code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = CanineTokenizer _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: super().setUp() _UpperCAmelCase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self ) -> Optional[Any]: return CanineTokenizer.from_pretrained('google/canine-s' ) def lowerCamelCase_ ( self , **snake_case ) -> CanineTokenizer: _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) _UpperCAmelCase = 1024 return tokenizer @require_torch def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _UpperCAmelCase = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on _UpperCAmelCase = tokenizer(_lowercase , padding=_lowercase , return_tensors='pt' ) self.assertIsInstance(_lowercase , _lowercase ) _UpperCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowercase , _lowercase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _UpperCAmelCase = tokenizer(_lowercase , padding=_lowercase , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , _lowercase ) self.assertIn('attention_mask' , _lowercase ) self.assertIn('token_type_ids' , _lowercase ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.canine_tokenizer _UpperCAmelCase = [ """What's the weater?""", """It's about 25 degrees.""", ] _UpperCAmelCase = tokenizer( text_target=_lowercase , max_length=32 , padding='max_length' , truncation=_lowercase , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = """ He is very happy, UNwant\u00E9d,running""" _UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(_lowercase ) _UpperCAmelCase = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) shutil.rmtree(_lowercase ) _UpperCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = """ He is very happy, UNwant\u00E9d,running""" _UpperCAmelCase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _UpperCAmelCase = chr(0xe_0_0_7 ) additional_special_tokens.append(_lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) tokenizer.save_pretrained(_lowercase ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(_lowercase ) _UpperCAmelCase = after_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) self.assertIn(_lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(_lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowercase ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = self.get_clean_sequence(_lowercase ) # a special token for Canine can be defined as follows: _UpperCAmelCase = 0xe_0_0_5 _UpperCAmelCase = chr(_lowercase ) tokenizer.add_special_tokens({'cls_token': special_token} ) _UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) _UpperCAmelCase = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowercase ) _UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) _UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) _UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(_lowercase , input_encoded + special_token_id ) _UpperCAmelCase = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) self.assertTrue(special_token not in decoded ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = chr(0xe_0_0_5 ) _UpperCAmelCase = chr(0xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) _UpperCAmelCase = tokenizer.tokenize(_lowercase ) _UpperCAmelCase = tokenizer.tokenize(_lowercase ) self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(token_a[0] , _lowercase ) self.assertEqual(token_a[0] , _lowercase ) @require_tokenizers def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _UpperCAmelCase = 0xe_0_0_6 _UpperCAmelCase = chr(_lowercase ) _UpperCAmelCase = AddedToken(_lowercase , lstrip=_lowercase ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowercase ) tokenizer.from_pretrained(_lowercase ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _UpperCAmelCase = json.load(_lowercase ) with open(os.path.join(_lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _UpperCAmelCase = json.load(_lowercase ) # a special token for Canine can be defined as follows: _UpperCAmelCase = 0xe_0_0_6 _UpperCAmelCase = chr(_lowercase ) _UpperCAmelCase = [new_token_a] _UpperCAmelCase = [new_token_a] with open(os.path.join(_lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_lowercase , _lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCAmelCase = tokenizer_class.from_pretrained(_lowercase , extra_ids=0 ) self.assertIn(_lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _UpperCAmelCase = 0xe_0_0_7 _UpperCAmelCase = chr(_lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCAmelCase = [AddedToken(_lowercase , lstrip=_lowercase )] _UpperCAmelCase = tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , extra_ids=0 ) self.assertIn(_lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = """hello world""" if self.space_between_special_tokens: _UpperCAmelCase = """[CLS] hello world [SEP]""" else: _UpperCAmelCase = input _UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) _UpperCAmelCase = tokenizer.decode(_lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowercase , [output, output.lower()] ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _UpperCAmelCase = """a""" _UpperCAmelCase = ord(_lowercase ) for attr in attributes_list: setattr(_lowercase , attr + '_id' , _lowercase ) self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(getattr(_lowercase , attr + '_id' ) , _lowercase ) setattr(_lowercase , attr + '_id' , _lowercase ) self.assertEqual(getattr(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(getattr(_lowercase , attr + '_id' ) , _lowercase ) setattr(_lowercase , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_lowercase , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_lowercase , 'additional_special_tokens_ids' ) , [] ) _UpperCAmelCase = 0xe_0_0_6 _UpperCAmelCase = chr(_lowercase ) setattr(_lowercase , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(_lowercase , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(_lowercase , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def lowerCamelCase_ ( self ) -> List[str]: pass def lowerCamelCase_ ( self ) -> Optional[int]: pass def lowerCamelCase_ ( self ) -> Optional[int]: pass def lowerCamelCase_ ( self ) -> int: pass def lowerCamelCase_ ( self ) -> str: pass def lowerCamelCase_ ( self ) -> Dict: pass def lowerCamelCase_ ( self ) -> Optional[int]: pass def lowerCamelCase_ ( self ) -> List[str]: pass
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' if num <= 0: raise ValueError('Input must be a positive integer' ) _UpperCAmelCase = [True] * (num + 1) _UpperCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case__ ): _UpperCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowercase__ ( lowercase__ ): '''simple docstring''' _UpperCAmelCase = 'EncodecFeatureExtractor' _UpperCAmelCase = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , snake_case , snake_case ) -> Optional[Any]: super().__init__(snake_case , snake_case ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False def lowerCamelCase_ ( self , snake_case=None , snake_case=None , snake_case=True ) -> Any: return self.tokenizer.get_decoder_prompt_ids(task=snake_case , language=snake_case , no_timestamps=snake_case ) def __call__( self , *snake_case , **snake_case ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case , **snake_case ) _UpperCAmelCase = kwargs.pop('audio' , snake_case ) _UpperCAmelCase = kwargs.pop('sampling_rate' , snake_case ) _UpperCAmelCase = kwargs.pop('text' , snake_case ) if len(snake_case ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: _UpperCAmelCase = self.tokenizer(snake_case , **snake_case ) if audio is not None: _UpperCAmelCase = self.feature_extractor(snake_case , *snake_case , sampling_rate=snake_case , **snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCAmelCase = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _UpperCAmelCase = audio_inputs['padding_mask'] return inputs def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> Optional[int]: _UpperCAmelCase = kwargs.pop('audio' , snake_case ) _UpperCAmelCase = kwargs.pop('padding_mask' , snake_case ) if len(snake_case ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(snake_case , padding_mask=snake_case ) else: return self.tokenizer.batch_decode(*snake_case , **snake_case ) def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> Dict: return self.tokenizer.decode(*snake_case , **snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> int: _UpperCAmelCase = to_numpy(snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = audio_values.shape if padding_mask is None: return list(snake_case ) _UpperCAmelCase = to_numpy(snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCAmelCase = seq_len - padding_mask.shape[-1] _UpperCAmelCase = 1 - self.feature_extractor.padding_value _UpperCAmelCase = np.pad(snake_case , ((0, 0), (0, difference)) , 'constant' , constant_values=snake_case ) _UpperCAmelCase = audio_values.tolist() for i in range(snake_case ): _UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCAmelCase = sliced_audio.reshape(snake_case , -1 ) return audio_values
