code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = 42 # setable values a_ = 42 a_ = 42 a_ = None @classmethod def _lowercase ( cls : Optional[int] , __A : CommonSchedulerState , __A : jnp.ndarray , __A : jnp.ndarray ): return cls(common=__A , init_noise_sigma=__A , timesteps=__A ) @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a_ = [e.name for e in FlaxKarrasDiffusionSchedulers] a_ = 42 @property def _lowercase ( self : Dict ): return True @register_to_config def __init__( self : Dict , __A : int = 1_0_0_0 , __A : float = 0.0_0_0_1 , __A : float = 0.0_2 , __A : str = "linear" , __A : Optional[jnp.ndarray] = None , __A : str = "fixed_small" , __A : bool = True , __A : str = "epsilon" , __A : jnp.dtype = jnp.floataa , ): snake_case__ : Any = dtype def _lowercase ( self : str , __A : Optional[CommonSchedulerState] = None ): if common is None: snake_case__ : str = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution snake_case__ : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) snake_case__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__A , init_noise_sigma=__A , timesteps=__A , ) def _lowercase ( self : List[Any] , __A : DDPMSchedulerState , __A : jnp.ndarray , __A : Optional[int] = None ): return sample def _lowercase ( self : List[str] , __A : DDPMSchedulerState , __A : int , __A : Tuple = () ): snake_case__ : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 snake_case__ : int = (jnp.arange(0 , __A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__A , timesteps=__A , ) def _lowercase ( self : Dict , __A : DDPMSchedulerState , __A : Optional[Any] , __A : List[Any]=None , __A : Optional[int]=None ): snake_case__ : Union[str, Any] = state.common.alphas_cumprod[t] snake_case__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case__ : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: snake_case__ : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": snake_case__ : Union[str, Any] = jnp.clip(__A , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": snake_case__ : Optional[int] = jnp.log(jnp.clip(__A , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": snake_case__ : Any = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log snake_case__ : int = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": snake_case__ : int = variance snake_case__ : Dict = state.common.betas[t] snake_case__ : int = (predicted_variance + 1) / 2 snake_case__ : str = frac * max_log + (1 - frac) * min_log return variance def _lowercase ( self : Optional[int] , __A : DDPMSchedulerState , __A : jnp.ndarray , __A : int , __A : jnp.ndarray , __A : Optional[jax.random.KeyArray] = None , __A : bool = True , ): snake_case__ : int = timestep if key is None: snake_case__ : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: snake_case__, snake_case__ : Tuple = jnp.split(__A , sample.shape[1] , axis=1 ) else: snake_case__ : Any = None # 1. compute alphas, betas snake_case__ : Optional[int] = state.common.alphas_cumprod[t] snake_case__ : List[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) snake_case__ : Optional[int] = 1 - alpha_prod_t snake_case__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case__ : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case__ : str = model_output elif self.config.prediction_type == "v_prediction": snake_case__ : Optional[int] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case__ : Optional[Any] = jnp.clip(__A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t snake_case__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): snake_case__ : Optional[int] = jax.random.split(__A , num=1 ) snake_case__ : Union[str, Any] = jax.random.normal(__A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__A , __A , predicted_variance=__A ) ** 0.5) * noise snake_case__ : List[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) snake_case__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__A , state=__A ) def _lowercase ( self : str , __A : DDPMSchedulerState , __A : jnp.ndarray , __A : jnp.ndarray , __A : jnp.ndarray , ): return add_noise_common(state.common , __A , __A , __A ) def _lowercase ( self : List[Any] , __A : DDPMSchedulerState , __A : jnp.ndarray , __A : jnp.ndarray , __A : jnp.ndarray , ): return get_velocity_common(state.common , __A , __A , __A ) def __len__( self : Dict ): return self.config.num_train_timesteps
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowerCamelCase : Any = logging.get_logger("""transformers.models.speecht5""") __lowerCamelCase : List[Any] = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } __lowerCamelCase : List[str] = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } __lowerCamelCase : List[Any] = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } __lowerCamelCase : Any = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } __lowerCamelCase : str = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } __lowerCamelCase : str = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } __lowerCamelCase : Optional[int] = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } __lowerCamelCase : List[str] = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } __lowerCamelCase : Optional[int] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowerCamelCase : List[str] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCamelCase : Tuple = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCamelCase : Dict = [] __lowerCamelCase : Dict = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] __lowerCamelCase : Any = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] __lowerCamelCase : Dict = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] __lowerCamelCase : Union[str, Any] = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : List[Any] ): for attribute in key.split("." ): snake_case__ : Union[str, Any] = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Union[str, Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : Dict = value elif weight_type == "weight_g": snake_case__ : List[Any] = value elif weight_type == "weight_v": snake_case__ : int = value elif weight_type == "bias": snake_case__ : List[Any] = value elif weight_type == "running_mean": snake_case__ : Optional[Any] = value elif weight_type == "running_var": snake_case__ : Dict = value elif weight_type == "num_batches_tracked": snake_case__ : Optional[int] = value else: snake_case__ : Tuple = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case__, snake_case__ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Dict , snake_case_ : Dict ): snake_case__ : Optional[Any] = [] if task == "s2t": snake_case__ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder snake_case__ : int = MAPPING_S2T snake_case__ : List[str] = IGNORE_KEYS_S2T elif task == "t2s": snake_case__ : str = None snake_case__ : Optional[Any] = MAPPING_T2S snake_case__ : Tuple = IGNORE_KEYS_T2S elif task == "s2s": snake_case__ : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder snake_case__ : Any = MAPPING_S2S snake_case__ : Tuple = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(snake_case_ , snake_case_ ): logger.info(F'''{name} was ignored''' ) continue snake_case__ : Any = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : Dict = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: snake_case__, snake_case__ : Tuple = key.split(".*." ) if prefix in name and suffix in name: snake_case__ : Union[str, Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Dict = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : List[Any] = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : Any = "weight_g" elif "weight_v" in name: snake_case__ : Optional[int] = "weight_v" elif "bias" in name: snake_case__ : List[str] = "bias" elif "weight" in name: snake_case__ : Tuple = "weight" elif "running_mean" in name: snake_case__ : Any = "running_mean" elif "running_var" in name: snake_case__ : Dict = "running_var" elif "num_batches_tracked" in name: snake_case__ : Optional[int] = "num_batches_tracked" else: snake_case__ : List[str] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : int ): snake_case__ : Optional[int] = full_name.split("conv_layers." )[-1] snake_case__ : Optional[Any] = name.split("." ) snake_case__ : Optional[Any] = int(items[0] ) snake_case__ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : int=None , snake_case_ : str=None , snake_case_ : int=None , ): if config_path is not None: snake_case__ : List[Any] = SpeechTaConfig.from_pretrained(snake_case_ ) else: snake_case__ : List[Any] = SpeechTaConfig() if task == "s2t": snake_case__ : List[Any] = config.max_text_positions snake_case__ : int = SpeechTaForSpeechToText(snake_case_ ) elif task == "t2s": snake_case__ : List[str] = 1876 snake_case__ : List[Any] = 600 snake_case__ : List[Any] = config.max_speech_positions snake_case__ : Any = SpeechTaForTextToSpeech(snake_case_ ) elif task == "s2s": snake_case__ : Tuple = 1876 snake_case__ : int = config.max_speech_positions snake_case__ : Optional[int] = SpeechTaForSpeechToSpeech(snake_case_ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: snake_case__ : Any = SpeechTaTokenizer(snake_case_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken("<mask>" , lstrip=snake_case_ , rstrip=snake_case_ ) snake_case__ : List[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) snake_case__ : Any = SpeechTaFeatureExtractor() snake_case__ : Union[str, Any] = SpeechTaProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(snake_case_ ) snake_case__ : str = torch.load(snake_case_ ) recursively_load_weights(fairseq_checkpoint["model"] , snake_case_ , snake_case_ ) model.save_pretrained(snake_case_ ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(snake_case_ ) model.push_to_hub(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCamelCase : int = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Optional[Any] = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __lowerCamelCase : List[Any] = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __lowerCamelCase : Optional[int] = { """ctrl""": 256, } __lowerCamelCase : Any = { """Pregnancy""": 16_8629, """Christianity""": 7675, """Explain""": 10_6423, """Fitness""": 6_3440, """Saving""": 6_3163, """Ask""": 2_7171, """Ass""": 9_5985, """Joke""": 16_3509, """Questions""": 4_5622, """Thoughts""": 4_9605, """Retail""": 5_2342, """Feminism""": 16_4338, """Writing""": 1_1992, """Atheism""": 19_2263, """Netflix""": 4_8616, """Computing""": 3_9639, """Opinion""": 4_3213, """Alone""": 4_4967, """Funny""": 5_8917, """Gaming""": 4_0358, """Human""": 4088, """India""": 1331, """Joker""": 7_7138, """Diet""": 3_6206, """Legal""": 1_1859, """Norman""": 4939, """Tip""": 7_2689, """Weight""": 5_2343, """Movies""": 4_6273, """Running""": 2_3425, """Science""": 2090, """Horror""": 3_7793, """Confession""": 6_0572, """Finance""": 1_2250, """Politics""": 1_6360, """Scary""": 19_1985, """Support""": 1_2654, """Technologies""": 3_2516, """Teenage""": 6_6160, """Event""": 3_2769, """Learned""": 6_7460, """Notion""": 18_2770, """Wikipedia""": 3_7583, """Books""": 6665, """Extract""": 7_6050, """Confessions""": 10_2701, """Conspiracy""": 7_5932, """Links""": 6_3674, """Narcissus""": 15_0425, """Relationship""": 5_4766, """Relationships""": 13_4796, """Reviews""": 4_1671, """News""": 4256, """Translation""": 2_6820, """multilingual""": 12_8406, } def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): snake_case__ : List[str] = set() snake_case__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[str] = char snake_case__ : Optional[int] = set(snake_case_ ) return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = CONTROL_CODES def __init__( self : str , __A : Optional[int] , __A : Tuple , __A : Dict="<unk>" , **__A : int ): super().__init__(unk_token=__A , **__A ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : List[str] = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : Optional[Any] = merges_handle.read().split("\n" )[1:-1] snake_case__ : Optional[int] = [tuple(merge.split() ) for merge in merges] snake_case__ : List[Any] = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : str = {} @property def _lowercase ( self : int ): return len(self.encoder ) def _lowercase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : str , __A : str ): if token in self.cache: return self.cache[token] snake_case__ : Optional[Any] = tuple(__A ) snake_case__ : List[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) snake_case__ : str = get_pairs(__A ) if not pairs: return token while True: snake_case__ : int = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Union[str, Any] = bigram snake_case__ : Tuple = [] snake_case__ : Dict = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : List[str] = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : Any = tuple(__A ) snake_case__ : Union[str, Any] = new_word if len(__A ) == 1: break else: snake_case__ : int = get_pairs(__A ) snake_case__ : List[str] = "@@ ".join(__A ) snake_case__ : Tuple = word[:-4] snake_case__ : Union[str, Any] = word return word def _lowercase ( self : int , __A : Optional[int] ): snake_case__ : Optional[int] = [] snake_case__ : Optional[int] = re.findall(R"\S+\n?" , __A ) for token in words: split_tokens.extend(list(self.bpe(__A ).split(" " ) ) ) return split_tokens def _lowercase ( self : List[Any] , __A : Dict ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Union[str, Any] ): return self.decoder.get(__A , self.unk_token ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): snake_case__ : int = " ".join(__A ).replace("@@ " , "" ).strip() return out_string def _lowercase ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Any = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : Any = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : Tuple = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a_ = "swin" a_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , __A : Optional[int]=2_2_4 , __A : Optional[int]=4 , __A : Any=3 , __A : List[Any]=9_6 , __A : Union[str, Any]=[2, 2, 6, 2] , __A : List[Any]=[3, 6, 1_2, 2_4] , __A : str=7 , __A : Any=4.0 , __A : int=True , __A : int=0.0 , __A : Union[str, Any]=0.0 , __A : Union[str, Any]=0.1 , __A : Optional[Any]="gelu" , __A : Dict=False , __A : List[Any]=0.0_2 , __A : Any=1e-5 , __A : Optional[int]=3_2 , __A : Optional[int]=None , __A : str=None , **__A : Dict , ): super().__init__(**__A ) snake_case__ : str = image_size snake_case__ : Optional[Any] = patch_size snake_case__ : Tuple = num_channels snake_case__ : Any = embed_dim snake_case__ : Optional[Any] = depths snake_case__ : Tuple = len(__A ) snake_case__ : int = num_heads snake_case__ : str = window_size snake_case__ : Dict = mlp_ratio snake_case__ : List[str] = qkv_bias snake_case__ : str = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Union[str, Any] = use_absolute_embeddings snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : Optional[Any] = initializer_range snake_case__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : Optional[int] = int(embed_dim * 2 ** (len(__A ) - 1) ) snake_case__ : List[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )] snake_case__, snake_case__ : int = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = version.parse("1.11" ) @property def _lowercase ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self : int ): return 1e-4
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[Any]=False ): snake_case__ : Dict = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = "" else: snake_case__ : Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) snake_case__ : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : int = in_proj_bias[: config.hidden_size] snake_case__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : int = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : List[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : int , snake_case_ : str ): snake_case__ : str = dct.pop(snake_case_ ) snake_case__ : int = val def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ : str = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : str=False ): snake_case__ : Union[str, Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=snake_case_ , ) snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=snake_case_ , image_size=384 , num_labels=1000 ) snake_case__ : Optional[int] = False # load original model from timm snake_case__ : Dict = timm.create_model(snake_case_ , pretrained=snake_case_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : str = timm_model.state_dict() if base_model: remove_classification_head_(snake_case_ ) snake_case__ : Any = create_rename_keys(snake_case_ , snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Dict = "huggingface/label-files" snake_case__ : List[str] = "imagenet-1k-id2label.json" snake_case__ : Union[str, Any] = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) snake_case__ : Any = {int(snake_case_ ): v for k, v in idalabel.items()} snake_case__ : Optional[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ : str = ViTHybridModel(snake_case_ ).eval() else: snake_case__ : Any = ViTHybridForImageClassification(snake_case_ ).eval() model.load_state_dict(snake_case_ ) # create image processor snake_case__ : int = create_transform(**resolve_data_config({} , model=snake_case_ ) ) snake_case__ : List[str] = transform.transforms snake_case__ : Optional[int] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } snake_case__ : str = ViTHybridImageProcessor( do_resize=snake_case_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=snake_case_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=snake_case_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ : Dict = prepare_img() snake_case__ : Optional[Any] = transform(snake_case_ ).unsqueeze(0 ) snake_case__ : Dict = processor(snake_case_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(snake_case_ , snake_case_ ) # verify logits with torch.no_grad(): snake_case__ : int = model(snake_case_ ) snake_case__ : Union[str, Any] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: snake_case__ : Optional[Any] = timm_model.forward_features(snake_case_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(snake_case_ , outputs.pooler_output , atol=1E-3 ) else: snake_case__ : Optional[Any] = timm_model(snake_case_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case_ , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) __lowerCamelCase : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import math def SCREAMING_SNAKE_CASE ( snake_case_ : int = 100 ): snake_case__ : Tuple = sum(i * i for i in range(1 , n + 1 ) ) snake_case__ : Optional[int] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
__lowerCamelCase : Any = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowerCamelCase : Any = frozenset(["""prompt""", """negative_prompt"""]) __lowerCamelCase : Optional[int] = frozenset([]) __lowerCamelCase : List[Any] = frozenset(["""image"""]) __lowerCamelCase : Union[str, Any] = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) __lowerCamelCase : Union[str, Any] = frozenset(["""image"""]) __lowerCamelCase : Optional[Any] = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowerCamelCase : Union[str, Any] = frozenset(["""prompt""", """image""", """negative_prompt"""]) __lowerCamelCase : Tuple = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) __lowerCamelCase : Optional[Any] = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) __lowerCamelCase : List[Any] = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowerCamelCase : Any = frozenset(["""image""", """mask_image"""]) __lowerCamelCase : Union[str, Any] = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) __lowerCamelCase : Union[str, Any] = frozenset(["""example_image""", """image""", """mask_image"""]) __lowerCamelCase : Optional[Any] = frozenset(["""class_labels"""]) __lowerCamelCase : List[str] = frozenset(["""class_labels"""]) __lowerCamelCase : Union[str, Any] = frozenset(["""batch_size"""]) __lowerCamelCase : Union[str, Any] = frozenset([]) __lowerCamelCase : Optional[int] = frozenset(["""batch_size"""]) __lowerCamelCase : str = frozenset([]) __lowerCamelCase : List[Any] = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) __lowerCamelCase : Any = frozenset(["""prompt""", """negative_prompt"""]) __lowerCamelCase : Tuple = frozenset(["""input_tokens"""]) __lowerCamelCase : Tuple = frozenset(["""input_tokens"""])
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : str = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __lowerCamelCase : List[Any] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __lowerCamelCase : int = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : int = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Dict = bs[:] snake_case__ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Union[str, Any] = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): snake_case__ : int = set() snake_case__ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Optional[int] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : Dict , __A : int , __A : Dict , __A : int="replace" , __A : Tuple="<s>" , __A : Dict="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Any="<unk>" , __A : List[Any]="<pad>" , __A : List[Any]="<mask>" , __A : Optional[int]=False , **__A : Union[str, Any] , ): snake_case__ : Optional[int] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : Optional[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Optional[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : Optional[int] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Dict = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Optional[int] = json.load(__A ) snake_case__ : Tuple = {v: k for k, v in self.encoder.items()} snake_case__ : List[Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : int = merges_handle.read().split("\n" )[1:-1] snake_case__ : str = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[Any] = {} snake_case__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowercase ( self : List[str] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Any , __A : Tuple ): if token in self.cache: return self.cache[token] snake_case__ : List[Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Any = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : str = bigram snake_case__ : Dict = [] snake_case__ : Optional[int] = 0 while i < len(__A ): try: snake_case__ : List[str] = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : Tuple = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : Tuple = tuple(__A ) snake_case__ : Optional[Any] = new_word if len(__A ) == 1: break else: snake_case__ : Tuple = get_pairs(__A ) snake_case__ : int = " ".join(__A ) snake_case__ : List[str] = word return word def _lowercase ( self : Optional[int] , __A : Any ): snake_case__ : Any = [] for token in re.findall(self.pat , __A ): snake_case__ : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : List[str] , __A : Tuple ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : str ): return self.decoder.get(__A ) def _lowercase ( self : List[Any] , __A : Dict ): snake_case__ : Dict = "".join(__A ) snake_case__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : List[str] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Union[str, Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : Optional[int] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : Tuple = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : Union[str, Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[str] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : List[str] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : int , __A : Tuple , __A : Union[str, Any]=False , **__A : Any ): snake_case__ : int = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : int = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _lowercase ( self : Any , __A : "Conversation" ): snake_case__ : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) snake_case__ : Optional[Any] = " ".join(__A ) snake_case__ : str = self.encode(__A ) if len(__A ) > self.model_max_length: snake_case__ : Dict = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : Dict = 1_0 def _lowercase ( self : int ): snake_case__ : str = [1, 2, 3, 4] snake_case__ : Any = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A ) def _lowercase ( self : Dict ): snake_case__ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] snake_case__ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] snake_case__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : List[str] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." snake_case__, snake_case__ : Any = process_story(__A ) self.assertEqual(__A , [] ) def _lowercase ( self : List[str] ): snake_case__ : Any = "" snake_case__, snake_case__ : Tuple = process_story(__A ) self.assertEqual(__A , [] ) self.assertEqual(__A , [] ) def _lowercase ( self : Dict ): snake_case__ : int = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) snake_case__, snake_case__ : Tuple = process_story(__A ) snake_case__ : Optional[Any] = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__A , __A ) snake_case__ : Optional[Any] = ["It was the best of times."] self.assertEqual(__A , __A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Tuple = torch.tensor([1, 2, 3, 4] ) snake_case__ : Optional[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__A , 0 ).numpy() , expected.numpy() ) def _lowercase ( self : List[str] ): snake_case__ : Tuple = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) snake_case__ : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__A , 2_3 ).numpy() , expected.numpy() ) def _lowercase ( self : List[Any] ): snake_case__ : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) snake_case__ : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__A , 1 ).numpy() , expected.numpy() ) def _lowercase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = 1_0_1 snake_case__ : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) snake_case__ : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) snake_case__ : Union[str, Any] = compute_token_type_ids(__A , __A ) np.testing.assert_array_equal(__A , __A )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bart" a_ = ["past_key_values"] a_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __A : Dict=5_0_2_6_5 , __A : Dict=1_0_2_4 , __A : Tuple=1_2 , __A : Union[str, Any]=4_0_9_6 , __A : Tuple=1_6 , __A : Tuple=1_2 , __A : str=4_0_9_6 , __A : Union[str, Any]=1_6 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[str]="gelu" , __A : Optional[Any]=1_0_2_4 , __A : Any=0.1 , __A : Optional[int]=0.0 , __A : int=0.0 , __A : Tuple=0.0_2 , __A : str=0.0 , __A : Optional[Any]=False , __A : Optional[int]=True , __A : List[Any]=3 , __A : Union[str, Any]=1 , __A : Dict=0 , __A : int=2 , __A : int=True , __A : Optional[Any]=2 , __A : Tuple=2 , **__A : Any , ): snake_case__ : Optional[int] = vocab_size snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = d_model snake_case__ : Any = encoder_ffn_dim snake_case__ : Optional[Any] = encoder_layers snake_case__ : Any = encoder_attention_heads snake_case__ : List[str] = decoder_ffn_dim snake_case__ : Union[str, Any] = decoder_layers snake_case__ : int = decoder_attention_heads snake_case__ : Optional[int] = dropout snake_case__ : Union[str, Any] = attention_dropout snake_case__ : str = activation_dropout snake_case__ : Optional[Any] = activation_function snake_case__ : Any = init_std snake_case__ : Optional[int] = encoder_layerdrop snake_case__ : List[str] = decoder_layerdrop snake_case__ : int = classifier_dropout snake_case__ : Tuple = use_cache snake_case__ : int = encoder_layers snake_case__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , __A ): snake_case__ : Dict = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : Optional[int] ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : List[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case__ : Optional[Any] = {0: "batch"} snake_case__ : List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: snake_case__ : Any = {0: "batch", 1: "decoder_sequence"} snake_case__ : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case__, snake_case__ : List[str] = self.num_layers for i in range(__A ): snake_case__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} snake_case__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: snake_case__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _lowercase ( self : int ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : List[Any] = super().outputs else: snake_case__ : str = super(__A , self ).outputs if self.use_past: snake_case__, snake_case__ : Dict = self.num_layers for i in range(__A ): snake_case__ : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} snake_case__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _lowercase ( self : Any , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): snake_case__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) # Generate decoder inputs snake_case__ : Any = seq_length if not self.use_past else 1 snake_case__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) snake_case__ : List[str] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} snake_case__ : str = dict(**__A , **__A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case__, snake_case__ : List[Any] = common_inputs["input_ids"].shape snake_case__ : Tuple = common_inputs["decoder_input_ids"].shape[1] snake_case__, snake_case__ : Dict = self.num_attention_heads snake_case__ : Dict = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : Optional[Any] = decoder_seq_length + 3 snake_case__ : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : Dict = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__A , __A )] , dim=1 ) snake_case__ : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__, snake_case__ : Tuple = self.num_layers snake_case__ : List[str] = min(__A , __A ) snake_case__ : Any = max(__A , __A ) - min_num_layers snake_case__ : Optional[Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. snake_case__ : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__A , __A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def _lowercase ( self : List[Any] , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): snake_case__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case__, snake_case__ : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case__ : Any = seqlen + 2 snake_case__, snake_case__ : Union[str, Any] = self.num_layers snake_case__, snake_case__ : List[str] = self.num_attention_heads snake_case__ : List[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : List[str] = common_inputs["attention_mask"].dtype snake_case__ : Optional[int] = torch.cat( [common_inputs["attention_mask"], torch.ones(__A , __A , dtype=__A )] , dim=1 ) snake_case__ : Optional[Any] = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def _lowercase ( self : str , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ : Any = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : int = tokenizer.num_special_tokens_to_add(__A ) snake_case__ : Tuple = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence snake_case__ : List[str] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : Union[str, Any] = dict(tokenizer(__A , return_tensors=__A ) ) return common_inputs def _lowercase ( self : Tuple , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) elif self.task == "causal-lm": snake_case__ : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) else: snake_case__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) return common_inputs def _lowercase ( self : int , __A : Dict , __A : Dict , __A : Any , __A : Optional[int] ): if self.task in ["default", "seq2seq-lm"]: snake_case__ : Union[str, Any] = super()._flatten_past_key_values_(__A , __A , __A , __A ) else: snake_case__ : Union[str, Any] = super(__A , self )._flatten_past_key_values_( __A , __A , __A , __A )
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if not isinstance(snake_case_ , snake_case_ ): snake_case__ : int = F'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case_ ) if number < 0: return False snake_case__ : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str ): snake_case__ : List[str] = psutil.Process() snake_case__ : int = False def _lowercase ( self : int ): snake_case__ : List[str] = -1 while True: snake_case__ : List[Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowercase ( self : Tuple ): snake_case__ : List[str] = True snake_case__ : int = threading.Thread(target=self.peak_monitor ) snake_case__ : Dict = True self.thread.start() def _lowercase ( self : Optional[int] ): snake_case__ : str = False self.thread.join() return self.cpu_memory_peak __lowerCamelCase : Dict = PeakCPUMemory() def SCREAMING_SNAKE_CASE ( ): # Time snake_case__ : int = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case__ : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): snake_case__ : Dict = torch.cuda.memory_allocated(snake_case_ ) torch.cuda.reset_peak_memory_stats() return measures def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # Time snake_case__ : Tuple = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case__ : int = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 snake_case__ : Dict = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): snake_case__ : Dict = (torch.cuda.memory_allocated(snake_case_ ) - start_measures[str(snake_case_ )]) / 2**20 snake_case__ : Optional[Any] = (torch.cuda.max_memory_allocated(snake_case_ ) - start_measures[str(snake_case_ )]) / 2**20 return measures def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Optional[int] ): print(F'''{description}:''' ) print(F'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(snake_case_ )]:.2f}MiB''' ) snake_case__ : Tuple = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
__lowerCamelCase : Tuple = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[Any] = input("Enter message: " ) snake_case__ : Any = input("Enter key [alphanumeric]: " ) snake_case__ : Optional[int] = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): snake_case__ : Any = "encrypt" snake_case__ : List[Any] = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): snake_case__ : Dict = "decrypt" snake_case__ : List[str] = decrypt_message(snake_case_ , snake_case_ ) print(F'''\n{mode.title()}ed message:''' ) print(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): return translate_message(snake_case_ , snake_case_ , "encrypt" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): return translate_message(snake_case_ , snake_case_ , "decrypt" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : str ): snake_case__ : Optional[int] = [] snake_case__ : List[str] = 0 snake_case__ : Union[str, Any] = key.upper() for symbol in message: snake_case__ : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(snake_case_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(snake_case_ ): snake_case__ : Optional[Any] = 0 else: translated.append(snake_case_ ) return "".join(snake_case_ ) if __name__ == "__main__": main()
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : int = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "beit" def __init__( self : int , __A : str=8_1_9_2 , __A : List[Any]=7_6_8 , __A : Dict=1_2 , __A : List[Any]=1_2 , __A : Any=3_0_7_2 , __A : Optional[Any]="gelu" , __A : str=0.0 , __A : Tuple=0.0 , __A : Any=0.0_2 , __A : List[Any]=1e-1_2 , __A : Optional[Any]=2_2_4 , __A : Tuple=1_6 , __A : Union[str, Any]=3 , __A : int=False , __A : Any=False , __A : str=False , __A : Union[str, Any]=False , __A : Optional[int]=0.1 , __A : Any=0.1 , __A : List[Any]=True , __A : int=[3, 5, 7, 1_1] , __A : Optional[Any]=[1, 2, 3, 6] , __A : Optional[Any]=True , __A : str=0.4 , __A : str=2_5_6 , __A : Dict=1 , __A : Any=False , __A : Optional[Any]=2_5_5 , **__A : Union[str, Any] , ): super().__init__(**__A ) snake_case__ : Union[str, Any] = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : int = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : int = initializer_range snake_case__ : Any = layer_norm_eps snake_case__ : int = image_size snake_case__ : Union[str, Any] = patch_size snake_case__ : str = num_channels snake_case__ : Dict = use_mask_token snake_case__ : str = use_absolute_position_embeddings snake_case__ : List[Any] = use_relative_position_bias snake_case__ : List[str] = use_shared_relative_position_bias snake_case__ : int = layer_scale_init_value snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ : Optional[int] = out_indices snake_case__ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ : str = use_auxiliary_head snake_case__ : Optional[Any] = auxiliary_loss_weight snake_case__ : List[Any] = auxiliary_channels snake_case__ : Any = auxiliary_num_convs snake_case__ : Optional[Any] = auxiliary_concat_input snake_case__ : Union[str, Any] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = version.parse("1.11" ) @property def _lowercase ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self : Union[str, Any] ): return 1e-4
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : Dict = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _lowercase ( self : Tuple ): snake_case__ : Union[str, Any] = self.dummy_uncond_unet snake_case__ : Any = KarrasVeScheduler() snake_case__ : int = KarrasVePipeline(unet=__A , scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : str = pipe(num_inference_steps=2 , generator=__A , output_type="numpy" ).images snake_case__ : Union[str, Any] = torch.manual_seed(0 ) snake_case__ : int = pipe(num_inference_steps=2 , generator=__A , output_type="numpy" , return_dict=__A )[0] snake_case__ : Dict = image[0, -3:, -3:, -1] snake_case__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): snake_case__ : int = "google/ncsnpp-celebahq-256" snake_case__ : List[str] = UNetaDModel.from_pretrained(__A ) snake_case__ : int = KarrasVeScheduler() snake_case__ : Any = KarrasVePipeline(unet=__A , scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Tuple = pipe(num_inference_steps=2_0 , generator=__A , output_type="numpy" ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) snake_case__ : Any = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : str ): snake_case__ : str = inspect.getfile(accelerate.test_utils ) snake_case__ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) snake_case__ : List[str] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowercase ( self : int ): snake_case__ : Any = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() snake_case__ : Tuple = [sys.executable] + distributed_args execute_subprocess_async(__A , env=os.environ.copy() )
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
import string def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Union[str, Any] = "" for i in sequence: snake_case__ : int = ord(snake_case_ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : str = string.ascii_letters snake_case__ : Optional[int] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case_ )] if c in letters else c for c in sequence ) def SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("Running performance benchmarks..." ) snake_case__ : str = "from string import printable ; from __main__ import atbash, atbash_slow" print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=snake_case_ )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=snake_case_ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : Any = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "van" def __init__( self : Union[str, Any] , __A : Dict=2_2_4 , __A : Tuple=3 , __A : Optional[int]=[7, 3, 3, 3] , __A : Optional[Any]=[4, 2, 2, 2] , __A : Dict=[6_4, 1_2_8, 3_2_0, 5_1_2] , __A : Tuple=[3, 3, 1_2, 3] , __A : Optional[Any]=[8, 8, 4, 4] , __A : Any="gelu" , __A : Any=0.0_2 , __A : List[Any]=1e-6 , __A : Optional[int]=1e-2 , __A : str=0.0 , __A : str=0.0 , **__A : List[Any] , ): super().__init__(**__A ) snake_case__ : List[str] = image_size snake_case__ : Optional[Any] = num_channels snake_case__ : int = patch_sizes snake_case__ : Dict = strides snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : str = mlp_ratios snake_case__ : Union[str, Any] = hidden_act snake_case__ : Any = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Dict = layer_scale_init_value snake_case__ : Any = drop_path_rate snake_case__ : List[Any] = dropout_rate
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] ): snake_case__ : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Optional[int] ): snake_case__ : Optional[int] = 0 while b > 0: if b & 1: snake_case__ : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
import argparse import struct import unittest class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Any , __A : bytes ): snake_case__ : Optional[Any] = data # Initialize hash values snake_case__ : Union[str, Any] = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants snake_case__ : List[str] = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] snake_case__ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowercase ( __A : bytes ): snake_case__ : Optional[int] = B"\x80" + (B"\x00" * (6_3 - (len(__A ) + 8) % 6_4)) snake_case__ : List[str] = struct.pack(">Q" , (len(__A ) * 8) ) return data + padding + big_endian_integer def _lowercase ( self : Optional[int] ): # Convert into blocks of 64 bytes snake_case__ : str = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers snake_case__ : Any = list(struct.unpack(">16L" , __A ) ) # add 48 0-ed integers words += [0] * 4_8 snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : Optional[int] = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array snake_case__ : str = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) snake_case__ : Tuple = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) snake_case__ : List[Any] = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x100000000 # Compression snake_case__ : Optional[int] = self.ror(__A , 6 ) ^ self.ror(__A , 1_1 ) ^ self.ror(__A , 2_5 ) snake_case__ : str = (e & f) ^ ((~e & 0xFFFFFFFF) & g) snake_case__ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 snake_case__ : Any = self.ror(__A , 2 ) ^ self.ror(__A , 1_3 ) ^ self.ror(__A , 2_2 ) snake_case__ : Optional[int] = (a & b) ^ (a & c) ^ (b & c) snake_case__ : List[Any] = (sa + maj) % 0x100000000 snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : Optional[int] = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) snake_case__ : Any = [a, b, c, d, e, f, g, h] # Modify final values snake_case__ : List[str] = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] snake_case__ : Optional[int] = "".join([hex(__A )[2:].zfill(8 ) for value in self.hashes] ) def _lowercase ( self : List[Any] , __A : int , __A : int ): return 0xFFFFFFFF & (value << (3_2 - rotations)) | (value >> rotations) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ): import hashlib snake_case__ : int = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__A ).hash , hashlib.shaaaa(__A ).hexdigest() ) def SCREAMING_SNAKE_CASE ( ): import doctest doctest.testmod() snake_case__ : int = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) snake_case__ : Dict = parser.parse_args() snake_case__ : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: snake_case__ : Tuple = f.read() else: snake_case__ : List[str] = bytes(snake_case_ , "utf-8" ) print(SHAaaa(snake_case_ ).hash ) if __name__ == "__main__": main()
