0_5_4_5_7_1_8_1_7e-3_4 # unit of ℏ : J * s
__SCREAMING_SNAKE_CASE = 3e8 # unit of c : m * s^-1
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
if (force, area, distance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if force < 0:
raise ValueError("Magnitude of force can not be negative" )
if distance < 0:
raise ValueError("Distance can not be negative" )
if area < 0:
raise ValueError("Area can not be negative" )
if force == 0:
A : int = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
A : Tuple = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
A : Dict = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("One and only one argument must be 0" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.