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" from collections.abc import Iterable from typing import Any class lowercase__ : '''simple docstring''' def __init__( self , snake_case = None ) -> Tuple: _UpperCAmelCase = value _UpperCAmelCase = None # Added in order to delete a node easier _UpperCAmelCase = None _UpperCAmelCase = None def __repr__( self ) -> Tuple: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case = None ) -> Union[str, Any]: _UpperCAmelCase = root def __str__( self ) -> Union[str, Any]: return str(self.root ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: if new_children is not None: # reset its kids _UpperCAmelCase = node.parent if node.parent is not None: # reset its parent if self.is_right(__A ): # If it is the right children _UpperCAmelCase = new_children else: _UpperCAmelCase = new_children else: _UpperCAmelCase = new_children def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: if node.parent and node.parent.right: return node == node.parent.right return False def lowerCamelCase_ ( self ) -> Optional[Any]: return self.root is None def lowerCamelCase_ ( self , snake_case ) -> Any: _UpperCAmelCase = Node(__A ) # create a new Node if self.empty(): # if Tree is empty _UpperCAmelCase = new_node # set its root else: # Tree is not empty _UpperCAmelCase = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _UpperCAmelCase = new_node # We insert the new node in a leaf break else: _UpperCAmelCase = parent_node.left else: if parent_node.right is None: _UpperCAmelCase = new_node break else: _UpperCAmelCase = parent_node.right _UpperCAmelCase = parent_node def lowerCamelCase_ ( self , *snake_case ) -> List[str]: for value in values: self.__insert(__A ) def lowerCamelCase_ ( self , snake_case ) -> Any: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: _UpperCAmelCase = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _UpperCAmelCase = node.left if value < node.value else node.right return node def lowerCamelCase_ ( self , snake_case = None ) -> Tuple: if node is None: if self.root is None: return None _UpperCAmelCase = self.root if not self.empty(): while node.right is not None: _UpperCAmelCase = node.right return node def lowerCamelCase_ ( self , snake_case = None ) -> Optional[int]: if node is None: _UpperCAmelCase = self.root if self.root is None: return None if not self.empty(): _UpperCAmelCase = self.root while node.left is not None: _UpperCAmelCase = node.left return node def lowerCamelCase_ ( self , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.search(__A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__A , __A ) elif node.left is None: # Has only right children self.__reassign_nodes(__A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__A , node.left ) else: _UpperCAmelCase = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _UpperCAmelCase = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCamelCase_ ( self , snake_case=None ) -> int: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: if node: self.inorder(__A , node.left ) arr.append(node.value ) self.inorder(__A , node.right ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = [] self.inorder(__A , __A ) # append all values to list using inorder traversal return arr[k - 1] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' _UpperCAmelCase = [] if curr_node is not None: _UpperCAmelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = (8, 3, 6, 1, 10, 14, 13, 4, 7) _UpperCAmelCase = BinarySearchTree() for i in testlist: t.insert(snake_case_ ) # Prints all the elements of the list in order traversal print(snake_case_ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case_ ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] lowercase = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] lowercase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase = F'''down_blocks.{i}.resnets.{j}.''' lowercase = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase = F'''down_blocks.{i}.attentions.{j}.''' lowercase = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase = F'''up_blocks.{i}.resnets.{j}.''' lowercase = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase = F'''up_blocks.{i}.attentions.{j}.''' lowercase = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase = F'''down_blocks.{i}.downsamplers.0.conv.''' lowercase = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase = F'''up_blocks.{i}.upsamplers.0.''' lowercase = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase = "mid_block.attentions.0." lowercase = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase = F'''mid_block.resnets.{j}.''' lowercase = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def UpperCAmelCase ( A : Any ): '''simple docstring''' _UpperCAmelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCAmelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v _UpperCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase = [ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase = F'''encoder.down_blocks.{i}.resnets.{j}.''' lowercase = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase = F'''down_blocks.{i}.downsamplers.0.''' lowercase = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase = F'''up_blocks.{i}.upsamplers.0.''' lowercase = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase = F'''decoder.up_blocks.{i}.resnets.{j}.''' lowercase = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase = F'''mid_block.resnets.{i}.''' lowercase = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase = [ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' _UpperCAmelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCAmelCase = v.replace(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase = v _UpperCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCAmelCase = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'mid.attn_1.{weight_name}.weight' in k: print(f'Reshaping {k} for SD format' ) _UpperCAmelCase = reshape_weight_for_sd(_lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] lowercase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase = {"q": 0, "k": 1, "v": 2} def UpperCAmelCase ( A : List[str] ): '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): _UpperCAmelCase = k[: -len('.q_proj.weight' )] _UpperCAmelCase = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: _UpperCAmelCase = [None, None, None] _UpperCAmelCase = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): _UpperCAmelCase = k[: -len('.q_proj.bias' )] _UpperCAmelCase = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: _UpperCAmelCase = [None, None, None] _UpperCAmelCase = v continue _UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _UpperCAmelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _UpperCAmelCase = torch.cat(_lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _UpperCAmelCase = torch.cat(_lowerCamelCase ) return new_state_dict def UpperCAmelCase ( A : Any ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowercase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowercase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowercase = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase = load_file(unet_path, device='''cpu''') else: lowercase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowercase = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowercase = load_file(vae_path, device='''cpu''') else: lowercase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowercase = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowercase = load_file(text_enc_path, device='''cpu''') else: lowercase = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowercase = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowercase = convert_unet_state_dict(unet_state_dict) lowercase = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase = convert_vae_state_dict(vae_state_dict) lowercase = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase = {"transformer." + k: v for k, v in text_enc_dict.items()} lowercase = convert_text_enc_state_dict_vaa(text_enc_dict) lowercase = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: lowercase = convert_text_enc_state_dict(text_enc_dict) lowercase = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase = object() # For specifying empty leaf dict `{}` lowercase = object() def UpperCAmelCase ( A : Tuple , A : List[str] ) -> int: '''simple docstring''' _UpperCAmelCase = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(A ) - len(A ) + 1 ): _UpperCAmelCase = [x.match(A ) for x, y in zip(A , ks[i:] )] if matches and all(A ): return True return False def UpperCAmelCase ( A : List[Any] ) -> Union[str, Any]: '''simple docstring''' def replace(A : str , A : List[Any] ): for rule, replacement in rules: if _match(A , A ): return replacement return val return replace def UpperCAmelCase ( ) -> Dict: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , A )), (("transformer", "wte", "embedding"), P('mp' , A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(A , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(A , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( A : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = _get_partition_rules() _UpperCAmelCase = _replacement_rules(A ) _UpperCAmelCase = {k: _unmatched for k in flatten_dict(A )} _UpperCAmelCase = {k: replace(A , A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(A ) )