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Dict = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "funnel" a_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : List[Any] , __A : Optional[Any]=3_0_5_2_2 , __A : str=[4, 4, 4] , __A : Optional[Any]=None , __A : Optional[Any]=2 , __A : Tuple=7_6_8 , __A : int=1_2 , __A : Union[str, Any]=6_4 , __A : List[str]=3_0_7_2 , __A : List[str]="gelu_new" , __A : Optional[int]=0.1 , __A : Optional[Any]=0.1 , __A : Union[str, Any]=0.0 , __A : Optional[int]=0.1 , __A : Tuple=None , __A : List[Any]=1e-9 , __A : Dict="mean" , __A : Union[str, Any]="relative_shift" , __A : Union[str, Any]=True , __A : Union[str, Any]=True , __A : Any=True , **__A : Optional[Any] , ): snake_case__ : Optional[int] = vocab_size snake_case__ : Any = block_sizes snake_case__ : List[Any] = [1] * len(__A ) if block_repeats is None else block_repeats assert len(__A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case__ : Dict = num_decoder_layers snake_case__ : List[Any] = d_model snake_case__ : Union[str, Any] = n_head snake_case__ : List[Any] = d_head snake_case__ : int = d_inner snake_case__ : Union[str, Any] = hidden_act snake_case__ : Any = hidden_dropout snake_case__ : str = attention_dropout snake_case__ : Dict = activation_dropout snake_case__ : Dict = initializer_range snake_case__ : Optional[Any] = initializer_std snake_case__ : List[str] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' snake_case__ : Optional[Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' snake_case__ : int = attention_type snake_case__ : int = separate_cls snake_case__ : Union[str, Any] = truncate_seq snake_case__ : Optional[int] = pool_q_only super().__init__(**__A ) @property def _lowercase ( self : List[Any] ): return sum(self.block_sizes ) @num_hidden_layers.setter def _lowercase ( self : int , __A : int ): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def _lowercase ( self : Optional[Any] ): return len(self.block_sizes ) @num_blocks.setter def _lowercase ( self : Optional[int] , __A : List[str] ): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} __lowerCamelCase : Union[str, Any] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } __lowerCamelCase : Any = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } __lowerCamelCase : Tuple = """▁""" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , __A : List[Any] , __A : Optional[Any]=True , __A : Optional[Any]=True , __A : int=False , __A : Any="[CLS]" , __A : Tuple="[SEP]" , __A : List[str]="<unk>" , __A : List[Any]="[SEP]" , __A : str="<pad>" , __A : Dict="[CLS]" , __A : Dict="[MASK]" , __A : Optional[Dict[str, Any]] = None , **__A : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case__ : int = ( AddedToken(__A , lstrip=__A , rstrip=__A , normalized=__A ) if isinstance(__A , __A ) else mask_token ) snake_case__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) snake_case__ : Optional[Any] = do_lower_case snake_case__ : List[Any] = remove_space snake_case__ : Dict = keep_accents snake_case__ : Tuple = vocab_file snake_case__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) @property def _lowercase ( self : str ): return len(self.sp_model ) def _lowercase ( self : Optional[Any] ): snake_case__ : int = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : List[Any] = None return state def __setstate__( self : Optional[int] , __A : int ): snake_case__ : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case__ : List[Any] = {} snake_case__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : Optional[Any] , __A : List[Any] ): if self.remove_space: snake_case__ : Optional[Any] = " ".join(inputs.strip().split() ) else: snake_case__ : str = inputs snake_case__ : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: snake_case__ : Union[str, Any] = unicodedata.normalize("NFKD" , __A ) snake_case__ : int = "".join([c for c in outputs if not unicodedata.combining(__A )] ) if self.do_lower_case: snake_case__ : Tuple = outputs.lower() return outputs def _lowercase ( self : int , __A : str ): snake_case__ : Optional[int] = self.preprocess_text(__A ) snake_case__ : Dict = self.sp_model.encode(__A , out_type=__A ) snake_case__ : str = [] for piece in pieces: if len(__A ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__A , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case__ : Optional[int] = cur_pieces[1:] else: snake_case__ : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__A ) else: new_pieces.append(__A ) return new_pieces def _lowercase ( self : Tuple , __A : str ): return self.sp_model.PieceToId(__A ) def _lowercase ( self : Tuple , __A : Optional[int] ): return self.sp_model.IdToPiece(__A ) def _lowercase ( self : Tuple , __A : List[Any] ): snake_case__ : str = [] snake_case__ : str = "" snake_case__ : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token snake_case__ : int = True snake_case__ : int = [] else: current_sub_tokens.append(__A ) snake_case__ : Optional[Any] = False out_string += self.sp_model.decode(__A ) return out_string.strip() def _lowercase ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Tuple = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : Tuple , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] def _lowercase ( self : str , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Union[str, Any] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , "wb" ) as fi: snake_case__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : List[Any] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
__lowerCamelCase : int = range(2, 20 + 1) __lowerCamelCase : int = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Optional[int] ): snake_case__ : Optional[int] = sum(a_i[j] for j in range(snake_case_ , len(snake_case_ ) ) ) snake_case__ : Optional[Any] = sum(a_i[j] * base[j] for j in range(min(len(snake_case_ ) , snake_case_ ) ) ) snake_case__, snake_case__ : Tuple = 0, 0 snake_case__ : Tuple = n - i snake_case__ : int = memo.get(snake_case_ ) if sub_memo is not None: snake_case__ : Tuple = sub_memo.get(snake_case_ ) if jumps is not None and len(snake_case_ ) > 0: # find and make the largest jump without going over snake_case__ : Dict = -1 for _k in range(len(snake_case_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case__ : Union[str, Any] = _k break if max_jump >= 0: snake_case__, snake_case__, snake_case__ : Any = jumps[max_jump] # since the difference between jumps is cached, add c snake_case__ : str = diff + c for j in range(min(snake_case_ , len(snake_case_ ) ) ): snake_case__, snake_case__ : List[Any] = divmod(snake_case_ , 10 ) if new_c > 0: add(snake_case_ , snake_case_ , snake_case_ ) else: snake_case__ : List[Any] = [] else: snake_case__ : str = {c: []} snake_case__ : str = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case__, snake_case__ : Any = next_term(snake_case_ , k - 1 , i + dn , snake_case_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case__, snake_case__ : List[Any] = compute(snake_case_ , snake_case_ , i + dn , snake_case_ ) diff += _diff dn += terms_jumped snake_case__ : Optional[Any] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case__ : Optional[int] = 0 while j < len(snake_case_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(snake_case_ , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : str , snake_case_ : Optional[int] ): if i >= n: return 0, i if k > len(snake_case_ ): a_i.extend([0 for _ in range(k - len(snake_case_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case__ : Tuple = i snake_case__, snake_case__, snake_case__ : List[Any] = 0, 0, 0 for j in range(len(snake_case_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case__ : str = ds_c + ds_b diff += addend snake_case__ : Any = 0 for j in range(snake_case_ ): snake_case__ : Optional[int] = a_i[j] + addend snake_case__, snake_case__ : str = divmod(snake_case_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(snake_case_ , snake_case_ , snake_case_ ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[str] ): for j in range(snake_case_ , len(snake_case_ ) ): snake_case__ : int = digits[j] + addend if s >= 10: snake_case__, snake_case__ : List[Any] = divmod(snake_case_ , 10 ) snake_case__ : Optional[int] = addend // 10 + quotient else: snake_case__ : Optional[Any] = s snake_case__ : Optional[Any] = addend // 10 if addend == 0: break while addend > 0: snake_case__, snake_case__ : List[str] = divmod(snake_case_ , 10 ) digits.append(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int = 10**15 ): snake_case__ : List[Any] = [1] snake_case__ : int = 1 snake_case__ : List[Any] = 0 while True: snake_case__, snake_case__ : Optional[Any] = next_term(snake_case_ , 20 , i + dn , snake_case_ ) dn += terms_jumped if dn == n - i: break snake_case__ : Union[str, Any] = 0 for j in range(len(snake_case_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"{solution() = }")
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : List[Any] = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
from __future__ import annotations import requests __lowerCamelCase : Optional[Any] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : int = 1 , snake_case_ : str = "new" , snake_case_ : list | None = None ): snake_case__ : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(snake_case_ ) - valid_terms ) ): snake_case__ : str = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(snake_case_ ) snake_case__ : Optional[int] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError snake_case__ : List[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(snake_case_ )} snake_case__ : Optional[Any] = {} for id_ in range(snake_case_ ): snake_case__ : Tuple = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def SCREAMING_SNAKE_CASE ( snake_case_ : SplitDict ): snake_case__ : List[Any] = split_dict._to_yaml_list() assert len(snake_case_ ) == len(snake_case_ ) snake_case__ : str = SplitDict._from_yaml_list(snake_case_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case__ : Tuple = None # the split name of split_dict takes over the name of the split info object snake_case__ : Optional[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=snake_case_ ), SplitInfo(dataset_name="my_dataset" )] ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files snake_case__ : Optional[int] = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def _lowercase ( *__A : List[Any] , **__A : Optional[Any] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def _lowercase ( self : Optional[int] , __A : Optional[int] , __A : Optional[int] , __A : Any ): snake_case__ : Dict = ObjectDetectionPipeline(model=__A , image_processor=__A ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _lowercase ( self : str , __A : int , __A : str ): snake_case__ : List[str] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__A ) , 0 ) for detected_object in outputs: self.assertEqual( __A , { "score": ANY(__A ), "label": ANY(__A ), "box": {"xmin": ANY(__A ), "ymin": ANY(__A ), "xmax": ANY(__A ), "ymax": ANY(__A )}, } , ) import datasets snake_case__ : List[Any] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) snake_case__ : List[str] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] snake_case__ : List[Any] = object_detector(__A , threshold=0.0 ) self.assertEqual(len(__A ) , len(__A ) ) for outputs in batch_outputs: self.assertGreater(len(__A ) , 0 ) for detected_object in outputs: self.assertEqual( __A , { "score": ANY(__A ), "label": ANY(__A ), "box": {"xmin": ANY(__A ), "ymin": ANY(__A ), "xmax": ANY(__A ), "ymax": ANY(__A )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def _lowercase ( self : List[str] ): pass @require_torch def _lowercase ( self : str ): snake_case__ : Optional[int] = "hf-internal-testing/tiny-detr-mobilenetsv3" snake_case__ : List[str] = AutoModelForObjectDetection.from_pretrained(__A ) snake_case__ : str = AutoFeatureExtractor.from_pretrained(__A ) snake_case__ : Tuple = ObjectDetectionPipeline(model=__A , feature_extractor=__A ) snake_case__ : List[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ] , ) snake_case__ : List[Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], [ {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, {"score": 0.3_3_7_6, "label": "LABEL_0", "box": {"xmin": 1_5_9, "ymin": 1_2_0, "xmax": 4_8_0, "ymax": 3_5_9}}, ], ] , ) @require_torch @slow def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = "facebook/detr-resnet-50" snake_case__ : Tuple = AutoModelForObjectDetection.from_pretrained(__A ) snake_case__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(__A ) snake_case__ : Dict = ObjectDetectionPipeline(model=__A , feature_extractor=__A ) snake_case__ : List[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) snake_case__ : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def _lowercase ( self : Dict ): snake_case__ : Dict = "facebook/detr-resnet-50" snake_case__ : Optional[Any] = pipeline("object-detection" , model=__A ) snake_case__ : Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) snake_case__ : Optional[Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], [ {"score": 0.9_9_8_2, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_0, "xmax": 1_7_5, "ymax": 1_1_7}}, {"score": 0.9_9_6_0, "label": "remote", "box": {"xmin": 3_3_3, "ymin": 7_2, "xmax": 3_6_8, "ymax": 1_8_7}}, {"score": 0.9_9_5_5, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_3_9, "ymax": 4_7_3}}, {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ], ] , ) @require_torch @slow def _lowercase ( self : Optional[Any] ): snake_case__ : int = 0.9_9_8_5 snake_case__ : List[Any] = "facebook/detr-resnet-50" snake_case__ : int = pipeline("object-detection" , model=__A ) snake_case__ : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__A ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.9_9_8_8, "label": "cat", "box": {"xmin": 1_3, "ymin": 5_2, "xmax": 3_1_4, "ymax": 4_7_0}}, {"score": 0.9_9_8_7, "label": "cat", "box": {"xmin": 3_4_5, "ymin": 2_3, "xmax": 6_4_0, "ymax": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def _lowercase ( self : Any ): snake_case__ : Any = "Narsil/layoutlmv3-finetuned-funsd" snake_case__ : List[Any] = 0.9_9_9_3 snake_case__ : Union[str, Any] = pipeline("object-detection" , model=__A , threshold=__A ) snake_case__ : str = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__A , decimals=4 ) , [ {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, {"score": 0.9_9_9_3, "label": "I-ANSWER", "box": {"xmin": 2_9_4, "ymin": 2_5_4, "xmax": 3_4_3, "ymax": 2_6_4}}, ] , )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 4000000 ): snake_case__ : Any = [] snake_case__, snake_case__ : Optional[int] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case_ ) snake_case__, snake_case__ : List[str] = b, a + b return sum(snake_case_ ) if __name__ == "__main__": print(f"{solution() = }")
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCamelCase : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
import logging import os from .state import PartialState class SCREAMING_SNAKE_CASE__ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def _lowercase ( __A : Optional[int] ): snake_case__ : Optional[int] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowercase ( self : Dict , __A : str , __A : Any , *__A : Tuple , **__A : Union[str, Any] ): if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) snake_case__ : int = kwargs.pop("main_process_only" , __A ) snake_case__ : int = kwargs.pop("in_order" , __A ) if self.isEnabledFor(__A ): if self._should_log(__A ): snake_case__, snake_case__ : Optional[Any] = self.process(__A , __A ) self.logger.log(__A , __A , *__A , **__A ) elif in_order: snake_case__ : Tuple = PartialState() for i in range(state.num_processes ): if i == state.process_index: snake_case__, snake_case__ : Dict = self.process(__A , __A ) self.logger.log(__A , __A , *__A , **__A ) state.wait_for_everyone() def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str = None ): if log_level is None: snake_case__ : str = os.environ.get("ACCELERATE_LOG_LEVEL" , snake_case_ ) snake_case__ : Any = logging.getLogger(snake_case_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case_ , {} )
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Dict = 2 snake_case__ : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case_ ) if n > 1: factors.append(snake_case_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
from collections.abc import Generator def SCREAMING_SNAKE_CASE ( ): snake_case__, snake_case__ : Union[str, Any] = 0, 1 while True: snake_case__, snake_case__ : List[Any] = b, a + b yield b def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000 ): snake_case__ : Tuple = 1 snake_case__ : Dict = fibonacci_generator() while len(str(next(snake_case_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , __A : Optional[Any] , __A : Union[str, Any]=7 , __A : Any=3 , __A : List[str]=1_8 , __A : Any=3_0 , __A : Tuple=4_0_0 , __A : Any=True , __A : Tuple=None , __A : Optional[Any]=True , __A : str=None , __A : str=True , ): snake_case__ : Optional[int] = size if size is not None else {"shortest_edge": 2_0} snake_case__ : int = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} snake_case__ : Union[str, Any] = parent snake_case__ : Any = batch_size snake_case__ : Dict = num_channels snake_case__ : List[str] = image_size snake_case__ : Optional[int] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : str = do_resize snake_case__ : int = size snake_case__ : Optional[int] = do_center_crop snake_case__ : List[Any] = crop_size snake_case__ : Optional[Any] = do_flip_channel_order def _lowercase ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = MobileViTImageProcessor if is_vision_available() else None def _lowercase ( self : List[str] ): snake_case__ : Dict = MobileViTImageProcessingTester(self ) @property def _lowercase ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : str ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) self.assertTrue(hasattr(__A , "do_center_crop" ) ) self.assertTrue(hasattr(__A , "center_crop" ) ) self.assertTrue(hasattr(__A , "do_flip_channel_order" ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) snake_case__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : Optional[int] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case__ : Optional[int] = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self : str ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE ( snake_case_ : Dict[str, torch.Tensor] ): snake_case__ : Any = [] snake_case__ : Dict = [] snake_case__ : Tuple = [] for rt in rc.restypes: snake_case__ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case__ : Dict = {name: i for i, name in enumerate(snake_case_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case__ : int = torch.tensor( snake_case_ , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case__ : List[str] = torch.tensor( snake_case_ , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case__ : List[Any] = torch.tensor( snake_case_ , dtype=torch.floataa , device=protein["aatype"].device , ) snake_case__ : Optional[Any] = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case__ : List[Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : Any = restype_atomaa_mask[protein_aatype] snake_case__ : List[str] = residx_atomaa_mask snake_case__ : List[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case__ : Union[str, Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case__ : Tuple = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case__ : Any = rc.restype_atoa[restype_letter] snake_case__ : Optional[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case__ : List[Any] = rc.atom_order[atom_name] snake_case__ : Union[str, Any] = 1 snake_case__ : Dict = restype_atomaa_mask[protein_aatype] snake_case__ : Any = residx_atomaa_mask return protein def SCREAMING_SNAKE_CASE ( snake_case_ : Dict[str, torch.Tensor] ): snake_case__ : Union[str, Any] = tree_map(lambda snake_case_ : torch.tensor(snake_case_ , device=batch["aatype"].device ) , snake_case_ , np.ndarray ) snake_case__ : int = tensor_tree_map(lambda snake_case_ : np.array(snake_case_ ) , make_atomaa_masks(snake_case_ ) ) return out
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __lowerCamelCase : int = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __lowerCamelCase : List[str] = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names __lowerCamelCase : Tuple = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCamelCase : Tuple = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __lowerCamelCase : List[Any] = """allenai""" def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} snake_case__ : Any = dict((re.sub(R"@@$" , "" , snake_case_ ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , snake_case_ ), v) for k, v in d.items() ) snake_case__ : List[Any] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] snake_case__ : List[str] = d[k] # restore return da def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] ): # prep assert os.path.exists(snake_case_ ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models snake_case__ : Any = basename(snake_case_ ) snake_case__ : int = dirname(snake_case_ ) snake_case__ : Optional[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel snake_case__ : List[Any] = cls.hub_models() snake_case__ : List[str] = {"bpe": "fastbpe", "tokenizer": "moses"} snake_case__ : Union[str, Any] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) snake_case__ : List[str] = hub_utils.from_pretrained( snake_case_ , snake_case_ , snake_case_ , archive_map=snake_case_ , **snake_case_ ) snake_case__ : Union[str, Any] = vars(chkpt["args"]["model"] ) snake_case__ : Any = args["source_lang"] snake_case__ : Union[str, Any] = args["target_lang"] snake_case__ : Tuple = dirname(snake_case_ ) snake_case__ : List[Any] = basename(snake_case_ ) # dicts snake_case__ : List[Any] = os.path.join(snake_case_ , F'''dict.{src_lang}.txt''' ) snake_case__ : Optional[int] = os.path.join(snake_case_ , F'''dict.{tgt_lang}.txt''' ) snake_case__ : Tuple = Dictionary.load(snake_case_ ) snake_case__ : Optional[int] = rewrite_dict_keys(src_dict.indices ) snake_case__ : Optional[int] = len(snake_case_ ) snake_case__ : Optional[int] = os.path.join(snake_case_ , "vocab-src.json" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case_ , ensure_ascii=snake_case_ , indent=snake_case_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab snake_case__ : int = True for k in src_vocab.keys(): if not k.islower(): snake_case__ : int = False break snake_case__ : str = Dictionary.load(snake_case_ ) snake_case__ : Dict = rewrite_dict_keys(tgt_dict.indices ) snake_case__ : List[Any] = len(snake_case_ ) snake_case__ : Any = os.path.join(snake_case_ , "vocab-tgt.json" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case_ , ensure_ascii=snake_case_ , indent=snake_case_ ) ) # merges_file (bpecodes) snake_case__ : Dict = os.path.join(snake_case_ , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" snake_case__ : str = os.path.join(snake_case_ , snake_case_ ) if os.path.exists(snake_case_ ): break with open(snake_case_ , encoding="utf-8" ) as fin: snake_case__ : str = fin.read() snake_case__ : str = re.sub(R" \d+$" , "" , snake_case_ , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(snake_case_ , "w" , encoding="utf-8" ) as fout: fout.write(snake_case_ ) # model config snake_case__ : int = os.path.join(snake_case_ , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' snake_case__ : Dict = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with snake_case__ : Any = 5 snake_case__ : Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: snake_case__ : Dict = best_score_hparams[model_dir]["length_penalty"] else: snake_case__ : Optional[int] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case_ , ensure_ascii=snake_case_ , indent=snake_case_ ) ) # tokenizer config snake_case__ : str = os.path.join(snake_case_ , snake_case_ ) snake_case__ : int = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case_ , ensure_ascii=snake_case_ , indent=snake_case_ ) ) # model snake_case__ : Tuple = chkpt["models"][0] snake_case__ : List[Any] = model.state_dict() # rename keys to start with 'model.' snake_case__ : Dict = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys snake_case__ : int = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = FSMTConfig.from_pretrained(snake_case_ ) snake_case__ : Tuple = FSMTForConditionalGeneration(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_ , strict=snake_case_ ) # save snake_case__ : List[str] = os.path.join(snake_case_ , snake_case_ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(snake_case_ , snake_case_ ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : bool = False ): if not isinstance(snake_case_ , snake_case_ ): snake_case__ : List[str] = F'''Expected string as input, found {type(snake_case_ )}''' raise ValueError(snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): snake_case__ : Tuple = F'''Expected boolean as use_pascal parameter, found {type(snake_case_ )}''' raise ValueError(snake_case_ ) snake_case__ : Tuple = input_str.split("_" ) snake_case__ : str = 0 if use_pascal else 1 snake_case__ : Optional[int] = words[start_index:] snake_case__ : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] snake_case__ : List[str] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if not isinstance(snake_case_ , snake_case_ ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) snake_case__ : Optional[int] = 0 snake_case__ : List[str] = str(snake_case_ ) while len(snake_case_ ) != 1: snake_case__ : Optional[Any] = [int(snake_case_ ) for i in num_string] snake_case__ : int = 1 for i in range(0 , len(snake_case_ ) ): total *= numbers[i] snake_case__ : Tuple = str(snake_case_ ) steps += 1 return steps def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if not isinstance(snake_case_ , snake_case_ ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) snake_case__ : Any = 0 snake_case__ : List[str] = str(snake_case_ ) while len(snake_case_ ) != 1: snake_case__ : int = [int(snake_case_ ) for i in num_string] snake_case__ : Any = 0 for i in range(0 , len(snake_case_ ) ): total += numbers[i] snake_case__ : Tuple = str(snake_case_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
from collections import Counter from timeit import timeit def SCREAMING_SNAKE_CASE ( snake_case_ : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def SCREAMING_SNAKE_CASE ( snake_case_ : str = "" ): if len(snake_case_ ) == 0: return True snake_case__ : Tuple = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string snake_case__ : dict[str, int] = {} for character in lower_case_input_str: snake_case__ : Tuple = character_freq_dict.get(snake_case_ , 0 ) + 1 snake_case__ : str = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def SCREAMING_SNAKE_CASE ( snake_case_ : str = "" ): print("\nFor string = " , snake_case_ , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(snake_case_ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(snake_case_ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) __lowerCamelCase : Any = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
import heapq def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): snake_case__ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(snake_case_ , [-1 * len(snake_case_ ), (key, value)] ) # chosen_vertices = set of chosen vertices snake_case__ : Tuple = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices snake_case__ : List[Any] = heapq.heappop(snake_case_ )[1][0] chosen_vertices.add(snake_case_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: snake_case__ : Tuple = elem[1][1].index(snake_case_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(snake_case_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Dict = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : Optional[int]=1_3 , __A : Dict=3_0 , __A : str=2 , __A : List[str]=3 , __A : Union[str, Any]=True , __A : List[Any]=True , __A : List[Any]=3_2 , __A : str=2 , __A : Any=4 , __A : Dict=3_7 , __A : Optional[int]="gelu" , __A : List[str]=0.1 , __A : List[str]=0.1 , __A : str=1_0 , __A : Any=0.0_2 , __A : str=3 , __A : Any=None , ): snake_case__ : Optional[int] = parent snake_case__ : str = batch_size snake_case__ : Optional[Any] = image_size snake_case__ : Tuple = patch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : List[Any] = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Union[str, Any] = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : Any = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[Any] = initializer_range snake_case__ : str = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Any = (image_size // patch_size) ** 2 snake_case__ : Optional[Any] = num_patches + 1 def _lowercase ( self : Optional[Any] ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Tuple = None if self.use_labels: snake_case__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Tuple = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , ) def _lowercase ( self : Optional[Any] , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): snake_case__ : List[Any] = TFViTModel(config=__A ) snake_case__ : Union[str, Any] = model(__A , training=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. snake_case__ : Optional[Any] = self.image_size // 2 snake_case__ : Dict = pixel_values[:, :, :image_size, :image_size] snake_case__ : Any = model(__A , interpolate_pos_encoding=__A , training=__A ) snake_case__ : Any = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , __A : int , __A : List[Any] , __A : List[Any] ): snake_case__ : Any = self.type_sequence_label_size snake_case__ : Optional[Any] = TFViTForImageClassification(__A ) snake_case__ : List[str] = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. snake_case__ : Tuple = self.image_size // 2 snake_case__ : str = pixel_values[:, :, :image_size, :image_size] snake_case__ : int = model(__A , interpolate_pos_encoding=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Union[str, Any] = 1 snake_case__ : Union[str, Any] = TFViTForImageClassification(__A ) snake_case__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : str = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__ : Any = config_and_inputs snake_case__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () a_ = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) a_ = False a_ = False a_ = False def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = TFViTModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def _lowercase ( self : Optional[int] ): pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def _lowercase ( self : Optional[int] ): pass def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , tf.keras.layers.Layer ) ) def _lowercase ( self : Dict ): snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(__A ) snake_case__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _lowercase ( self : Dict ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def _lowercase ( self : str ): snake_case__ : List[str] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : int ): snake_case__ : Tuple = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) snake_case__ : List[str] = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : int = image_processor(images=__A , return_tensors="tf" ) # forward pass snake_case__ : Dict = model(**__A ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) snake_case__ : int = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase : Union[str, Any] = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): snake_case__ : str = 0 def _lowercase ( self : int ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self : List[Any] ): snake_case__ : str = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__A , __A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowercase ( self : List[Any] ): snake_case__ : Any = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def _lowercase ( self : List[Any] ): snake_case__ : Tuple = AutoConfig.for_model("roberta" ) self.assertIsInstance(__A , __A ) def _lowercase ( self : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. snake_case__ : Any = os.path.join(__A , "fake-roberta" ) os.makedirs(__A , exist_ok=__A ) with open(os.path.join(__A , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) snake_case__ : List[Any] = AutoConfig.from_pretrained(__A ) self.assertEqual(type(__A ) , __A ) def _lowercase ( self : List[str] ): try: AutoConfig.register("custom" , __A ) # Wrong model type will raise an error with self.assertRaises(__A ): AutoConfig.register("model" , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoConfig.register("bert" , __A ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case__ : str = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) snake_case__ : List[str] = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self : Union[str, Any] ): with self.assertRaisesRegex( __A , "bert-base is not a local folder and is not a valid model identifier" ): snake_case__ : Any = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self : int ): with self.assertRaisesRegex( __A , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case__ : Optional[Any] = AutoConfig.from_pretrained(__A , revision="aaaaaa" ) def _lowercase ( self : Any ): with self.assertRaisesRegex( __A , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): snake_case__ : Any = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self : List[str] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): snake_case__ : Dict = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): snake_case__ : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__A ) snake_case__ : Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _lowercase ( self : Any ): class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "new-model" try: AutoConfig.register("new-model" , __A ) # If remote code is not set, the default is to use local snake_case__ : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. snake_case__ : Dict = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub snake_case__ : Dict = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : Tuple , __A : Optional[int]=1_3 , __A : Tuple=1_0 , __A : List[Any]=3 , __A : Tuple=2 , __A : List[str]=2 , __A : Tuple=True , __A : Optional[Any]=True , __A : Optional[Any]=3_2 , __A : Optional[Any]=5 , __A : Any=4 , __A : Any=3_7 , __A : Optional[int]="gelu" , __A : List[str]=0.1 , __A : int=0.1 , __A : Dict=1_0 , __A : str=0.0_2 , __A : str="divided_space_time" , __A : List[Any]=None , ): snake_case__ : List[str] = parent snake_case__ : str = batch_size snake_case__ : Optional[Any] = image_size snake_case__ : Dict = num_channels snake_case__ : List[str] = patch_size snake_case__ : int = num_frames snake_case__ : List[str] = is_training snake_case__ : Union[str, Any] = use_labels snake_case__ : int = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : Tuple = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : List[str] = attention_type snake_case__ : int = initializer_range snake_case__ : List[str] = scope snake_case__ : Any = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : str = (num_frames) * self.num_patches_per_frame + 1 def _lowercase ( self : Any ): snake_case__ : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Any = None if self.use_labels: snake_case__ : str = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self : Any ): snake_case__ : Tuple = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) snake_case__ : List[Any] = self.num_labels return config def _lowercase ( self : Dict , __A : Tuple , __A : str , __A : Union[str, Any] ): snake_case__ : Any = TimesformerModel(config=__A ) model.to(__A ) model.eval() snake_case__ : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Dict , __A : List[Any] , __A : Tuple , __A : str ): snake_case__ : Any = TimesformerForVideoClassification(__A ) model.to(__A ) model.eval() snake_case__ : Dict = model(__A ) # verify the logits shape snake_case__ : Union[str, Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __A ) def _lowercase ( self : Tuple ): snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__ : List[str] = config_and_inputs snake_case__ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () a_ = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : Any ): snake_case__ : Optional[int] = TimesformerModelTester(self ) snake_case__ : Tuple = ConfigTester( self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowercase ( self : Dict , __A : Tuple , __A : Dict , __A : Union[str, Any]=False ): snake_case__ : Optional[Any] = copy.deepcopy(__A ) if return_labels: if model_class in get_values(__A ): snake_case__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _lowercase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : Dict ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__A ) snake_case__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _lowercase ( self : str ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__A ) @slow def _lowercase ( self : Union[str, Any] ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = TimesformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _lowercase ( self : Tuple ): if not self.has_attentions: pass else: snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = True for model_class in self.all_model_classes: snake_case__ : List[Any] = self.model_tester.seq_length snake_case__ : Optional[int] = self.model_tester.num_frames snake_case__ : int = True snake_case__ : Optional[Any] = False snake_case__ : Optional[int] = True snake_case__ : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : Dict = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : List[Any] = True snake_case__ : List[str] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : int = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : Dict = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) snake_case__ : Dict = len(__A ) # Check attention is always last and order is fine snake_case__ : Union[str, Any] = True snake_case__ : List[str] = True snake_case__ : Optional[Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + 1 , len(__A ) ) snake_case__ : str = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowercase ( self : Optional[int] ): def check_hidden_states_output(__A : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : Dict = outputs.hidden_states snake_case__ : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__A ) , __A ) snake_case__ : Tuple = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : int = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : str = True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : List[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) snake_case__ : List[Any] = np.load(snake_case_ ) return list(snake_case_ ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : int ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __A ) snake_case__ : Tuple = self.default_image_processor snake_case__ : str = prepare_video() snake_case__ : str = image_processor(video[:8] , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): snake_case__ : Optional[Any] = model(**__A ) # verify the logits snake_case__ : Optional[Any] = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __A ) snake_case__ : Tuple = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["pixel_values"] def __init__( self : Tuple , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 2_5_5 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : List[str] , ): super().__init__(**__A ) snake_case__ : List[Any] = size if size is not None else {"shortest_edge": 2_5_6} snake_case__ : List[str] = get_size_dict(__A , default_to_square=__A ) snake_case__ : str = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case__ : Optional[int] = get_size_dict(__A ) snake_case__ : Dict = do_resize snake_case__ : Union[str, Any] = size snake_case__ : Optional[int] = resample snake_case__ : Dict = do_center_crop snake_case__ : int = crop_size snake_case__ : str = do_rescale snake_case__ : Optional[Any] = rescale_factor snake_case__ : Dict = do_normalize snake_case__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : int , ): snake_case__ : Tuple = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ : Dict = get_resize_output_image_size(__A , size=size["shortest_edge"] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def _lowercase ( self : str , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): snake_case__ : Dict = get_size_dict(__A ) return center_crop(__A , size=(size["height"], size["width"]) , data_format=__A , **__A ) def _lowercase ( self : Dict , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str ): return rescale(__A , scale=__A , data_format=__A , **__A ) def _lowercase ( self : Tuple , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[Any] , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def _lowercase ( self : Tuple , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): snake_case__ : Any = do_resize if do_resize is not None else self.do_resize snake_case__ : Union[str, Any] = size if size is not None else self.size snake_case__ : Optional[Any] = get_size_dict(__A , default_to_square=__A ) snake_case__ : Dict = resample if resample is not None else self.resample snake_case__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : List[str] = crop_size if crop_size is not None else self.crop_size snake_case__ : Optional[int] = get_size_dict(__A ) snake_case__ : int = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[int] = image_mean if image_mean is not None else self.image_mean snake_case__ : List[str] = image_std if image_std is not None else self.image_std snake_case__ : Optional[Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case__ : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: snake_case__ : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: snake_case__ : Dict = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: snake_case__ : str = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: snake_case__ : Tuple = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] snake_case__ : str = [to_channel_dimension_format(__A , __A ) for image in images] snake_case__ : List[Any] = {"pixel_values": images} return BatchFeature(data=__A , tensor_type=__A )
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @slow @require_torch def _lowercase ( self : Any ): snake_case__ : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) snake_case__ : Optional[Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) snake_case__ : Any = bertabert.config.encoder.vocab_size snake_case__ : List[str] = tokenizer.sep_token_id snake_case__ : Any = tokenizer.cls_token_id snake_case__ : Tuple = 1_2_8 snake_case__ : str = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) snake_case__ : List[str] = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) snake_case__ : Optional[int] = train_dataset.select(range(3_2 ) ) snake_case__ : Tuple = val_dataset.select(range(1_6 ) ) snake_case__ : List[str] = 4 def _map_to_encoder_decoder_inputs(__A : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] snake_case__ : Dict = tokenizer(batch["article"] , padding="max_length" , truncation=__A , max_length=5_1_2 ) snake_case__ : List[str] = tokenizer(batch["highlights"] , padding="max_length" , truncation=__A , max_length=1_2_8 ) snake_case__ : str = inputs.input_ids snake_case__ : int = inputs.attention_mask snake_case__ : Tuple = outputs.input_ids snake_case__ : Dict = outputs.input_ids.copy() snake_case__ : Optional[Any] = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] snake_case__ : List[Any] = outputs.attention_mask assert all(len(__A ) == 5_1_2 for x in inputs.input_ids ) assert all(len(__A ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(__A : Union[str, Any] ): snake_case__ : Dict = pred.label_ids snake_case__ : Any = pred.predictions # all unnecessary tokens are removed snake_case__ : str = tokenizer.batch_decode(__A , skip_special_tokens=__A ) snake_case__ : Any = tokenizer.batch_decode(__A , skip_special_tokens=__A ) snake_case__ : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__A ) )] ) / len(__A ) return {"accuracy": accuracy} # map train dataset snake_case__ : Tuple = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset snake_case__ : int = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) snake_case__ : Dict = self.get_auto_remove_tmp_dir() snake_case__ : List[str] = SeqaSeqTrainingArguments( output_dir=__A , per_device_train_batch_size=__A , per_device_eval_batch_size=__A , predict_with_generate=__A , evaluation_strategy="steps" , do_train=__A , do_eval=__A , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer snake_case__ : Dict = SeqaSeqTrainer( model=__A , args=__A , compute_metrics=_compute_metrics , train_dataset=__A , eval_dataset=__A , tokenizer=__A , ) # start training trainer.train()
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple=None , snake_case_ : Optional[Any]=None ): return field(default_factory=lambda: default , metadata=snake_case_ ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( metadata={"help": "The csv file to plot."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) a_ = field( default=UpperCamelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) a_ = list_field( default=UpperCamelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): try: int(snake_case_ ) return True except ValueError: return False def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): try: float(snake_case_ ) return True except ValueError: return False class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str , __A : List[str] ): snake_case__ : List[str] = args snake_case__ : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: snake_case__ : Tuple = csv.DictReader(__A ) for row in reader: snake_case__ : List[str] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None snake_case__ : Tuple = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None snake_case__ : Any = float(row["result"] ) def _lowercase ( self : Any ): snake_case__, snake_case__ : Optional[Any] = plt.subplots() snake_case__ : Tuple = "Time usage" if self.args.is_time else "Memory usage" snake_case__ : str = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): snake_case__ : Tuple = sorted(set(self.result_dict[model_name]["bsz"] ) ) snake_case__ : Optional[int] = sorted(set(self.result_dict[model_name]["seq_len"] ) ) snake_case__ : str = self.result_dict[model_name]["result"] ((snake_case__), (snake_case__)) : List[str] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) snake_case__ : Tuple = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: snake_case__ : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__A , ) else: snake_case__ : str = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((snake_case__), (snake_case__)) : str = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) snake_case__ : Optional[int] = np.asarray(__A , __A )[: len(__A )] plt.scatter( __A , __A , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__A , __A , "--" ) title_str += f''' {label_model_name} vs.''' snake_case__ : str = title_str[:-4] snake_case__ : Optional[int] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__A ) plt.xlabel(__A ) plt.ylabel(__A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def SCREAMING_SNAKE_CASE ( ): snake_case__ : Union[str, Any] = HfArgumentParser(snake_case_ ) snake_case__ : Dict = parser.parse_args_into_dataclasses()[0] snake_case__ : Optional[Any] = Plot(args=snake_case_ ) plot.plot() if __name__ == "__main__": main()