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" lowercase = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=__snake_case , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=__snake_case , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=__snake_case , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=__snake_case , default='data/dump' , help='The dump file prefix.' ) _UpperCAmelCase = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": _UpperCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` _UpperCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": _UpperCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` _UpperCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": _UpperCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` _UpperCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: _UpperCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(f'{len(__snake_case )} examples to process.' ) _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 1_0000 _UpperCAmelCase = time.time() for text in data: _UpperCAmelCase = f'{bos} {text.strip()} {sep}' _UpperCAmelCase = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) rslt.append(__snake_case ) iter += 1 if iter % interval == 0: _UpperCAmelCase = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) _UpperCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(f'{len(__snake_case )} examples processed.' ) _UpperCAmelCase = f'{args.dump_file}.{args.tokenizer_name}.pickle' _UpperCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): _UpperCAmelCase = [np.uintaa(__snake_case ) for d in rslt] else: _UpperCAmelCase = [np.intaa(__snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(rslt_ , __snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowercase = parser.parse_args() lowercase = "cpu" lowercase = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" lowercase = "path-to-your-trained-model" lowercase = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase = pipe.to(device) # to channels last lowercase = pipe.unet.to(memory_format=torch.channels_last) lowercase = pipe.vae.to(memory_format=torch.channels_last) lowercase = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase = torch.randn(2, 4, 64, 64) lowercase = torch.rand(1) * 9_99 lowercase = torch.randn(2, 77, 7_68) lowercase = (sample, timestep, encoder_hidden_status) try: lowercase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase = 6_66 lowercase = torch.Generator(device).manual_seed(seed) lowercase = {"generator": generator} if args.steps is not None: lowercase = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( a__ ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( A : Dict , A : str , A : List[Any]=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' _UpperCAmelCase = nn.Parameter(UpperCAmelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' _UpperCAmelCase = nn.Parameter(UpperCAmelCase__ ) def UpperCAmelCase ( A : List[Any] , A : Optional[Any] , A : int ): '''simple docstring''' _UpperCAmelCase = np.asarray(weights[0] ) _UpperCAmelCase = np.asarray(weights[1] ) _UpperCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase__ ).view(-1 , UpperCAmelCase__ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( A : Optional[int] , A : Any , A : Tuple ): '''simple docstring''' _UpperCAmelCase = np.asarray(weights[0] ) _UpperCAmelCase = np.asarray(weights[1] ) _UpperCAmelCase = np.asarray(weights[2] ) _UpperCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase__ ).view(-1 , UpperCAmelCase__ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( A : Tuple , A : Tuple , A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = weights[0][0][0] _UpperCAmelCase = np.asarray(layer_norm_a[0] ) _UpperCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCAmelCase__ ) , torch.tensor(UpperCAmelCase__ ) , ) # lsh weights + output _UpperCAmelCase = weights[0][1] if len(UpperCAmelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase__ , torch_block.attention , UpperCAmelCase__ ) else: set_layer_weights_in_torch_local(UpperCAmelCase__ , torch_block.attention , UpperCAmelCase__ ) # intermediate weighs _UpperCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase__ ) == 4: _UpperCAmelCase = intermediate_weights[2] # layernorm 2 _UpperCAmelCase = np.asarray(intermediate_weights[0][0] ) _UpperCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCAmelCase__ ) , torch.tensor(UpperCAmelCase__ ) , ) # intermediate dense _UpperCAmelCase = np.asarray(intermediate_weights[1][0] ) _UpperCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase__ ) , ) # intermediate out _UpperCAmelCase = np.asarray(intermediate_weights[4][0] ) _UpperCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase__ ) , ) def UpperCAmelCase ( A : Optional[int] , A : List[Any] , A : int ): '''simple docstring''' _UpperCAmelCase = torch_model.reformer # word embeds _UpperCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCAmelCase__ ) , ) if isinstance(weights[3] , UpperCAmelCase__ ): _UpperCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _UpperCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' _UpperCAmelCase = nn.Parameter(torch.tensor(UpperCAmelCase__ ) ) _UpperCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _UpperCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # output layer norm _UpperCAmelCase = np.asarray(weights[7][0] ) _UpperCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCAmelCase__ ) , torch.tensor(UpperCAmelCase__ ) , ) # output embeddings _UpperCAmelCase = np.asarray(weights[9][0] ) _UpperCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase__ ) , ) def UpperCAmelCase ( A : int , A : List[str] , A : Dict ): '''simple docstring''' _UpperCAmelCase = ReformerConfig.from_json_file(UpperCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCAmelCase = ReformerModelWithLMHead(UpperCAmelCase__ ) with open(UpperCAmelCase__ , 'rb' ) as f: _UpperCAmelCase = pickle.load(UpperCAmelCase__ )['weights'] set_model_weights_in_torch(UpperCAmelCase__ , UpperCAmelCase__ , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__UpperCAmelCase ) class lowercase__ ( __UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase = field(default='''image-classification''', metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase = Features({'''image''': Image()} ) _UpperCAmelCase = Features({'''labels''': ClassLabel} ) _UpperCAmelCase = "image" _UpperCAmelCase = "labels" def lowerCamelCase_ ( self , snake_case ) -> int: if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) _UpperCAmelCase = copy.deepcopy(self ) _UpperCAmelCase = self.label_schema.copy() _UpperCAmelCase = features[self.label_column] _UpperCAmelCase = label_schema return task_template @property def lowerCamelCase_ ( self ) -> str: return { self.image_column: "image", self.label_column: "labels", }
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase = logging.get_logger(__name__) lowercase = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowercase = {'facebook/blenderbot-3B': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCAmelCase = bs[:] _UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def UpperCAmelCase ( A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs class lowercase__ ( UpperCamelCase_ ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case , snake_case , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , **snake_case , ) -> Tuple: _UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token _UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token _UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token _UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token _UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token _UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: _UpperCAmelCase = json.load(UpperCamelCase__ ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = errors # how to handle errors in decoding _UpperCAmelCase = bytes_to_unicode() _UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: _UpperCAmelCase = merges_handle.read().split('\n' )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) _UpperCAmelCase = {} _UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self ) -> Any: return len(self.encoder ) def lowerCamelCase_ ( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self , snake_case ) -> Union[str, Any]: if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(UpperCamelCase__ ) _UpperCAmelCase = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: _UpperCAmelCase = min(UpperCamelCase__ , key=lambda snake_case : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(UpperCamelCase__ ): try: _UpperCAmelCase = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(UpperCamelCase__ ) _UpperCAmelCase = new_word if len(UpperCamelCase__ ) == 1: break else: _UpperCAmelCase = get_pairs(UpperCamelCase__ ) _UpperCAmelCase = ''' '''.join(UpperCamelCase__ ) _UpperCAmelCase = word return word def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = [] for token in re.findall(self.pat , UpperCamelCase__ ): _UpperCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(' ' ) ) return bpe_tokens def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self , snake_case ) -> int: return self.decoder.get(UpperCamelCase__ ) def lowerCamelCase_ ( self , snake_case ) -> List[Any]: _UpperCAmelCase = ''''''.join(UpperCamelCase__ ) _UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> str: if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) _UpperCAmelCase = 0 with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _UpperCAmelCase = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self , snake_case , snake_case = None , snake_case = False ) -> Optional[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> Dict: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self , snake_case , snake_case=False , **snake_case ) -> Optional[int]: _UpperCAmelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): _UpperCAmelCase = ''' ''' + text return (text, kwargs) def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> Tuple: return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) _UpperCAmelCase = ''' '''.join(UpperCamelCase__ ) _UpperCAmelCase = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase__ ( UpperCAmelCase__, UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , *, snake_case = 4 , snake_case = 768 , snake_case , snake_case , ) -> Any: super().__init__() _UpperCAmelCase = nn.Parameter(torch.zeros(snake_case ) ) # parameters for additional clip time embeddings _UpperCAmelCase = nn.Linear(snake_case , snake_case ) _UpperCAmelCase = nn.Linear(snake_case , snake_case ) # parameters for encoder hidden states _UpperCAmelCase = clip_extra_context_tokens _UpperCAmelCase = nn.Linear( snake_case , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCAmelCase = nn.Linear(snake_case , snake_case ) _UpperCAmelCase = nn.LayerNorm(snake_case ) def lowerCamelCase_ ( self , *, snake_case , snake_case , snake_case , snake_case ) -> Optional[Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCAmelCase = image_embeddings.shape[0] _UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCAmelCase = classifier_free_guidance_embeddings.expand( snake_case , -1 ) _UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCAmelCase = self.embedding_proj(snake_case ) _UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(snake_case ) _UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCAmelCase = self.clip_extra_context_tokens_proj(snake_case ) _UpperCAmelCase = clip_extra_context_tokens.reshape(snake_case , -1 , self.clip_extra_context_tokens ) _UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCAmelCase = self.encoder_hidden_states_proj(snake_case ) _UpperCAmelCase = self.text_encoder_hidden_states_norm(snake_case ) _UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def UpperCAmelCase ( ): _UpperCAmelCase , _UpperCAmelCase = 9, 14 # noqa: F841 _UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCAmelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _UpperCAmelCase = mst(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _UpperCAmelCase = tuple(answer[:2] ) _UpperCAmelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( __snake_case ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> int: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( UpperCamelCase__, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = KandinskyImgaImgPipeline _UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] _UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] _UpperCAmelCase = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _UpperCAmelCase = False @property def lowerCamelCase_ ( self ) -> int: return 32 @property def lowerCamelCase_ ( self ) -> List[str]: return 32 @property def lowerCamelCase_ ( self ) -> Dict: return self.time_input_dim @property def lowerCamelCase_ ( self ) -> int: return self.time_input_dim * 4 @property def lowerCamelCase_ ( self ) -> int: return 100 @property def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowerCamelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _UpperCAmelCase = MultilingualCLIP(snake_case ) _UpperCAmelCase = text_encoder.eval() return text_encoder @property def lowerCamelCase_ ( self ) -> List[str]: torch.manual_seed(0 ) _UpperCAmelCase = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCAmelCase = UNetaDConditionModel(**snake_case ) return model @property def lowerCamelCase_ ( self ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_unet _UpperCAmelCase = self.dummy_movq _UpperCAmelCase = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _UpperCAmelCase = DDIMScheduler(**snake_case ) _UpperCAmelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: _UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case ) ).to(snake_case ) _UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case ) # create init_image _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case ) ).to(snake_case ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((256, 256) ) if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = pipe(**self.get_dummy_inputs(snake_case ) ) _UpperCAmelCase = output.images _UpperCAmelCase = pipe( **self.get_dummy_inputs(snake_case ) , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _UpperCAmelCase = 'A red cartoon frog, 4k' _UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case ) _UpperCAmelCase = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase = pipe_prior( snake_case , generator=snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _UpperCAmelCase = pipeline( snake_case , image=snake_case , image_embeds=snake_case , negative_image_embeds=snake_case , generator=snake_case , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case , snake_case )
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase = logging.getLogger(__name__) def UpperCAmelCase ( A : Dict=2 , A : int=3 , A : Optional[int]=16 , A : Union[str, Any] = 10 , A : Optional[Any] = 2 ): '''simple docstring''' def get_dataset(A : str ): _UpperCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _UpperCAmelCase = get_dataset(__lowerCAmelCase ) _UpperCAmelCase = get_dataset(__lowerCAmelCase ) _UpperCAmelCase = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) _UpperCAmelCase = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCAmelCase ( A : Optional[int] , A : str , A : Any , A : List[str] , A : int , A : List[str]=None ): '''simple docstring''' _UpperCAmelCase = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: _UpperCAmelCase = batch _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self ) -> int: super().__init__() _UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) _UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) def lowerCamelCase_ ( self , snake_case ) -> Union[str, Any]: return x * self.a + self.b class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase = dummy_dataloaders() _UpperCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=lowerCamelCase__ , automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline _UpperCAmelCase = Accelerator(project_config=lowerCamelCase__ ) _UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCamelCase_ ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase = dummy_dataloaders() # Train baseline _UpperCAmelCase = Accelerator() _UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial _UpperCAmelCase = os.path.join(lowerCamelCase__ , 'initial' ) accelerator.save_state(lowerCamelCase__ ) (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() _UpperCAmelCase = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase = dummy_dataloaders() _UpperCAmelCase = Accelerator() _UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(lowerCamelCase__ ) (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything _UpperCAmelCase = os.path.join(lowerCamelCase__ , 'checkpoint' ) accelerator.save_state(lowerCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCamelCase__ ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase = dummy_dataloaders() _UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline _UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) _UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() _UpperCAmelCase = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase = dummy_dataloaders() _UpperCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCamelCase__ ) _UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) _UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (_UpperCAmelCase) = model.a.item(), model.b.item() _UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = torch.tensor([1, 2, 3] ) _UpperCAmelCase = torch.tensor([2, 3, 4] ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(net.parameters() ) _UpperCAmelCase = Accelerator() with self.assertRaises(lowerCamelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def lowerCamelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _UpperCAmelCase = torch.optim.lr_scheduler.StepLR(lowerCamelCase__ , step_size=1 , gamma=0.99 ) _UpperCAmelCase = dummy_dataloaders() _UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline _UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) _UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() _UpperCAmelCase = scheduler.state_dict() train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(lowerCamelCase__ , scheduler.state_dict() ) def lowerCamelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _UpperCAmelCase = DummyModel() _UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ , total_limit=2 ) # Train baseline _UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) _UpperCAmelCase = accelerator.prepare(lowerCamelCase__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": lowercase = '''/tmp/accelerate/state_checkpointing''' lowercase = DummyModel() lowercase = torch.optim.Adam(params=model.parameters(), lr=1E-3) lowercase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase , lowercase = dummy_dataloaders() lowercase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase , lowercase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase = group['''params'''][0].device break assert param_device.type == accelerator.device.type lowercase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: lowercase = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: lowercase = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase = logging.get_logger(__name__) class lowercase__ ( __a ): '''simple docstring''' _UpperCAmelCase = ["pixel_values"] def __init__( self , snake_case = True , snake_case = None , snake_case = PIL.Image.BICUBIC , snake_case = True , snake_case = None , snake_case = 1 / 255 , snake_case = True , snake_case = True , snake_case = None , snake_case = None , **snake_case , ) -> None: super().__init__(**lowerCAmelCase_ ) _UpperCAmelCase = size if size is not None else {'height': 256, 'width': 256} _UpperCAmelCase = get_size_dict(lowerCAmelCase_ ) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _UpperCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self , snake_case , snake_case , snake_case = PIL.Image.BICUBIC , snake_case = None , **snake_case , ) -> np.ndarray: _UpperCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( lowerCAmelCase_ , size=(size['height'], size['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case = None , **snake_case , ) -> np.ndarray: _UpperCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case = None , **snake_case , ) -> List[Any]: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase_ ( self , snake_case , snake_case = None , snake_case = None , snake_case=None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ) -> PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCAmelCase_ ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _UpperCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
from PIL import Image def UpperCAmelCase ( A : Image , A : float ): '''simple docstring''' def brightness(A : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BioGptTokenizer _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _UpperCAmelCase = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) _UpperCAmelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCAmelCase__ ) ) def lowerCamelCase_ ( self , snake_case ) -> Tuple: _UpperCAmelCase = 'lower newer' _UpperCAmelCase = 'lower newer' return input_text, output_text def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) _UpperCAmelCase = 'lower' _UpperCAmelCase = ['low', 'er</w>'] _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCAmelCase = tokens + ['<unk>'] _UpperCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _UpperCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ) -> int: _UpperCAmelCase = parent _UpperCAmelCase = 13 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 99 _UpperCAmelCase = 32 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 37 _UpperCAmelCase = 'gelu' _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 512 _UpperCAmelCase = 16 _UpperCAmelCase = 2 _UpperCAmelCase = 0.02 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = None def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = TFRoFormerModel(config=A__ ) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(A__ ) _UpperCAmelCase = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = True _UpperCAmelCase = TFRoFormerForCausalLM(config=A__ ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A__ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = TFRoFormerForMaskedLM(config=A__ ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFRoFormerForSequenceClassification(config=A__ ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFRoFormerForMultipleChoice(config=A__ ) _UpperCAmelCase = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _UpperCAmelCase = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFRoFormerForTokenClassification(config=A__ ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TFRoFormerForQuestionAnswering(config=A__ ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase__ ( __a, __a, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = TFRoFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=A__ , hidden_size=37 ) def lowerCamelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A__ ) @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(A__ )[0] # TODO Replace vocab size _UpperCAmelCase = 50000 _UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _UpperCAmelCase = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = 1E-4 def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = tf.constant([[4, 10]] ) _UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _UpperCAmelCase = emba(input_ids.shape ) _UpperCAmelCase = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) _UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = 1E-4 def lowerCamelCase_ ( self ) -> List[Any]: # 2,12,16,64 _UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _UpperCAmelCase = embed_positions([2, 16, 768] )[None, None, :, :] _UpperCAmelCase , _UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _UpperCAmelCase = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _UpperCAmelCase = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase ( A : Optional[int] , A : List[Any] , A : Optional[int] , A : Union[str, Any] ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length, 2) , _SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length) , _SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(_SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tensor[:sequence_length] else: _UpperCAmelCase = tensor[:sequence_length] else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tensor[:sequence_length] else: _UpperCAmelCase = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase ( A : Any ): '''simple docstring''' _UpperCAmelCase = ord(_SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _UpperCAmelCase = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat.startswith('P' ): return True return False @dataclass class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = -1_00 _UpperCAmelCase = "pt" def lowerCamelCase_ ( self , snake_case ) -> str: import torch _UpperCAmelCase = 'label' if 'label' in features[0].keys() else 'labels' _UpperCAmelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _UpperCAmelCase = self.tokenizer.pad( snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch _UpperCAmelCase = torch.tensor(batch['entity_ids'] ).shape[1] _UpperCAmelCase = self.tokenizer.padding_side if padding_side == "right": _UpperCAmelCase = [ list(snake_case ) + [self.label_pad_token_id] * (sequence_length - len(snake_case )) for label in labels ] else: _UpperCAmelCase = [ [self.label_pad_token_id] * (sequence_length - len(snake_case )) + list(snake_case ) for label in labels ] _UpperCAmelCase = [feature['ner_tags'] for feature in features] _UpperCAmelCase = padding_tensor(snake_case , -1 , snake_case , snake_case ) _UpperCAmelCase = [feature['original_entity_spans'] for feature in features] _UpperCAmelCase = padding_tensor(snake_case , (-1, -1) , snake_case , snake_case ) _UpperCAmelCase = {k: torch.tensor(snake_case , dtype=torch.intaa ) for k, v in batch.items()} return batch