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple ): snake_case__ : Union[str, Any] = {} def _lowercase ( self : Union[str, Any] ): print(self.vertex ) for i in self.vertex: print(__A , " -> " , " -> ".join([str(__A ) for j in self.vertex[i]] ) ) def _lowercase ( self : List[str] , __A : int , __A : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__A ) else: # else make a new vertex snake_case__ : Optional[int] = [to_vertex] def _lowercase ( self : Optional[int] ): # visited array for storing already visited nodes snake_case__ : Optional[int] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__A , __A ) def _lowercase ( self : Any , __A : int , __A : list ): # mark start vertex as visited snake_case__ : Tuple = True print(__A , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__A , __A ) if __name__ == "__main__": __lowerCamelCase : str = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : Union[str, Any]=1_3 , __A : int=7 , __A : Optional[int]=True , __A : str=True , __A : Dict=False , __A : Tuple=True , __A : List[str]=9_9 , __A : Tuple=6_4 , __A : int=5 , __A : Any=4 , __A : List[str]=6_4 , __A : int="gelu" , __A : Any=0.1 , __A : str=0.1 , __A : str=5_1_2 , __A : str=1_6 , __A : Tuple=2 , __A : Any=0.0_2 , __A : str=3 , __A : Optional[int]=4 , __A : Tuple=None , ): snake_case__ : int = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : int = is_training snake_case__ : Tuple = use_input_mask snake_case__ : Optional[int] = use_token_type_ids snake_case__ : str = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : Optional[Any] = type_vocab_size snake_case__ : Dict = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : List[str] = num_labels snake_case__ : int = num_choices snake_case__ : Dict = scope def _lowercase ( self : Any ): return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def _lowercase ( self : Optional[Any] ): snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Optional[Any] = None snake_case__ : Tuple = None snake_case__ : List[str] = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : str ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowercase ( self : str , __A : Dict , __A : str , __A : Any , __A : int , __A : List[Any] , __A : Optional[Any] ): snake_case__ : Any = MPNetModel(config=__A ) model.to(__A ) model.eval() snake_case__ : Optional[Any] = model(__A , __A ) snake_case__ : Dict = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self : Tuple , __A : Union[str, Any] , __A : List[str] , __A : Union[str, Any] , __A : List[Any] , __A : int , __A : Optional[Any] ): snake_case__ : Any = MPNetForQuestionAnswering(config=__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model( __A , attention_mask=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Tuple , __A : int , __A : Tuple , __A : int , __A : str , __A : List[str] , __A : str ): snake_case__ : str = self.num_labels snake_case__ : Tuple = MPNetForSequenceClassification(__A ) model.to(__A ) model.eval() snake_case__ : str = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Any , __A : List[str] , __A : Any , __A : Union[str, Any] , __A : Any , __A : Optional[Any] , __A : List[Any] ): snake_case__ : int = self.num_choices snake_case__ : Tuple = MPNetForMultipleChoice(config=__A ) model.to(__A ) model.eval() snake_case__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : int = model( __A , attention_mask=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : str , __A : Union[str, Any] , __A : List[str] , __A : Optional[int] , __A : List[Any] , __A : Union[str, Any] , __A : List[str] ): snake_case__ : Tuple = self.num_labels snake_case__ : List[str] = MPNetForTokenClassification(config=__A ) model.to(__A ) model.eval() snake_case__ : Any = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Any ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() ((snake_case__), (snake_case__), (snake_case__), (snake_case__), (snake_case__), (snake_case__)) : Tuple = config_and_inputs snake_case__ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) a_ = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = True def _lowercase ( self : List[str] ): snake_case__ : Any = MPNetModelTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : Tuple ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__A ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__A ) def _lowercase ( self : List[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__A ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ): snake_case__ : List[Any] = MPNetModel.from_pretrained("microsoft/mpnet-base" ) snake_case__ : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) snake_case__ : List[Any] = model(__A )[0] snake_case__ : Optional[int] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __A ) snake_case__ : Any = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1e-4 ) )
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "deberta-v2" def __init__( self : Dict , __A : Dict=1_2_8_1_0_0 , __A : Any=1_5_3_6 , __A : Union[str, Any]=2_4 , __A : Optional[int]=2_4 , __A : Any=6_1_4_4 , __A : List[str]="gelu" , __A : List[str]=0.1 , __A : int=0.1 , __A : Dict=5_1_2 , __A : Optional[int]=0 , __A : Union[str, Any]=0.0_2 , __A : str=1e-7 , __A : Union[str, Any]=False , __A : str=-1 , __A : str=0 , __A : Optional[Any]=True , __A : Union[str, Any]=None , __A : Any=0 , __A : Any="gelu" , **__A : Optional[int] , ): super().__init__(**__A ) snake_case__ : Optional[int] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : Any = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : List[Any] = type_vocab_size snake_case__ : int = initializer_range snake_case__ : List[Any] = relative_attention snake_case__ : Dict = max_relative_positions snake_case__ : Any = pad_token_id snake_case__ : Any = position_biased_input # Backwards compatibility if type(__A ) == str: snake_case__ : List[Any] = [x.strip() for x in pos_att_type.lower().split("|" )] snake_case__ : List[str] = pos_att_type snake_case__ : Tuple = vocab_size snake_case__ : List[str] = layer_norm_eps snake_case__ : List[str] = kwargs.get("pooler_hidden_size" , __A ) snake_case__ : Tuple = pooler_dropout snake_case__ : str = pooler_hidden_act class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : str ): if self.task == "multiple-choice": snake_case__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : List[Any] = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def _lowercase ( self : Dict ): return 1_2 def _lowercase ( self : List[Any] , __A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __A : int = -1 , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional["TensorType"] = None , __A : int = 3 , __A : int = 4_0 , __A : int = 4_0 , __A : "PreTrainedTokenizerBase" = None , ): snake_case__ : int = super().generate_dummy_inputs(preprocessor=__A , framework=__A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , __A : List[str] , __A : Dict=1_3 , __A : str=7 , __A : int=True , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : Tuple=True , __A : Any=9_9 , __A : Any=3_2 , __A : Dict=5 , __A : Optional[int]=4 , __A : Tuple=3_7 , __A : Dict="gelu" , __A : Dict=0.1 , __A : Any=0.1 , __A : List[Any]=5_1_2 , __A : Union[str, Any]=1_6 , __A : Any=2 , __A : List[str]=0.0_2 , __A : Optional[Any]=3 , __A : Union[str, Any]=4 , __A : Tuple=None , ): snake_case__ : Tuple = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : str = is_training snake_case__ : Any = use_input_mask snake_case__ : Tuple = use_token_type_ids snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = vocab_size snake_case__ : Any = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : int = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : List[Any] = num_labels snake_case__ : str = num_choices snake_case__ : Tuple = scope def _lowercase ( self : Union[str, Any] ): snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Dict = None if self.use_input_mask: snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None snake_case__ : Tuple = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Optional[Any] ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowercase ( self : Any , __A : Optional[int] , __A : str , __A : List[str] , __A : Tuple , __A : Union[str, Any] , __A : Any ): snake_case__ : List[Any] = DistilBertModel(config=__A ) model.to(__A ) model.eval() snake_case__ : str = model(__A , __A ) snake_case__ : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __A : List[str] , __A : int , __A : List[Any] , __A : str , __A : int , __A : int ): snake_case__ : str = DistilBertForMaskedLM(config=__A ) model.to(__A ) model.eval() snake_case__ : List[Any] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[str] , __A : Tuple , __A : Optional[int] , __A : Optional[int] , __A : Tuple , __A : Dict , __A : Any ): snake_case__ : str = DistilBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() snake_case__ : Dict = model( __A , attention_mask=__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : int , __A : str , __A : Optional[Any] , __A : Optional[Any] , __A : Optional[int] , __A : List[Any] , __A : Dict ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : Dict = DistilBertForSequenceClassification(__A ) model.to(__A ) model.eval() snake_case__ : List[str] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Tuple , __A : Dict , __A : Optional[Any] , __A : int , __A : List[str] , __A : Tuple , __A : Any ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : Tuple = DistilBertForTokenClassification(config=__A ) model.to(__A ) model.eval() snake_case__ : Tuple = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : List[Any] , __A : str , __A : str , __A : Dict , __A : Optional[Any] , __A : Any , __A : Tuple ): snake_case__ : Union[str, Any] = self.num_choices snake_case__ : List[Any] = DistilBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() snake_case__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : List[Any] = model( __A , attention_mask=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : str ): snake_case__ : List[str] = self.prepare_config_and_inputs() ((snake_case__), (snake_case__), (snake_case__), (snake_case__), (snake_case__), (snake_case__)) : Optional[Any] = config_and_inputs snake_case__ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) a_ = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) a_ = True a_ = True a_ = True a_ = True def _lowercase ( self : Tuple ): snake_case__ : List[Any] = DistilBertModelTester(self ) snake_case__ : str = ConfigTester(self , config_class=__A , dim=3_7 ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__A ) def _lowercase ( self : int ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__A ) def _lowercase ( self : List[str] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__A ) def _lowercase ( self : str ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__A ) def _lowercase ( self : str ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__A ) @slow def _lowercase ( self : List[Any] ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = DistilBertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def _lowercase ( self : Dict ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return snake_case__ : Any = True snake_case__ : int = model_class(config=__A ) snake_case__ : Tuple = self._prepare_for_class(__A , __A ) snake_case__ : Any = torch.jit.trace( __A , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , "traced_model.pt" ) ) snake_case__ : int = torch.jit.load(os.path.join(__A , "traced_model.pt" ) , map_location=__A ) loaded(inputs_dict["input_ids"].to(__A ) , inputs_dict["attention_mask"].to(__A ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) snake_case__ : int = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) snake_case__ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : Optional[Any] = model(__A , attention_mask=__A )[0] snake_case__ : Any = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __A ) snake_case__ : Union[str, Any] = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
import pytest __lowerCamelCase : Tuple = """__dummy_dataset1__""" __lowerCamelCase : List[Any] = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def SCREAMING_SNAKE_CASE ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def SCREAMING_SNAKE_CASE ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any] ): snake_case__ : Any = dataset_loading_script_name snake_case__ : Dict = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case_ ) snake_case__ : Dict = script_dir / F'''{script_name}.py''' with open(snake_case_ , "w" ) as f: f.write(snake_case_ ) return str(snake_case_ )
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "gptsan-japanese" a_ = [ "past_key_values", ] a_ = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , __A : Optional[int]=3_6_0_0_0 , __A : Optional[int]=1_2_8_0 , __A : Optional[Any]=1_0_2_4 , __A : Optional[Any]=8_1_9_2 , __A : Optional[Any]=4_0_9_6 , __A : str=1_2_8 , __A : List[str]=1_0 , __A : Union[str, Any]=0 , __A : Optional[Any]=1_6 , __A : str=1_6 , __A : Optional[int]=1_2_8 , __A : List[str]=0.0 , __A : Any=1e-5 , __A : List[Any]=False , __A : Optional[Any]=0.0 , __A : List[str]="float32" , __A : List[str]=False , __A : int=False , __A : int=False , __A : Tuple=0.0_0_2 , __A : str=False , __A : str=True , __A : List[Any]=3_5_9_9_8 , __A : Any=3_5_9_9_5 , __A : Dict=3_5_9_9_9 , **__A : Optional[Any] , ): snake_case__ : Dict = vocab_size snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Optional[int] = d_model snake_case__ : Optional[Any] = d_ff snake_case__ : int = d_ext snake_case__ : Optional[int] = d_spout snake_case__ : str = num_switch_layers snake_case__ : int = num_ext_layers snake_case__ : List[Any] = num_switch_layers + num_ext_layers snake_case__ : Union[str, Any] = num_heads snake_case__ : Any = num_experts snake_case__ : Dict = expert_capacity snake_case__ : List[Any] = dropout_rate snake_case__ : Tuple = layer_norm_epsilon snake_case__ : Union[str, Any] = router_bias snake_case__ : str = router_jitter_noise snake_case__ : List[str] = router_dtype snake_case__ : Any = router_ignore_padding_tokens snake_case__ : List[Any] = output_hidden_states snake_case__ : Union[str, Any] = output_attentions snake_case__ : Optional[int] = initializer_factor snake_case__ : Dict = output_router_logits snake_case__ : Union[str, Any] = use_cache super().__init__( separator_token_id=__A , pad_token_id=__A , eos_token_id=__A , **__A , )
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCamelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) a_ = field( default=UpperCamelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a_ = field( default=UpperCamelCase_ , metadata={"help": "The column name of the images in the files."} ) a_ = field(default=UpperCamelCase_ , metadata={"help": "A folder containing the training data."} ) a_ = field(default=UpperCamelCase_ , metadata={"help": "A folder containing the validation data."} ) a_ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _lowercase ( self : List[Any] ): snake_case__ : int = {} if self.train_dir is not None: snake_case__ : Tuple = self.train_dir if self.validation_dir is not None: snake_case__ : Dict = self.validation_dir snake_case__ : str = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) a_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a_ = field(default=UpperCamelCase_ , metadata={"help": "Name or path of preprocessor config."} ) a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a_ = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Union[str, Any] = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__, snake_case__, snake_case__ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__, snake_case__, snake_case__ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case__ : int = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case__ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. snake_case__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case__ : Dict = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: snake_case__ : Optional[Any] = ds["train"].train_test_split(data_args.train_val_split ) snake_case__ : List[Any] = split["train"] snake_case__ : List[str] = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Tuple = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: snake_case__ : Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case_ ) elif model_args.model_name_or_path: snake_case__ : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: snake_case__ : List[Any] = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: snake_case__ : Optional[int] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ ) elif model_args.model_name_or_path: snake_case__ : List[Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: snake_case__ : Optional[int] = ViTImageProcessor() # create model if model_args.model_name_or_path: snake_case__ : Optional[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) snake_case__ : Tuple = ViTMAEForPreTraining(snake_case_ ) if training_args.do_train: snake_case__ : Union[str, Any] = ds["train"].column_names else: snake_case__ : Any = ds["validation"].column_names if data_args.image_column_name is not None: snake_case__ : List[Any] = data_args.image_column_name elif "image" in column_names: snake_case__ : Tuple = "image" elif "img" in column_names: snake_case__ : List[str] = "img" else: snake_case__ : Any = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: snake_case__ : int = image_processor.size["shortest_edge"] else: snake_case__ : List[Any] = (image_processor.size["height"], image_processor.size["width"]) snake_case__ : Optional[Any] = Compose( [ Lambda(lambda snake_case_ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(snake_case_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(snake_case_ : Dict ): snake_case__ : Optional[Any] = [transforms(snake_case_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: snake_case__ : Any = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: snake_case__ : Tuple = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case_ ) # Compute absolute learning rate snake_case__ : int = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: snake_case__ : Optional[Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer snake_case__ : Optional[Any] = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: snake_case__ : Tuple = None if training_args.resume_from_checkpoint is not None: snake_case__ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case__ : Optional[int] = last_checkpoint snake_case__ : List[Any] = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case__ : int = trainer.evaluate() trainer.log_metrics("eval" , snake_case_ ) trainer.save_metrics("eval" , snake_case_ ) # Write model card and (optionally) push to hub snake_case__ : Union[str, Any] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["image_processor", "tokenizer"] a_ = "ViTImageProcessor" a_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , __A : str=None , __A : Optional[int]=None , **__A : Tuple ): snake_case__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) snake_case__ : Union[str, Any] = kwargs.pop("feature_extractor" ) snake_case__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) def __call__( self : Any , __A : Union[str, Any]=None , __A : Dict=None , __A : List[Any]=None , __A : List[Any]=None , **__A : Tuple ): if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: snake_case__ : str = self.tokenizer(__A , return_tensors=__A , **__A ) if visual_prompt is not None: snake_case__ : List[str] = self.image_processor(__A , return_tensors=__A , **__A ) if images is not None: snake_case__ : Optional[int] = self.image_processor(__A , return_tensors=__A , **__A ) if visual_prompt is not None and images is not None: snake_case__ : Union[str, Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: snake_case__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: snake_case__ : Optional[Any] = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _lowercase ( self : Optional[int] , *__A : str , **__A : Tuple ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowercase ( self : List[str] , *__A : Optional[Any] , **__A : Union[str, Any] ): return self.tokenizer.decode(*__A , **__A ) @property def _lowercase ( self : Optional[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def _lowercase ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = (PNDMScheduler,) a_ = (("num_inference_steps", 5_0),) def _lowercase ( self : Dict , **__A : Tuple ): snake_case__ : List[str] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**__A ) return config def _lowercase ( self : Optional[Any] , __A : Tuple=0 , **__A : Dict ): snake_case__ : Optional[int] = dict(self.forward_default_kwargs ) snake_case__ : List[Any] = kwargs.pop("num_inference_steps" , __A ) snake_case__ : Optional[int] = self.dummy_sample snake_case__ : List[Any] = 0.1 * sample snake_case__ : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: snake_case__ : str = self.get_scheduler_config(**__A ) snake_case__ : int = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals snake_case__ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) snake_case__ : Tuple = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals snake_case__ : List[str] = dummy_past_residuals[:] snake_case__ : int = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample snake_case__ : List[Any] = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case__ : Tuple = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample snake_case__ : int = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : Any , __A : Dict=0 , **__A : Union[str, Any] ): snake_case__ : Optional[Any] = dict(self.forward_default_kwargs ) snake_case__ : Optional[int] = kwargs.pop("num_inference_steps" , __A ) snake_case__ : List[Any] = self.dummy_sample snake_case__ : List[Any] = 0.1 * sample snake_case__ : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: snake_case__ : List[str] = self.get_scheduler_config() snake_case__ : Union[str, Any] = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) snake_case__ : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) snake_case__ : Tuple = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) snake_case__ : Optional[Any] = dummy_past_residuals[:] snake_case__ : List[str] = scheduler.step_prk(__A , __A , __A , **__A ).prev_sample snake_case__ : List[str] = new_scheduler.step_prk(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case__ : Tuple = scheduler.step_plms(__A , __A , __A , **__A ).prev_sample snake_case__ : Union[str, Any] = new_scheduler.step_plms(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self : List[str] , **__A : int ): snake_case__ : Any = self.scheduler_classes[0] snake_case__ : List[str] = self.get_scheduler_config(**__A ) snake_case__ : List[Any] = scheduler_class(**__A ) snake_case__ : Optional[int] = 1_0 snake_case__ : Dict = self.dummy_model() snake_case__ : Any = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case__ : List[str] = model(__A , __A ) snake_case__ : Union[str, Any] = scheduler.step_prk(__A , __A , __A ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case__ : List[Any] = model(__A , __A ) snake_case__ : List[Any] = scheduler.step_plms(__A , __A , __A ).prev_sample return sample def _lowercase ( self : Any ): snake_case__ : Tuple = dict(self.forward_default_kwargs ) snake_case__ : List[Any] = kwargs.pop("num_inference_steps" , __A ) for scheduler_class in self.scheduler_classes: snake_case__ : int = self.get_scheduler_config() snake_case__ : Any = scheduler_class(**__A ) snake_case__ : Optional[Any] = self.dummy_sample snake_case__ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(__A , "set_timesteps" ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A , "set_timesteps" ): snake_case__ : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case__ : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] snake_case__ : Optional[Any] = dummy_past_residuals[:] snake_case__ : Any = scheduler.step_prk(__A , 0 , __A , **__A ).prev_sample snake_case__ : Dict = scheduler.step_prk(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case__ : Dict = scheduler.step_plms(__A , 0 , __A , **__A ).prev_sample snake_case__ : Optional[Any] = scheduler.step_plms(__A , 1 , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self : Optional[Any] ): for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__A ) def _lowercase ( self : Any ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__A ) snake_case__ : Optional[Any] = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config(steps_offset=1 ) snake_case__ : str = scheduler_class(**__A ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def _lowercase ( self : Tuple ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _lowercase ( self : Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def _lowercase ( self : Any ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _lowercase ( self : int ): for t in [1, 5, 1_0]: self.check_over_forward(time_step=__A ) def _lowercase ( self : Dict ): for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__A ) def _lowercase ( self : List[str] ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 snake_case__ : List[Any] = 2_7 for scheduler_class in self.scheduler_classes: snake_case__ : List[Any] = self.dummy_sample snake_case__ : Union[str, Any] = 0.1 * sample snake_case__ : Dict = self.get_scheduler_config() snake_case__ : Dict = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case__ : Optional[int] = scheduler.step_prk(__A , __A , __A ).prev_sample def _lowercase ( self : Union[str, Any] ): with self.assertRaises(__A ): snake_case__ : Any = self.scheduler_classes[0] snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : List[str] = scheduler_class(**__A ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowercase ( self : Optional[Any] ): snake_case__ : int = self.full_loop() snake_case__ : Optional[Any] = torch.sum(torch.abs(__A ) ) snake_case__ : Any = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def _lowercase ( self : Any ): snake_case__ : Dict = self.full_loop(prediction_type="v_prediction" ) snake_case__ : List[Any] = torch.sum(torch.abs(__A ) ) snake_case__ : Optional[Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def _lowercase ( self : Dict ): # We specify different beta, so that the first alpha is 0.99 snake_case__ : List[str] = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) snake_case__ : Dict = torch.sum(torch.abs(__A ) ) snake_case__ : str = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def _lowercase ( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 snake_case__ : Union[str, Any] = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 ) snake_case__ : int = torch.sum(torch.abs(__A ) ) snake_case__ : Dict = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
import math def SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : int = 0 , snake_case_ : int = 0 ): snake_case__ : List[Any] = end or len(snake_case_ ) for i in range(snake_case_ , snake_case_ ): snake_case__ : Union[str, Any] = i snake_case__ : Optional[int] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: snake_case__ : Optional[int] = array[temp_index - 1] temp_index -= 1 snake_case__ : Any = temp_index_value return array def SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : int , snake_case_ : int ): # Max Heap snake_case__ : str = index snake_case__ : List[Any] = 2 * index + 1 # Left Node snake_case__ : Optional[Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: snake_case__ : int = left_index if right_index < heap_size and array[largest] < array[right_index]: snake_case__ : List[Any] = right_index if largest != index: snake_case__, snake_case__ : Optional[Any] = array[largest], array[index] heapify(snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : list ): snake_case__ : Any = len(snake_case_ ) for i in range(n // 2 , -1 , -1 ): heapify(snake_case_ , snake_case_ , snake_case_ ) for i in range(n - 1 , 0 , -1 ): snake_case__, snake_case__ : Dict = array[0], array[i] heapify(snake_case_ , 0 , snake_case_ ) return array def SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : int , snake_case_ : int , snake_case_ : int ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : int , snake_case_ : int , snake_case_ : int ): snake_case__ : Optional[Any] = low snake_case__ : Optional[int] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i snake_case__, snake_case__ : Union[str, Any] = array[j], array[i] i += 1 def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) == 0: return array snake_case__ : Dict = 2 * math.ceil(math.loga(len(snake_case_ ) ) ) snake_case__ : Tuple = 16 return intro_sort(snake_case_ , 0 , len(snake_case_ ) , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int ): while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case_ ) max_depth -= 1 snake_case__ : Tuple = median_of_a(snake_case_ , snake_case_ , start + ((end - start) // 2) + 1 , end - 1 ) snake_case__ : int = partition(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) intro_sort(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : List[Any] = p return insertion_sort(snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Optional[Any] = input("""Enter numbers separated by a comma : """).strip() __lowerCamelCase : int = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Dict = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = ["""GLPNFeatureExtractor"""] __lowerCamelCase : Dict = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[int] ): # Initialise PyTorch model snake_case__ : int = LxmertConfig.from_json_file(snake_case_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case__ : Union[str, Any] = LxmertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Dict = int(snake_case_ ) if decimal in (0, 1): # Exit cases for the recursion return str(snake_case_ ) snake_case__, snake_case__ : Dict = divmod(snake_case_ , 2 ) return binary_recursive(snake_case_ ) + str(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Union[str, Any] = str(snake_case_ ).strip() if not number: raise ValueError("No input value was provided" ) snake_case__ : Optional[int] = "-" if number.startswith("-" ) else "" snake_case__ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F'''{negative}0b{binary_recursive(int(snake_case_ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : List[Any]=1_3 , __A : str=7 , __A : Union[str, Any]=True , __A : Tuple=True , __A : Tuple=True , __A : Optional[Any]=True , __A : List[Any]=9_9 , __A : List[str]=[1, 1, 2] , __A : Optional[Any]=1 , __A : int=3_2 , __A : Optional[Any]=4 , __A : Optional[Any]=8 , __A : List[str]=3_7 , __A : Optional[int]="gelu_new" , __A : str=0.1 , __A : Union[str, Any]=0.1 , __A : Union[str, Any]=0.0 , __A : List[Any]=5_1_2 , __A : List[Any]=3 , __A : Optional[Any]=0.0_2 , __A : Optional[int]=3 , __A : List[str]=4 , __A : int=None , __A : Tuple=False , ): snake_case__ : List[Any] = parent snake_case__ : Optional[int] = batch_size snake_case__ : Dict = seq_length snake_case__ : Tuple = is_training snake_case__ : Dict = use_input_mask snake_case__ : Union[str, Any] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Union[str, Any] = vocab_size snake_case__ : Any = block_sizes snake_case__ : Optional[Any] = num_decoder_layers snake_case__ : Dict = d_model snake_case__ : Dict = n_head snake_case__ : Union[str, Any] = d_head snake_case__ : Dict = d_inner snake_case__ : List[str] = hidden_act snake_case__ : int = hidden_dropout snake_case__ : Any = attention_dropout snake_case__ : List[Any] = activation_dropout snake_case__ : int = max_position_embeddings snake_case__ : Any = type_vocab_size snake_case__ : List[str] = 2 snake_case__ : Union[str, Any] = num_labels snake_case__ : Dict = num_choices snake_case__ : Optional[int] = scope snake_case__ : int = initializer_std # Used in the tests to check the size of the first attention layer snake_case__ : Optional[Any] = n_head # Used in the tests to check the size of the first hidden state snake_case__ : Union[str, Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case__ : Optional[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case__ : int = self.num_hidden_layers + 2 def _lowercase ( self : List[str] ): snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : List[Any] = None snake_case__ : str = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Optional[int] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self : Optional[Any] , __A : Optional[int] , __A : Any , __A : Tuple , __A : int , __A : Dict , __A : Union[str, Any] , __A : int , ): snake_case__ : int = TFFunnelModel(config=__A ) snake_case__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : Tuple = model(__A ) snake_case__ : List[str] = [input_ids, input_mask] snake_case__ : str = model(__A ) snake_case__ : Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case__ : Optional[int] = False snake_case__ : Optional[int] = TFFunnelModel(config=__A ) snake_case__ : Dict = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case__ : Any = False snake_case__ : Any = TFFunnelModel(config=__A ) snake_case__ : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def _lowercase ( self : Optional[int] , __A : Dict , __A : List[str] , __A : List[Any] , __A : Optional[int] , __A : Union[str, Any] , __A : int , __A : List[Any] , ): snake_case__ : Any = TFFunnelBaseModel(config=__A ) snake_case__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : Optional[int] = model(__A ) snake_case__ : Optional[Any] = [input_ids, input_mask] snake_case__ : List[str] = model(__A ) snake_case__ : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) snake_case__ : List[Any] = False snake_case__ : Dict = TFFunnelBaseModel(config=__A ) snake_case__ : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) snake_case__ : str = False snake_case__ : Union[str, Any] = TFFunnelBaseModel(config=__A ) snake_case__ : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def _lowercase ( self : List[Any] , __A : List[str] , __A : int , __A : Optional[int] , __A : Dict , __A : Any , __A : Optional[Any] , __A : Dict , ): snake_case__ : List[Any] = TFFunnelForPreTraining(config=__A ) snake_case__ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : str = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : str , __A : Optional[Any] , __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] , __A : Optional[int] , __A : Dict , __A : Optional[Any] , ): snake_case__ : Union[str, Any] = TFFunnelForMaskedLM(config=__A ) snake_case__ : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : Any = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[str] , __A : List[str] , __A : Union[str, Any] , __A : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , __A : str , __A : Tuple , ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = TFFunnelForSequenceClassification(config=__A ) snake_case__ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : Optional[Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Any , __A : Optional[Any] , __A : List[Any] , __A : Any , __A : Any , __A : Any , __A : Dict , __A : Optional[Any] , ): snake_case__ : Optional[int] = self.num_choices snake_case__ : Union[str, Any] = TFFunnelForMultipleChoice(config=__A ) snake_case__ : List[str] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : str = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : int = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case__ : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[int] , __A : int , __A : Optional[int] , __A : Dict , __A : str , __A : List[Any] , __A : Optional[int] , __A : List[str] , ): snake_case__ : List[str] = self.num_labels snake_case__ : str = TFFunnelForTokenClassification(config=__A ) snake_case__ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : Any = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , __A : Tuple , __A : List[Any] , __A : Union[str, Any] , __A : Dict , __A : Dict , __A : Dict , __A : Dict , ): snake_case__ : int = TFFunnelForQuestionAnswering(config=__A ) snake_case__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : int = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : int ): snake_case__ : Tuple = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : Tuple = config_and_inputs snake_case__ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def _lowercase ( self : Dict ): snake_case__ : Dict = TFFunnelModelTester(self ) snake_case__ : List[Any] = ConfigTester(self , config_class=__A ) def _lowercase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _lowercase ( self : List[str] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def _lowercase ( self : int ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : Tuple ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a_ = False a_ = False def _lowercase ( self : Any ): snake_case__ : Any = TFFunnelModelTester(self , base=__A ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : List[str] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[Any] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__A ) def _lowercase ( self : List[Any] ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Any ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A )
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if n == 1 or not isinstance(snake_case_ , snake_case_ ): return 0 elif n == 2: return 1 else: snake_case__ : Dict = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Optional[Any] = 0 snake_case__ : List[str] = 2 while digits < n: index += 1 snake_case__ : Union[str, Any] = len(str(fibonacci(snake_case_ ) ) ) return index def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000 ): return fibonacci_digits_index(snake_case_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" @register_to_config def __init__( self : int , __A : int = 3_2 , __A : int = 6_4 , __A : int = 2_0 , __A : int = 7_6_8 , __A : Dict=7_7 , __A : Any=4 , __A : float = 0.0 , __A : str = "silu" , __A : Optional[str] = None , __A : Optional[str] = None , __A : Optional[str] = "linear" , __A : Optional[str] = "prd" , __A : Optional[int] = None , __A : Optional[int] = None , __A : Optional[int] = None , ): super().__init__() snake_case__ : Dict = num_attention_heads snake_case__ : Any = attention_head_dim snake_case__ : Union[str, Any] = num_attention_heads * attention_head_dim snake_case__ : Optional[Any] = additional_embeddings snake_case__ : Tuple = time_embed_dim or inner_dim snake_case__ : Optional[int] = embedding_proj_dim or embedding_dim snake_case__ : Dict = clip_embed_dim or embedding_dim snake_case__ : List[Any] = Timesteps(__A , __A , 0 ) snake_case__ : int = TimestepEmbedding(__A , __A , out_dim=__A , act_fn=__A ) snake_case__ : List[str] = nn.Linear(__A , __A ) if embedding_proj_norm_type is None: snake_case__ : int = None elif embedding_proj_norm_type == "layer": snake_case__ : int = nn.LayerNorm(__A ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) snake_case__ : List[str] = nn.Linear(__A , __A ) if encoder_hid_proj_type is None: snake_case__ : str = None elif encoder_hid_proj_type == "linear": snake_case__ : Optional[Any] = nn.Linear(__A , __A ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) snake_case__ : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __A ) ) if added_emb_type == "prd": snake_case__ : int = nn.Parameter(torch.zeros(1 , 1 , __A ) ) elif added_emb_type is None: snake_case__ : Tuple = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) snake_case__ : List[str] = nn.ModuleList( [ BasicTransformerBlock( __A , __A , __A , dropout=__A , activation_fn="gelu" , attention_bias=__A , ) for d in range(__A ) ] ) if norm_in_type == "layer": snake_case__ : Any = nn.LayerNorm(__A ) elif norm_in_type is None: snake_case__ : str = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) snake_case__ : Optional[int] = nn.LayerNorm(__A ) snake_case__ : Optional[Any] = nn.Linear(__A , __A ) snake_case__ : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) snake_case__ : int = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , __A , persistent=__A ) snake_case__ : Tuple = nn.Parameter(torch.zeros(1 , __A ) ) snake_case__ : Union[str, Any] = nn.Parameter(torch.zeros(1 , __A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _lowercase ( self : int ): snake_case__ : Tuple = {} def fn_recursive_add_processors(__A : str , __A : torch.nn.Module , __A : Dict[str, AttentionProcessor] ): if hasattr(__A , "set_processor" ): snake_case__ : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __A , __A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__A , __A , __A ) return processors def _lowercase ( self : Any , __A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): snake_case__ : int = len(self.attn_processors.keys() ) if isinstance(__A , __A ) and len(__A ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__A )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__A : str , __A : torch.nn.Module , __A : Dict ): if hasattr(__A , "set_processor" ): if not isinstance(__A , __A ): module.set_processor(__A ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __A , __A ) for name, module in self.named_children(): fn_recursive_attn_processor(__A , __A , __A ) def _lowercase ( self : str ): self.set_attn_processor(AttnProcessor() ) def _lowercase ( self : str , __A : Any , __A : Union[torch.Tensor, float, int] , __A : torch.FloatTensor , __A : Optional[torch.FloatTensor] = None , __A : Optional[torch.BoolTensor] = None , __A : bool = True , ): snake_case__ : List[str] = hidden_states.shape[0] snake_case__ : int = timestep if not torch.is_tensor(__A ): snake_case__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__A ) and len(timesteps.shape ) == 0: snake_case__ : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ : Optional[Any] = timesteps * torch.ones(__A , dtype=timesteps.dtype , device=timesteps.device ) snake_case__ : Any = self.time_proj(__A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. snake_case__ : int = timesteps_projected.to(dtype=self.dtype ) snake_case__ : List[str] = self.time_embedding(__A ) if self.embedding_proj_norm is not None: snake_case__ : List[str] = self.embedding_proj_norm(__A ) snake_case__ : str = self.embedding_proj(__A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: snake_case__ : Any = self.encoder_hidden_states_proj(__A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) snake_case__ : List[str] = self.proj_in(__A ) snake_case__ : Union[str, Any] = self.positional_embedding.to(hidden_states.dtype ) snake_case__ : Optional[int] = [] snake_case__ : Dict = 0 if encoder_hidden_states is not None: additional_embeds.append(__A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: snake_case__ : Tuple = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: snake_case__ : Dict = hidden_states[:, None, :] snake_case__ : Any = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: snake_case__ : Any = self.prd_embedding.to(hidden_states.dtype ).expand(__A , -1 , -1 ) additional_embeds.append(__A ) snake_case__ : Dict = torch.cat( __A , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens snake_case__ : List[Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: snake_case__ : Union[str, Any] = F.pad( __A , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) snake_case__ : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: snake_case__ : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 snake_case__ : Tuple = F.pad(__A , (0, self.additional_embeddings) , value=0.0 ) snake_case__ : Dict = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) snake_case__ : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: snake_case__ : Optional[int] = self.norm_in(__A ) for block in self.transformer_blocks: snake_case__ : Union[str, Any] = block(__A , attention_mask=__A ) snake_case__ : Optional[int] = self.norm_out(__A ) if self.prd_embedding is not None: snake_case__ : Dict = hidden_states[:, -1] else: snake_case__ : Optional[int] = hidden_states[:, additional_embeddings_len:] snake_case__ : Union[str, Any] = self.proj_to_clip_embeddings(__A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__A ) def _lowercase ( self : Any , __A : Optional[int] ): snake_case__ : List[str] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Any ): snake_case__ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__A , "num_attention_heads" ) ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Any , __A : Optional[int] , __A : Dict=1_3 , __A : Union[str, Any]=6_4 , __A : int=3 , __A : List[str]=3 , __A : Optional[Any]=2 , __A : Dict=1 , __A : Optional[int]=1_6 , __A : Any=[1_2_8, 2_5_6, 3_8_4] , __A : List[str]=[4, 6, 8] , __A : Optional[Any]=[2, 3, 4] , __A : str=[1_6, 1_6, 1_6] , __A : Dict=0 , __A : Dict=[2, 2, 2] , __A : Dict=[2, 2, 2] , __A : Dict=0.0_2 , __A : Dict=True , __A : Dict=True , __A : str=2 , ): snake_case__ : Optional[Any] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : List[Any] = image_size snake_case__ : Tuple = num_channels snake_case__ : int = kernel_size snake_case__ : Dict = stride snake_case__ : Union[str, Any] = padding snake_case__ : int = hidden_sizes snake_case__ : List[str] = num_attention_heads snake_case__ : int = depths snake_case__ : Optional[Any] = key_dim snake_case__ : Dict = drop_path_rate snake_case__ : Union[str, Any] = patch_size snake_case__ : str = attention_ratio snake_case__ : Union[str, Any] = mlp_ratio snake_case__ : Optional[Any] = initializer_range snake_case__ : Optional[Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] snake_case__ : Union[str, Any] = is_training snake_case__ : Dict = use_labels snake_case__ : List[Any] = num_labels snake_case__ : Dict = initializer_range def _lowercase ( self : Tuple ): snake_case__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Tuple = None if self.use_labels: snake_case__ : int = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Dict = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _lowercase ( self : Dict , __A : int , __A : List[str] , __A : List[str] ): snake_case__ : Any = LevitModel(config=__A ) model.to(__A ) model.eval() snake_case__ : Optional[int] = model(__A ) snake_case__ : Optional[int] = (self.image_size, self.image_size) snake_case__, snake_case__ : Any = image_size[0], image_size[1] for _ in range(4 ): snake_case__ : List[str] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) snake_case__ : str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _lowercase ( self : Dict , __A : Tuple , __A : Optional[int] , __A : Optional[Any] ): snake_case__ : Tuple = self.num_labels snake_case__ : Optional[Any] = LevitForImageClassification(__A ) model.to(__A ) model.eval() snake_case__ : Dict = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[Any] ): snake_case__ : Any = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__ : Dict = config_and_inputs snake_case__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) a_ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : Any ): snake_case__ : str = LevitModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowercase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Optional[int] ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _lowercase ( self : Dict ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _lowercase ( self : str ): pass @unittest.skip(reason="Levit does not output attentions" ) def _lowercase ( self : Optional[int] ): pass def _lowercase ( self : int ): snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__A ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _lowercase ( self : Tuple ): def check_hidden_states_output(__A : Any , __A : Dict , __A : Any ): snake_case__ : int = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : Optional[Any] = outputs.hidden_states snake_case__ : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(__A ) , __A ) snake_case__ : Dict = (self.model_tester.image_size, self.model_tester.image_size) snake_case__, snake_case__ : str = image_size[0], image_size[1] for _ in range(4 ): snake_case__ : Dict = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) snake_case__ : Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(__A , __A , __A ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self : Tuple ): pass def _lowercase ( self : List[str] , __A : str , __A : Optional[int] , __A : Optional[int]=False ): snake_case__ : Optional[Any] = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowercase ( self : List[str] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Tuple ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def _lowercase ( self : List[Any] ): if not self.model_tester.is_training: return snake_case__, snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue snake_case__ : List[str] = model_class(__A ) model.to(__A ) model.train() snake_case__ : Dict = self._prepare_for_class(__A , __A , return_labels=__A ) snake_case__ : Tuple = model(**__A ).loss loss.backward() def _lowercase ( self : Tuple ): snake_case__, snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case__ : str = False snake_case__ : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue snake_case__ : Union[str, Any] = model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() snake_case__ : int = self._prepare_for_class(__A , __A , return_labels=__A ) snake_case__ : Tuple = model(**__A ).loss loss.backward() def _lowercase ( self : Dict ): snake_case__, snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ): snake_case__ : Optional[Any] = problem_type["title"] snake_case__ : str = problem_type["num_labels"] snake_case__ : int = model_class(__A ) model.to(__A ) model.train() snake_case__ : Optional[int] = self._prepare_for_class(__A , __A , return_labels=__A ) if problem_type["num_labels"] > 1: snake_case__ : Optional[int] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) snake_case__ : List[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: snake_case__ : List[str] = model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _lowercase ( self : List[str] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : int = LevitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) snake_case__ : Any = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(**__A ) # verify the logits snake_case__ : Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
import math def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( snake_case_ : float = 0.1 ): snake_case__ : Dict = 3 snake_case__ : Any = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(snake_case_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Tuple = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ): if start is None: snake_case__ : Tuple = 0 if end is None: snake_case__ : List[str] = len(snake_case_ ) - 1 if start >= end: return snake_case__ : int = (start + end) // 2 slowsort(snake_case_ , snake_case_ , snake_case_ ) slowsort(snake_case_ , mid + 1 , snake_case_ ) if sequence[end] < sequence[mid]: snake_case__, snake_case__ : Union[str, Any] = sequence[mid], sequence[end] slowsort(snake_case_ , snake_case_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : int ): snake_case__ : List[str] = 0 snake_case__ : List[str] = len(snake_case_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case__ : Optional[Any] = i + 1 else: snake_case__ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) snake_case__ : Any = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) snake_case__ : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) snake_case__ : int = CLIPTextModel(__A ) snake_case__ : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case__ : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self : Union[str, Any] , __A : Dict , __A : Optional[Any]=0 ): snake_case__ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A ) snake_case__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : int = Image.fromarray(np.uinta(__A ) ).convert("RGB" ) if str(__A ).startswith("mps" ): snake_case__ : List[Any] = torch.manual_seed(__A ) else: snake_case__ : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def _lowercase ( self : Dict ): snake_case__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : int = self.get_dummy_components() snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = self.get_dummy_inputs(__A ) snake_case__ : List[str] = sd_pipe(**__A ).images snake_case__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : int = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Tuple ): snake_case__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : Optional[int] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : int = self.get_dummy_inputs(__A ) snake_case__ : Optional[int] = "french fries" snake_case__ : List[Any] = sd_pipe(**__A , negative_prompt=__A ) snake_case__ : str = output.images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Any = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : int ): snake_case__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = self.get_dummy_inputs(__A ) snake_case__ : Optional[Any] = [inputs["prompt"]] * 2 snake_case__ : List[Any] = np.array(inputs["image"] ).astype(np.floataa ) / 2_5_5.0 snake_case__ : Tuple = torch.from_numpy(__A ).unsqueeze(0 ).to(__A ) snake_case__ : List[str] = image / 2 + 0.5 snake_case__ : List[Any] = image.permute(0 , 3 , 1 , 2 ) snake_case__ : str = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : str = sd_pipe(**__A ).images snake_case__ : List[Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) snake_case__ : Union[str, Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : List[str] ): snake_case__ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : Any = self.get_dummy_components() snake_case__ : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" ) snake_case__ : Optional[int] = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : Tuple = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : int = self.get_dummy_inputs(__A ) snake_case__ : Dict = sd_pipe(**__A ).images snake_case__ : int = image[0, -3:, -3:, -1] snake_case__ : Tuple = [round(__A , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(__A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Union[str, Any] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowercase ( self : int ): snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : List[Any] = VaeImageProcessor(do_resize=__A , do_normalize=__A ) snake_case__ : Optional[int] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = pipe(**self.get_dummy_inputs_by_type(__A , input_image_type="pt" ) )[0] snake_case__ : List[str] = components["vae"] snake_case__ : List[str] = self.get_dummy_inputs_by_type(__A , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : int = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : List[str] = pipe(**__A )[0] snake_case__ : Optional[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(__A , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] , __A : Union[str, Any]=0 ): snake_case__ : List[str] = torch.manual_seed(__A ) snake_case__ : int = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) snake_case__ : Any = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def _lowercase ( self : Dict ): snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : List[str] = self.get_inputs() snake_case__ : List[Any] = pipe(**__A ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Union[str, Any] = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : Any ): snake_case__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) snake_case__ : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Optional[Any] = self.get_inputs() snake_case__ : str = pipe(**__A ).images snake_case__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Union[str, Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : Dict ): snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) snake_case__ : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : List[str] = self.get_inputs() snake_case__ : List[str] = pipe(**__A ).images snake_case__ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[int] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : Optional[int] ): snake_case__ : Optional[Any] = 0 def callback_fn(__A : int , __A : int , __A : torch.FloatTensor ) -> None: snake_case__ : Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : List[str] = latents[0, -3:, -3:, -1] snake_case__ : int = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case__ : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : List[str] = latents[0, -3:, -3:, -1] snake_case__ : List[str] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case__ : Union[str, Any] = False snake_case__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A , torch_dtype=torch.floataa ) snake_case__ : List[Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Optional[int] = self.get_inputs() pipe(**__A , callback=__A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowercase ( self : Tuple ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A , torch_dtype=torch.floataa ) snake_case__ : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : Optional[Any] = self.get_inputs() snake_case__ : Dict = pipe(**__A ) snake_case__ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def _lowercase ( self : int ): snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Optional[Any] = inputs["image"].resize((5_0_4, 5_0_4) ) snake_case__ : List[str] = "timbrooks/instruct-pix2pix" snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = pipe(**__A ) snake_case__ : Union[str, Any] = output.images[0] snake_case__ : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) snake_case__ : Optional[int] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self : int ): snake_case__ : Any = 1 snake_case__ : Dict = 3 snake_case__ : Union[str, Any] = (3_2, 3_2) snake_case__ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__A ) return image @property def _lowercase ( self : List[str] ): torch.manual_seed(0 ) snake_case__ : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowercase ( self : Optional[Any] ): torch.manual_seed(0 ) snake_case__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(__A ) @property def _lowercase ( self : int ): def extract(*__A : str , **__A : List[str] ): class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] ): snake_case__ : str = torch.ones([0] ) def _lowercase ( self : Any , __A : str ): self.pixel_values.to(__A ) return self return Out() return extract def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[Any] = self.dummy_cond_unet snake_case__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__A , set_alpha_to_one=__A , ) snake_case__ : Dict = self.dummy_vae snake_case__ : Union[str, Any] = self.dummy_text_encoder snake_case__ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk snake_case__ : Dict = StableDiffusionPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) snake_case__ : Any = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = "A painting of a squirrel eating a burger" snake_case__ : Optional[int] = torch.Generator(device=__A ).manual_seed(0 ) snake_case__ : Optional[Any] = sd_pipe([prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) snake_case__ : int = output.images snake_case__ : Dict = torch.Generator(device=__A ).manual_seed(0 ) snake_case__ : int = sd_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__A , )[0] snake_case__ : Tuple = image[0, -3:, -3:, -1] snake_case__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : int = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Dict ): snake_case__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : Any = self.dummy_cond_unet snake_case__ : List[Any] = PNDMScheduler(skip_prk_steps=__A ) snake_case__ : List[Any] = self.dummy_vae snake_case__ : Tuple = self.dummy_text_encoder snake_case__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk snake_case__ : Dict = StableDiffusionPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) snake_case__ : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : List[str] = "A painting of a squirrel eating a burger" snake_case__ : Union[str, Any] = torch.Generator(device=__A ).manual_seed(0 ) snake_case__ : Optional[int] = sd_pipe([prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) snake_case__ : Tuple = output.images snake_case__ : int = torch.Generator(device=__A ).manual_seed(0 ) snake_case__ : str = sd_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__A , )[0] snake_case__ : List[str] = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Dict = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : str ): snake_case__ : Dict = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=__A ) assert isinstance(__A , __A ) assert isinstance(pipe.scheduler , __A ) assert pipe.safety_checker is None snake_case__ : List[str] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) snake_case__ : Optional[int] = StableDiffusionPipeline.from_pretrained(__A ) # sanity check that the pipeline still works assert pipe.safety_checker is None snake_case__ : Dict = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = self.dummy_cond_unet snake_case__ : List[str] = PNDMScheduler(skip_prk_steps=__A ) snake_case__ : List[Any] = self.dummy_vae snake_case__ : Union[str, Any] = self.dummy_text_encoder snake_case__ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 snake_case__ : List[Any] = unet.half() snake_case__ : Dict = vae.half() snake_case__ : str = bert.half() # make sure here that pndm scheduler skips prk snake_case__ : Dict = StableDiffusionPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) snake_case__ : Tuple = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : List[str] = "A painting of a squirrel eating a burger" snake_case__ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[Any] ): snake_case__ : Dict = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__A ) snake_case__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) snake_case__ : Dict = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Optional[int] = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) snake_case__ : Optional[int] = 4_0_0_3_6_6_0_3_4_6 snake_case__ : Tuple = 7 # without safety guidance (sld_guidance_scale = 0) snake_case__ : Optional[Any] = torch.manual_seed(__A ) snake_case__ : Optional[int] = sd_pipe( [prompt] , generator=__A , guidance_scale=__A , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) snake_case__ : Dict = output.images snake_case__ : List[Any] = image[0, -3:, -3:, -1] snake_case__ : Tuple = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) snake_case__ : Any = torch.manual_seed(__A ) snake_case__ : Dict = sd_pipe( [prompt] , generator=__A , guidance_scale=__A , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) snake_case__ : List[str] = output.images snake_case__ : Any = image[0, -3:, -3:, -1] snake_case__ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Tuple ): snake_case__ : Any = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__A ) snake_case__ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) snake_case__ : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Optional[Any] = "padme amidala taking a bath artwork, safe for work, no nudity" snake_case__ : Any = 2_7_3_4_9_7_1_7_5_5 snake_case__ : List[Any] = 7 snake_case__ : int = torch.manual_seed(__A ) snake_case__ : Any = sd_pipe( [prompt] , generator=__A , guidance_scale=__A , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) snake_case__ : List[Any] = output.images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 snake_case__ : Dict = torch.manual_seed(__A ) snake_case__ : str = sd_pipe( [prompt] , generator=__A , guidance_scale=__A , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) snake_case__ : Optional[int] = output.images snake_case__ : Dict = image[0, -3:, -3:, -1] snake_case__ : Any = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : int ): snake_case__ : str = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) snake_case__ : Any = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Union[str, Any] = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) snake_case__ : Any = 1_0_4_4_3_5_5_2_3_4 snake_case__ : List[str] = 1_2 snake_case__ : Dict = torch.manual_seed(__A ) snake_case__ : List[str] = sd_pipe( [prompt] , generator=__A , guidance_scale=__A , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) snake_case__ : List[Any] = output.images snake_case__ : Any = image[0, -3:, -3:, -1] snake_case__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 snake_case__ : Tuple = torch.manual_seed(__A ) snake_case__ : Any = sd_pipe( [prompt] , generator=__A , guidance_scale=__A , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) snake_case__ : Optional[Any] = output.images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] snake_case__ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
from pathlib import Path import fire def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : int ): snake_case__ : Tuple = Path(snake_case_ ) snake_case__ : Optional[Any] = Path(snake_case_ ) dest_dir.mkdir(exist_ok=snake_case_ ) for path in src_dir.iterdir(): snake_case__ : Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case__ : Optional[int] = dest_dir.joinpath(path.name ) print(snake_case_ ) dest_path.open("w" ).write("\n".join(snake_case_ ) ) if __name__ == "__main__": fire.Fire(minify)
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
from string import ascii_uppercase __lowerCamelCase : List[Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): if isinstance(snake_case_ , snake_case_ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(snake_case_ , snake_case_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(snake_case_ , snake_case_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) snake_case__ : Union[str, Any] = "" snake_case__ : List[Any] = 0 snake_case__ : str = 0 while div != 1: snake_case__, snake_case__ : Optional[Any] = divmod(snake_case_ , snake_case_ ) if base >= 11 and 9 < mod < 36: snake_case__ : Union[str, Any] = ALPHABET_VALUES[str(snake_case_ )] else: snake_case__ : Optional[Any] = str(snake_case_ ) new_value += actual_value snake_case__ : Any = num // base snake_case__ : Any = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(snake_case_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Tuple ): snake_case__ : Tuple = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] snake_case__ : str = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } snake_case__ : Tuple = F'''{src_lang}-{tgt_lang}''' snake_case__ : Any = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(snake_case_ , exist_ok=snake_case_ ) snake_case__ : Any = os.path.join(snake_case_ , "README.md" ) print(F'''Generating {path}''' ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(snake_case_ ) # make sure we are under the root of the project __lowerCamelCase : Optional[int] = Path(__file__).resolve().parent.parent.parent __lowerCamelCase : List[Any] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = model_name.split("""-""") __lowerCamelCase : int = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from ...configuration_utils import PretrainedConfig __lowerCamelCase : str = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "tapas" def __init__( self : Any , __A : str=3_0_5_2_2 , __A : Optional[Any]=7_6_8 , __A : Optional[Any]=1_2 , __A : Tuple=1_2 , __A : Optional[Any]=3_0_7_2 , __A : Optional[Any]="gelu" , __A : Optional[int]=0.1 , __A : Dict=0.1 , __A : Optional[Any]=1_0_2_4 , __A : Optional[Any]=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , __A : List[Any]=0.0_2 , __A : Union[str, Any]=1e-1_2 , __A : List[Any]=0 , __A : Dict=1_0.0 , __A : Optional[int]=0 , __A : Dict=1.0 , __A : int=None , __A : Dict=1.0 , __A : Dict=False , __A : List[str]=None , __A : List[Any]=1.0 , __A : Dict=1.0 , __A : str=False , __A : Optional[Any]=False , __A : List[str]="ratio" , __A : List[Any]=None , __A : str=None , __A : Dict=6_4 , __A : int=3_2 , __A : int=False , __A : Dict=True , __A : List[str]=False , __A : Dict=False , __A : Dict=True , __A : Dict=False , __A : str=None , __A : int=None , **__A : int , ): super().__init__(pad_token_id=__A , **__A ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) snake_case__ : Optional[int] = vocab_size snake_case__ : int = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Tuple = num_attention_heads snake_case__ : str = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : Optional[int] = type_vocab_sizes snake_case__ : Optional[Any] = initializer_range snake_case__ : Tuple = layer_norm_eps # Fine-tuning task hyperparameters snake_case__ : int = positive_label_weight snake_case__ : Any = num_aggregation_labels snake_case__ : Optional[int] = aggregation_loss_weight snake_case__ : Optional[int] = use_answer_as_supervision snake_case__ : int = answer_loss_importance snake_case__ : Optional[int] = use_normalized_answer_loss snake_case__ : Optional[Any] = huber_loss_delta snake_case__ : int = temperature snake_case__ : Any = aggregation_temperature snake_case__ : List[str] = use_gumbel_for_cells snake_case__ : Optional[int] = use_gumbel_for_aggregation snake_case__ : int = average_approximation_function snake_case__ : Optional[int] = cell_selection_preference snake_case__ : Any = answer_loss_cutoff snake_case__ : int = max_num_rows snake_case__ : List[Any] = max_num_columns snake_case__ : int = average_logits_per_cell snake_case__ : Union[str, Any] = select_one_column snake_case__ : str = allow_empty_column_selection snake_case__ : List[str] = init_cell_selection_weights_to_zero snake_case__ : Optional[Any] = reset_position_index_per_cell snake_case__ : Optional[int] = disable_per_token_loss # Aggregation hyperparameters snake_case__ : Tuple = aggregation_labels snake_case__ : Any = no_aggregation_label_index if isinstance(self.aggregation_labels , __A ): snake_case__ : str = {int(__A ): v for k, v in aggregation_labels.items()}