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case = 1.0 , snake_case = None , ) -> int: super().__init__() _UpperCAmelCase = initial_learning_rate _UpperCAmelCase = warmup_steps _UpperCAmelCase = power _UpperCAmelCase = decay_schedule_fn _UpperCAmelCase = name def __call__( self , snake_case ) -> List[str]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _UpperCAmelCase = tf.cast(__UpperCamelCase , tf.floataa ) _UpperCAmelCase = tf.cast(self.warmup_steps , tf.floataa ) _UpperCAmelCase = global_step_float / warmup_steps_float _UpperCAmelCase = self.initial_learning_rate * tf.math.pow(__UpperCamelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__UpperCamelCase , ) def lowerCamelCase_ ( self ) -> Any: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase ( A : Tuple , A : Dict , A : Tuple , A : Optional[int] = 0.0 , A : Tuple = 0.9 , A : int = 0.999 , A : Tuple = 1e-8 , A : str = None , A : Optional[int] = None , A : List[Any] = 0.0 , A : int = 1.0 , A : Dict = None , ): '''simple docstring''' _UpperCAmelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowercase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowercase__ , ) if num_warmup_steps: _UpperCAmelCase = WarmUp( initial_learning_rate=lowercase__ , decay_schedule_fn=lowercase__ , warmup_steps=lowercase__ , ) if weight_decay_rate > 0.0: _UpperCAmelCase = AdamWeightDecay( learning_rate=lowercase__ , weight_decay_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=lowercase__ , ) else: _UpperCAmelCase = tf.keras.optimizers.Adam( learning_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__ ( __snake_case ): '''simple docstring''' def __init__( self , snake_case = 0.001 , snake_case = 0.9 , snake_case = 0.999 , snake_case = 1E-7 , snake_case = False , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "AdamWeightDecay" , **snake_case , ) -> Dict: super().__init__(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = weight_decay_rate _UpperCAmelCase = include_in_weight_decay _UpperCAmelCase = exclude_from_weight_decay @classmethod def lowerCamelCase_ ( cls , snake_case ) -> List[Any]: _UpperCAmelCase = {'WarmUp': WarmUp} return super(__UpperCamelCase , cls ).from_config(__UpperCamelCase , custom_objects=__UpperCamelCase ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> List[str]: super(__UpperCamelCase , self )._prepare_local(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase_ ( self , snake_case , snake_case=None , **snake_case ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase = list(zip(*__UpperCamelCase ) ) return super(__UpperCamelCase , self ).apply_gradients(zip(__UpperCamelCase , __UpperCamelCase ) , name=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Tuple: if apply_state is None: return self._decayed_lr_t[var_dtype], {} _UpperCAmelCase = apply_state or {} _UpperCAmelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: _UpperCAmelCase = self._fallback_apply_state(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None ) -> Union[str, Any]: _UpperCAmelCase , _UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , __UpperCamelCase ) _UpperCAmelCase = self._decay_weights_op(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with tf.control_dependencies([decay] ): return super(__UpperCamelCase , self )._resource_apply_dense(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case=None ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , __UpperCamelCase ) _UpperCAmelCase = self._decay_weights_op(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with tf.control_dependencies([decay] ): return super(__UpperCamelCase , self )._resource_apply_sparse(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowerCamelCase_ ( self , snake_case ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__UpperCamelCase , __UpperCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__UpperCamelCase , __UpperCamelCase ) is not None: return False return True class lowercase__ ( __snake_case ): '''simple docstring''' def __init__( self ) -> Tuple: _UpperCAmelCase = [] _UpperCAmelCase = None @property def lowerCamelCase_ ( self ) -> List[Any]: if self._accum_steps is None: _UpperCAmelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__UpperCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase_ ( self ) -> str: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , snake_case ) -> List[Any]: if not self._gradients: _UpperCAmelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__UpperCamelCase ) , trainable=__UpperCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__UpperCamelCase ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(__UpperCamelCase )}' ) for accum_gradient, gradient in zip(self._gradients , __UpperCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__UpperCamelCase ) self._accum_steps.assign_add(1 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__UpperCamelCase ) )
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" import math def UpperCAmelCase ( A : Optional[int] = 100 ): '''simple docstring''' _UpperCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) _UpperCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase = get_logger(__name__) lowercase = Path(__file__).parent / '''model_card_template.md''' lowercase = uuida().hex lowercase = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def UpperCAmelCase ( A : Union[Dict, str, None] = None ): '''simple docstring''' _UpperCAmelCase = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def UpperCAmelCase ( A : str , A : Optional[str] = None , A : Optional[str] = None ): '''simple docstring''' if token is None: _UpperCAmelCase = HfFolder.get_token() if organization is None: _UpperCAmelCase = whoami(SCREAMING_SNAKE_CASE__ )["""name"""] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def UpperCAmelCase ( A : List[str] , A : str ): '''simple docstring''' if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(SCREAMING_SNAKE_CASE__ , 'local_rank' ) and args.local_rank not in [-1, 0]: return _UpperCAmelCase = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , 'hub_token' ) else None _UpperCAmelCase = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) _UpperCAmelCase = os.path.join(args.output_dir , 'README.md' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase ( A : Optional[str] , A : Optional[str] = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash _UpperCAmelCase = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) _UpperCAmelCase = re.search(r'snapshots/([^/]+)/' , SCREAMING_SNAKE_CASE__ ) if search is None: return None _UpperCAmelCase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase = os.path.join(hf_cache_home, '''diffusers''') def UpperCAmelCase ( A : Optional[str] = None , A : Optional[str] = None ): '''simple docstring''' if new_cache_dir is None: _UpperCAmelCase = DIFFUSERS_CACHE if old_cache_dir is None: _UpperCAmelCase = old_diffusers_cache _UpperCAmelCase = Path(SCREAMING_SNAKE_CASE__ ).expanduser() _UpperCAmelCase = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _UpperCAmelCase = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase = 0 else: with open(cache_version_file) as f: try: lowercase = int(f.read()) except ValueError: lowercase = 0 if cache_version < 1: lowercase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' '''the directory exists and can be written to.''' ) def UpperCAmelCase ( A : str , A : Optional[str] = None ): '''simple docstring''' if variant is not None: _UpperCAmelCase = weights_name.split('.' ) _UpperCAmelCase = splits[:-1] + [variant] + splits[-1:] _UpperCAmelCase = """.""".join(SCREAMING_SNAKE_CASE__ ) return weights_name def UpperCAmelCase ( A : Union[str, Any] , *, A : Any , A : Tuple , A : List[Any] , A : List[str] , A : int , A : str , A : int , A : Tuple , A : str , A : str , A : int=None , ): '''simple docstring''' _UpperCAmelCase = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('0.20.0' ) ): try: _UpperCAmelCase = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual _UpperCAmelCase = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' 'this model name. Check the model page at ' f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , snake_case , snake_case ) -> Tuple: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self , snake_case = 1 , snake_case = 100 , snake_case = None , snake_case = None , snake_case = True , ) -> List[str]: if audio_length_in_s is None: _UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate _UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate _UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' f' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) _UpperCAmelCase = int(__snake_case ) if sample_size % down_scale_factor != 0: _UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ' process.' ) _UpperCAmelCase = int(__snake_case ) _UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype _UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _UpperCAmelCase = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) # set step values self.scheduler.set_timesteps(__snake_case , device=audio.device ) _UpperCAmelCase = self.scheduler.timesteps.to(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase = self.unet(__snake_case , __snake_case ).sample # 2. compute previous image: x_t -> t_t-1 _UpperCAmelCase = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample _UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() _UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__snake_case )
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" lowercase = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} lowercase = ["""a""", """b""", """c""", """d""", """e"""] def UpperCAmelCase ( A : Any , A : List[Any] , A : Tuple ): '''simple docstring''' _UpperCAmelCase = start # add current to visited visited.append(A ) _UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _UpperCAmelCase = topological_sort(A , A , A ) # if all neighbors visited add current to sort sort.append(A ) # if all vertices haven't been visited select a new one to visit if len(A ) != len(A ): for vertice in vertices: if vertice not in visited: _UpperCAmelCase = topological_sort(A , A , A ) # return sort return sort if __name__ == "__main__": lowercase = topological_sort('''a''', [], []) print(sort)
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowercase = logging.get_logger(__name__) lowercase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase ( A : str ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase = model_type_to_module_name(lowercase_ ) _UpperCAmelCase = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(lowercase_ , lowercase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase_ , '__name__' , lowercase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase = importlib.import_module('transformers' ) if hasattr(lowercase_ , lowercase_ ): return getattr(lowercase_ , lowercase_ ) return None def UpperCAmelCase ( A : int , A : Optional[int] = None , A : Tuple = False , A : Any = False , A : List[Any] = None , A : Any = None , A : Any = None , A : Any = False , **A : str , ): '''simple docstring''' _UpperCAmelCase = get_file_from_repo( lowercase_ , lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , resume_download=lowercase_ , proxies=lowercase_ , use_auth_token=lowercase_ , revision=lowercase_ , local_files_only=lowercase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowercase_ , encoding='utf-8' ) as reader: return json.load(lowercase_ ) class lowercase__ : '''simple docstring''' def __init__( self ) -> List[Any]: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(__a ) def lowerCamelCase_ ( cls , snake_case , **snake_case ) -> Optional[Any]: _UpperCAmelCase = kwargs.pop('config' , __a ) _UpperCAmelCase = kwargs.pop('trust_remote_code' , __a ) _UpperCAmelCase = True _UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(__a , **__a ) _UpperCAmelCase = config_dict.get('image_processor_type' , __a ) _UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): _UpperCAmelCase = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCAmelCase = config_dict.pop('feature_extractor_type' , __a ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _UpperCAmelCase = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _UpperCAmelCase = config_dict["auto_map"]["AutoFeatureExtractor"] _UpperCAmelCase = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__a , __a ): _UpperCAmelCase = AutoConfig.from_pretrained(__a , **__a ) # It could be in `config.image_processor_type`` _UpperCAmelCase = getattr(__a , 'image_processor_type' , __a ) if hasattr(__a , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: _UpperCAmelCase = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _UpperCAmelCase = image_processor_class_from_name(__a ) _UpperCAmelCase = image_processor_auto_map is not None _UpperCAmelCase = image_processor_class is not None or type(__a ) in IMAGE_PROCESSOR_MAPPING _UpperCAmelCase = resolve_trust_remote_code( __a , __a , __a , __a ) if has_remote_code and trust_remote_code: _UpperCAmelCase = get_class_from_dynamic_module( __a , __a , **__a ) _UpperCAmelCase = kwargs.pop('code_revision' , __a ) if os.path.isdir(__a ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__a , **__a ) elif image_processor_class is not None: return image_processor_class.from_dict(__a , **__a ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__a ) in IMAGE_PROCESSOR_MAPPING: _UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(__a )] return image_processor_class.from_dict(__a , **__a ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def lowerCamelCase_ ( snake_case , snake_case ) -> str: IMAGE_PROCESSOR_MAPPING.register(__a , __a )
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( UpperCAmelCase_, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = RobertaTokenizer _UpperCAmelCase = RobertaTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = {"cls_token": "<s>"} def lowerCamelCase_ ( self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _UpperCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) _UpperCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) def lowerCamelCase_ ( self , **snake_case ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def lowerCamelCase_ ( self , snake_case ) -> Optional[Any]: _UpperCAmelCase = 'lower newer' _UpperCAmelCase = 'lower newer' return input_text, output_text def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _UpperCAmelCase = tokenizer.tokenize(_snake_case ) # , add_prefix_space=True) self.assertListEqual(_snake_case , _snake_case ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_snake_case ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_snake_case ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.tokenizer_class.from_pretrained('roberta-base' ) _UpperCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=_snake_case ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=_snake_case ) _UpperCAmelCase = tokenizer.encode( 'sequence builders' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) _UpperCAmelCase = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = 'Encode this sequence.' _UpperCAmelCase = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _UpperCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_snake_case , _snake_case ) _UpperCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_snake_case , _snake_case ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _UpperCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_snake_case , _snake_case ) # Testing spaces after special tokens _UpperCAmelCase = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case )} ) # mask token has a left space _UpperCAmelCase = tokenizer.convert_tokens_to_ids(_snake_case ) _UpperCAmelCase = 'Encode <mask> sequence' _UpperCAmelCase = 'Encode <mask>sequence' _UpperCAmelCase = tokenizer.encode(_snake_case ) _UpperCAmelCase = encoded.index(_snake_case ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_snake_case , _snake_case ) _UpperCAmelCase = tokenizer.encode(_snake_case ) _UpperCAmelCase = encoded.index(_snake_case ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_snake_case , _snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _UpperCAmelCase = 'A, <mask> AllenNLP sentence.' _UpperCAmelCase = tokenizer_r.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) _UpperCAmelCase = tokenizer_p.encode_plus(_snake_case , add_special_tokens=_snake_case , return_token_type_ids=_snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowerCamelCase_ ( self ) -> int: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _snake_case ) self.assertEqual(post_processor_state['add_prefix_space'] , _snake_case ) self.assertEqual(post_processor_state['trim_offsets'] , _snake_case ) def lowerCamelCase_ ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = f'{text_of_1_token} {text_of_1_token}' _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ) + 1, len(_snake_case ) + 1 + len(_snake_case )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_snake_case ), len(_snake_case ) + 1 + len(_snake_case )) , ) _UpperCAmelCase = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ) + 1, 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( _snake_case , use_fast=_snake_case , add_prefix_space=_snake_case , trim_offsets=_snake_case ) _UpperCAmelCase = tokenizer_r(_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_snake_case ), 1 + len(_snake_case ) + 1 + len(_snake_case )) , )