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] ): snake_case__ : Any = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) snake_case__ : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("sample_euler" ) snake_case__ : Optional[int] = "A painting of a squirrel eating a burger" snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) snake_case__ : str = output.images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Union[str, Any] = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Any ): snake_case__ : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) snake_case__ : str = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("sample_euler" ) snake_case__ : Dict = "A painting of a squirrel eating a burger" snake_case__ : Tuple = torch.manual_seed(0 ) snake_case__ : int = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) snake_case__ : Any = output.images snake_case__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Any = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _lowercase ( self : Dict ): snake_case__ : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) snake_case__ : List[Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) snake_case__ : int = "A painting of a squirrel eating a burger" snake_case__ : str = torch.manual_seed(0 ) snake_case__ : Optional[Any] = sd_pipe( [prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=1_5 , output_type="np" , use_karras_sigmas=__A , ) snake_case__ : Dict = output.images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Any = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] , __A : List[Any] , __A : Optional[int]=1_3 , __A : Optional[int]=7 , __A : Optional[Any]=True , __A : int=True , __A : Optional[Any]=True , __A : Dict=True , __A : Tuple=9_9 , __A : Optional[Any]=1_6 , __A : Dict=3_6 , __A : Optional[Any]=6 , __A : List[Any]=6 , __A : Tuple=6 , __A : Any=3_7 , __A : Optional[Any]="gelu" , __A : Tuple=0.1 , __A : int=0.1 , __A : List[Any]=5_1_2 , __A : Tuple=1_6 , __A : List[Any]=2 , __A : Any=0.0_2 , __A : int=3 , __A : Any=4 , __A : int=None , ): snake_case__ : Dict = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[str] = seq_length snake_case__ : List[str] = is_training snake_case__ : Optional[int] = use_input_mask snake_case__ : List[Any] = use_token_type_ids snake_case__ : List[Any] = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : Optional[int] = embedding_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : List[Any] = num_hidden_groups snake_case__ : Any = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : str = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : int = type_sequence_label_size snake_case__ : int = initializer_range snake_case__ : List[str] = num_labels snake_case__ : Optional[int] = num_choices snake_case__ : Tuple = scope def _lowercase ( self : List[Any] ): snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Dict = None if self.use_input_mask: snake_case__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : int = None if self.use_token_type_ids: snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : List[Any] = None snake_case__ : str = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Optional[Any] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowercase ( self : Dict , __A : Dict , __A : List[Any] , __A : Tuple , __A : Tuple , __A : Union[str, Any] , __A : Dict , __A : str ): snake_case__ : List[str] = AlbertModel(config=__A ) model.to(__A ) model.eval() snake_case__ : Dict = model(__A , attention_mask=__A , token_type_ids=__A ) snake_case__ : List[str] = model(__A , token_type_ids=__A ) snake_case__ : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self : Any , __A : Dict , __A : Optional[Any] , __A : Optional[Any] , __A : Dict , __A : Union[str, Any] , __A : Optional[int] , __A : Dict ): snake_case__ : List[Any] = AlbertForPreTraining(config=__A ) model.to(__A ) model.eval() snake_case__ : str = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , sentence_order_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowercase ( self : List[Any] , __A : int , __A : str , __A : Optional[Any] , __A : str , __A : List[str] , __A : int , __A : str ): snake_case__ : Any = AlbertForMaskedLM(config=__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[str] , __A : int , __A : int , __A : Optional[int] , __A : Optional[int] , __A : Dict , __A : str , __A : int ): snake_case__ : List[str] = AlbertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() snake_case__ : List[Any] = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Optional[Any] , __A : Tuple , __A : Any , __A : Tuple , __A : Optional[int] , __A : Dict , __A : int , __A : Any ): snake_case__ : Any = self.num_labels snake_case__ : str = AlbertForSequenceClassification(__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : List[str] , __A : str , __A : Union[str, Any] , __A : int , __A : Union[str, Any] ): snake_case__ : List[str] = self.num_labels snake_case__ : Optional[int] = AlbertForTokenClassification(config=__A ) model.to(__A ) model.eval() snake_case__ : Tuple = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : str , __A : Optional[int] , __A : Any , __A : Tuple , __A : Union[str, Any] , __A : Optional[Any] , __A : str , __A : int ): snake_case__ : str = self.num_choices snake_case__ : Union[str, Any] = AlbertForMultipleChoice(config=__A ) model.to(__A ) model.eval() snake_case__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[Any] = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : Union[str, Any] = config_and_inputs snake_case__ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a_ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) a_ = True def _lowercase ( self : Union[str, Any] , __A : List[str] , __A : Tuple , __A : Union[str, Any]=False ): snake_case__ : Optional[Any] = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): snake_case__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) snake_case__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _lowercase ( self : Union[str, Any] ): snake_case__ : int = AlbertModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : str ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : List[Any] ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def _lowercase ( self : List[str] ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : List[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def _lowercase ( self : Tuple ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def _lowercase ( self : Dict ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : List[str] = type self.model_tester.create_and_check_model(*__A ) @slow def _lowercase ( self : str ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = AlbertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Any ): snake_case__ : Optional[int] = AlbertModel.from_pretrained("albert-base-v2" ) snake_case__ : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) snake_case__ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : Any = model(__A , attention_mask=__A )[0] snake_case__ : str = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __A ) snake_case__ : List[str] = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): snake_case__ : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__, snake_case__ : Optional[Any] = emb.weight.shape snake_case__ : int = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) snake_case__ : List[Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Union[str, Any]="facebook/mbart-large-en-ro" , snake_case_ : List[Any]=False , snake_case_ : List[Any]=False ): snake_case__ : List[str] = torch.load(snake_case_ , map_location="cpu" )["model"] remove_ignore_keys_(snake_case_ ) snake_case__ : Optional[Any] = state_dict["encoder.embed_tokens.weight"].shape[0] snake_case__ : Optional[Any] = MBartConfig.from_pretrained(snake_case_ , vocab_size=snake_case_ ) if mbart_aa and finetuned: snake_case__ : Any = "relu" snake_case__ : Optional[Any] = state_dict["decoder.embed_tokens.weight"] snake_case__ : Dict = MBartForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ ) if finetuned: snake_case__ : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") __lowerCamelCase : Optional[int] = parser.parse_args() __lowerCamelCase : Union[str, Any] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __lowerCamelCase : str = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } __lowerCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Tuple=False ): snake_case__, snake_case__ : Any = create_model( "HTSAT-tiny" , "roberta" , snake_case_ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=snake_case_ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): snake_case__ : Any = {} snake_case__ : Optional[Any] = R".*sequential.(\d+).*" snake_case__ : Optional[Any] = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : Dict = key.replace(snake_case_ , snake_case_ ) if re.match(snake_case_ , snake_case_ ): # replace sequential layers with list snake_case__ : Tuple = re.match(snake_case_ , snake_case_ ).group(1 ) snake_case__ : Union[str, Any] = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(snake_case_ )//3}.linear.''' ) elif re.match(snake_case_ , snake_case_ ): snake_case__ : str = int(re.match(snake_case_ , snake_case_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case__ : Union[str, Any] = 1 if projecton_layer == 0 else 2 snake_case__ : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case__ : int = value snake_case__ : Optional[Any] = mixed_qkv.size(0 ) // 3 snake_case__ : List[Any] = mixed_qkv[:qkv_dim] snake_case__ : Union[str, Any] = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case__ : Optional[Any] = mixed_qkv[qkv_dim * 2 :] snake_case__ : List[str] = query_layer snake_case__ : Optional[int] = key_layer snake_case__ : List[Any] = value_layer else: snake_case__ : Tuple = value return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=False ): snake_case__, snake_case__ : List[Any] = init_clap(snake_case_ , enable_fusion=snake_case_ ) clap_model.eval() snake_case__ : List[Any] = clap_model.state_dict() snake_case__ : List[Any] = rename_state_dict(snake_case_ ) snake_case__ : str = ClapConfig() snake_case__ : Optional[Any] = enable_fusion snake_case__ : str = ClapModel(snake_case_ ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case_ , strict=snake_case_ ) model.save_pretrained(snake_case_ ) transformers_config.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") __lowerCamelCase : Optional[int] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
from __future__ import annotations import typing from collections import Counter def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(snake_case_ , max_perimeter + 1 ): snake_case__ : str = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case_ ): snake_case__ : List[str] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000 ): snake_case__ : List[str] = pythagorean_triple(snake_case_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCamelCase : List[str] = 16 __lowerCamelCase : Any = 32 def SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" ): snake_case__ : List[Any] = AutoTokenizer.from_pretrained(snake_case_ ) snake_case__ : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(snake_case_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : Tuple = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(snake_case_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) snake_case__ : List[str] = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : int ): # Initialize accelerator snake_case__ : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Union[str, Any] = config["lr"] snake_case__ : Optional[int] = int(config["num_epochs"] ) snake_case__ : Dict = int(config["seed"] ) snake_case__ : str = int(config["batch_size"] ) snake_case__ : Dict = args.model_name_or_path set_seed(snake_case_ ) snake_case__, snake_case__ : Optional[Any] = get_dataloaders(snake_case_ , snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Tuple = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer snake_case__ : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ : int = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: snake_case__ : str = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ : List[Any] = 1 snake_case__ : Tuple = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ : List[str] = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: snake_case__ : List[Any] = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : Any = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over snake_case__ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ : str = 0 # Now we train the model snake_case__ : int = evaluate.load("glue" , "mrpc" ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = {} for epoch in range(snake_case_ , snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): snake_case__ : str = model(**snake_case_ ) snake_case__ : Optional[Any] = outputs.loss snake_case__ : Dict = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case__ : Dict = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Optional[int] = model(**snake_case_ ) snake_case__ : Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__, snake_case__ : Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case_ ) - 1: snake_case__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ : List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) snake_case__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , snake_case_ ) snake_case__ : str = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: snake_case__ : List[str] = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=snake_case_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--output_dir" , type=snake_case_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=snake_case_ , default=snake_case_ , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=snake_case_ , default=3 , help="Number of train epochs." , ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : str = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
from __future__ import annotations from collections.abc import Callable __lowerCamelCase : Union[str, Any] = list[list[float | int]] def SCREAMING_SNAKE_CASE ( snake_case_ : Matrix , snake_case_ : Matrix ): snake_case__ : int = len(snake_case_ ) snake_case__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] snake_case__ : int snake_case__ : int snake_case__ : int snake_case__ : int snake_case__ : int snake_case__ : float for row in range(snake_case_ ): for col in range(snake_case_ ): snake_case__ : Union[str, Any] = matrix[row][col] snake_case__ : Any = vector[row][0] snake_case__ : Any = 0 snake_case__ : Optional[Any] = 0 while row < size and col < size: # pivoting snake_case__ : Union[str, Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_ , snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: snake_case__, snake_case__ : List[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , snake_case_ ): snake_case__ : Dict = augmented[rowa][col] / augmented[row][col] snake_case__ : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , snake_case_ ): for row in range(snake_case_ ): snake_case__ : Any = augmented[row][col] / augmented[col][col] for cola in range(snake_case_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(snake_case_ ) ] def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] ): snake_case__ : int = len(snake_case_ ) snake_case__ : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] snake_case__ : Matrix = [[0] for _ in range(snake_case_ )] snake_case__ : Matrix snake_case__ : int snake_case__ : int snake_case__ : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): snake_case__ : Tuple = (x_val + 1) ** (size - col - 1) snake_case__ : Tuple = y_val snake_case__ : Any = solve(snake_case_ , snake_case_ ) def interpolated_func(snake_case_ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def SCREAMING_SNAKE_CASE ( snake_case_ : Callable[[int], int] = question_function , snake_case_ : int = 10 ): snake_case__ : list[int] = [func(snake_case_ ) for x_val in range(1 , order + 1 )] snake_case__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] snake_case__ : int = 0 snake_case__ : Callable[[int], int] snake_case__ : int for poly in polynomials: snake_case__ : Tuple = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"{solution() = }")
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase : Union[str, Any] = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : int ): snake_case__ : list[list[str]] = [[] for _ in range(snake_case_ )] snake_case__ : Optional[int] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(snake_case_ ) <= key: return input_string for position, character in enumerate(snake_case_ ): snake_case__ : Union[str, Any] = position % (lowest * 2) # puts it in bounds snake_case__ : Dict = min(snake_case_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(snake_case_ ) snake_case__ : Tuple = ["".join(snake_case_ ) for row in temp_grid] snake_case__ : List[str] = "".join(snake_case_ ) return output_string def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : int ): snake_case__ : Any = [] snake_case__ : Optional[Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string snake_case__ : list[list[str]] = [[] for _ in range(snake_case_ )] # generates template for position in range(len(snake_case_ ) ): snake_case__ : Optional[Any] = position % (lowest * 2) # puts it in bounds snake_case__ : str = min(snake_case_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) snake_case__ : int = 0 for row in temp_grid: # fills in the characters snake_case__ : Dict = input_string[counter : counter + len(snake_case_ )] grid.append(list(snake_case_ ) ) counter += len(snake_case_ ) snake_case__ : Dict = "" # reads as zigzag for position in range(len(snake_case_ ) ): snake_case__ : List[Any] = position % (lowest * 2) # puts it in bounds snake_case__ : Tuple = min(snake_case_ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Optional[int] = {} for key_guess in range(1 , len(snake_case_ ) ): # tries every key snake_case__ : Tuple = decrypt(snake_case_ , snake_case_ ) return results if __name__ == "__main__": import doctest doctest.testmod()
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) snake_case__ : Optional[Any] = b * b - 4 * a * c snake_case__ : str = (-b + sqrt(snake_case_ )) / (2 * a) snake_case__ : List[str] = (-b - sqrt(snake_case_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE ( ): snake_case__, snake_case__ : int = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] , __A : int | None = None ): snake_case__ : Dict = value snake_case__ : Node | None = None # Added in order to delete a node easier snake_case__ : Node | None = None snake_case__ : Node | None = None def __repr__( self : List[str] ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , __A : Node | None = None ): snake_case__ : Union[str, Any] = root def __str__( self : Optional[int] ): return str(self.root ) def _lowercase ( self : Dict , __A : Node , __A : Node | None ): if new_children is not None: # reset its kids snake_case__ : Any = node.parent if node.parent is not None: # reset its parent if self.is_right(__A ): # If it is the right children snake_case__ : List[str] = new_children else: snake_case__ : Dict = new_children else: snake_case__ : Union[str, Any] = new_children def _lowercase ( self : Tuple , __A : Node ): if node.parent and node.parent.right: return node == node.parent.right return False def _lowercase ( self : List[Any] ): return self.root is None def _lowercase ( self : Dict , __A : Optional[int] ): snake_case__ : List[str] = Node(__A ) # create a new Node if self.empty(): # if Tree is empty snake_case__ : List[str] = new_node # set its root else: # Tree is not empty snake_case__ : Any = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: snake_case__ : Optional[int] = new_node # We insert the new node in a leaf break else: snake_case__ : int = parent_node.left else: if parent_node.right is None: snake_case__ : Union[str, Any] = new_node break else: snake_case__ : Dict = parent_node.right snake_case__ : int = parent_node def _lowercase ( self : Optional[Any] , *__A : Tuple ): for value in values: self.__insert(__A ) def _lowercase ( self : List[str] , __A : List[Any] ): if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: snake_case__ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: snake_case__ : List[Any] = node.left if value < node.value else node.right return node def _lowercase ( self : Dict , __A : Node | None = None ): if node is None: if self.root is None: return None snake_case__ : List[Any] = self.root if not self.empty(): while node.right is not None: snake_case__ : Any = node.right return node def _lowercase ( self : Union[str, Any] , __A : Node | None = None ): if node is None: snake_case__ : str = self.root if self.root is None: return None if not self.empty(): snake_case__ : int = self.root while node.left is not None: snake_case__ : str = node.left return node def _lowercase ( self : Tuple , __A : int ): snake_case__ : Tuple = self.search(__A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__A , __A ) elif node.left is None: # Has only right children self.__reassign_nodes(__A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__A , node.left ) else: snake_case__ : Any = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore snake_case__ : int = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def _lowercase ( self : Dict , __A : Node | None ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def _lowercase ( self : Optional[int] , __A : Optional[int]=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def _lowercase ( self : Optional[int] , __A : list , __A : Node | None ): if node: self.inorder(__A , node.left ) arr.append(node.value ) self.inorder(__A , node.right ) def _lowercase ( self : str , __A : int , __A : Node ): snake_case__ : list[int] = [] self.inorder(__A , __A ) # append all values to list using inorder traversal return arr[k - 1] def SCREAMING_SNAKE_CASE ( snake_case_ : Node | None ): snake_case__ : Union[str, Any] = [] if curr_node is not None: snake_case__ : Union[str, Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = (8, 3, 6, 1, 10, 14, 13, 4, 7) snake_case__ : int = BinarySearchTree() for i in testlist: t.insert(snake_case_ ) # Prints all the elements of the list in order traversal print(snake_case_ ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case_ ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Optional[Any] = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1