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class lowercase__ ( _lowerCAmelCase, _lowerCAmelCase ): '''simple docstring''' _UpperCAmelCase = 'convnextv2' def __init__( self , snake_case=3 , snake_case=4 , snake_case=4 , snake_case=None , snake_case=None , snake_case="gelu" , snake_case=0.02 , snake_case=1E-12 , snake_case=0.0 , snake_case=224 , snake_case=None , snake_case=None , **snake_case , ) -> Any: super().__init__(**_lowerCAmelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = num_stages _UpperCAmelCase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes _UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = drop_path_rate _UpperCAmelCase = image_size _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" from __future__ import annotations class lowercase__ : '''simple docstring''' def __init__( self , snake_case ) -> None: _UpperCAmelCase = order # a_{0} ... a_{k} _UpperCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase = [0.0] * self.order def lowerCamelCase_ ( self , snake_case , snake_case ) -> None: if len(_a ) < self.order: _UpperCAmelCase = [1.0, *a_coeffs] if len(_a ) != self.order + 1: _UpperCAmelCase = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_a )}' ) raise ValueError(_a ) if len(_a ) != self.order + 1: _UpperCAmelCase = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_a )}' ) raise ValueError(_a ) _UpperCAmelCase = a_coeffs _UpperCAmelCase = b_coeffs def lowerCamelCase_ ( self , snake_case ) -> float: _UpperCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase = self.input_history[:-1] _UpperCAmelCase = self.output_history[:-1] _UpperCAmelCase = sample _UpperCAmelCase = result return result
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=2 , snake_case=3 , snake_case=4 , snake_case=2 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=36 , snake_case=3 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=6 , snake_case=6 , snake_case=3 , snake_case=4 , snake_case=None , snake_case=1000 , ) -> List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = text_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase = text_seq_length _UpperCAmelCase = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase = self.text_seq_length + self.image_seq_length def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _UpperCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image _UpperCAmelCase = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _UpperCAmelCase = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _UpperCAmelCase = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.prepare_config_and_inputs() ( _UpperCAmelCase ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = LayoutLMvaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=False ) -> Union[str, Any]: _UpperCAmelCase = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): _UpperCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): _UpperCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def lowerCamelCase_ ( self ) -> str: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCamelCase__ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values.to(UpperCamelCase__ ) _UpperCAmelCase = torch.tensor([[1, 2]] ) _UpperCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _UpperCAmelCase = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits _UpperCAmelCase = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) _UpperCAmelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 for ch in input_str: _UpperCAmelCase = ord(lowerCamelCase_ ) _UpperCAmelCase = pow(2 , lowerCamelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" from collections import defaultdict class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _UpperCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case ) ) ] _UpperCAmelCase = defaultdict(snake_case ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _UpperCAmelCase = (1 << len(snake_case )) - 1 def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _UpperCAmelCase = self.count_ways_until(snake_case , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _UpperCAmelCase = total_ways_util return self.dp[mask][task_no] def lowerCamelCase_ ( self , snake_case ) -> List[str]: # Store the list of persons for each task for i in range(len(snake_case ) ): for j in task_performed[i]: self.task[j].append(snake_case ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": lowercase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. lowercase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Optional[int] , A : Optional[int] ): '''simple docstring''' _UpperCAmelCase = '\n'.join(a__ ) Path(a__ ).open('w' ).writelines(a__ ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( __lowercase ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> Any: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(__A , __A ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(__A , 'argv' , __A ): run_generate() assert Path(__A ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(__A ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: self.run_eval_tester(__A ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(__A , text['en'] ) _dump_articles(__A , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(__A )}\n {str(__A )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(__A , 'argv' , __A ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(__A ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__A ).exists() os.remove(Path(__A ) )
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowercase = logging.get_logger(__name__) lowercase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) lowercase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowercase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowercase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) lowercase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) lowercase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) lowercase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) lowercase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) lowercase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) lowercase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) lowercase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) lowercase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) lowercase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) lowercase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_MAPPING lowercase = auto_class_update(FlaxAutoModel) class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowercase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowercase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowercase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowercase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowercase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowercase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowercase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowercase__ ( _BaseAutoModelClass ): '''simple docstring''' _UpperCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowercase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowercase = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowercase = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowercase = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowercase = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowercase = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def UpperCAmelCase ( A : Tuple , A : Tuple ): '''simple docstring''' for tf_name, hf_name in patterns: _UpperCAmelCase = k.replace(_UpperCAmelCase , _UpperCAmelCase ) return k def UpperCAmelCase ( A : Union[str, Any] , A : Tuple ): '''simple docstring''' _UpperCAmelCase = BigBirdPegasusConfig(**_UpperCAmelCase ) _UpperCAmelCase = BigBirdPegasusForConditionalGeneration(_UpperCAmelCase ) _UpperCAmelCase = torch_model.state_dict() _UpperCAmelCase = {} # separating decoder weights _UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} _UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): _UpperCAmelCase = [k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue _UpperCAmelCase = DECODER_PATTERNS _UpperCAmelCase = rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _UpperCAmelCase = v.T _UpperCAmelCase = torch.from_numpy(_UpperCAmelCase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): _UpperCAmelCase = [k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue _UpperCAmelCase = REMAINING_PATTERNS _UpperCAmelCase = rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _UpperCAmelCase = v.T _UpperCAmelCase = torch.from_numpy(_UpperCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _UpperCAmelCase = mapping['model.embed_positions.weight'] _UpperCAmelCase = mapping.pop('model.embed_positions.weight' ) _UpperCAmelCase , _UpperCAmelCase = torch_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) _UpperCAmelCase = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase ( A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tf.train.list_variables(_UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = ['global_step'] for name, shape in tqdm(_UpperCAmelCase , desc='converting tf checkpoint to dict' ): _UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = array return tf_weights def UpperCAmelCase ( A : List[Any] , A : Optional[Any] , A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = get_tf_weights_as_numpy(_UpperCAmelCase ) _UpperCAmelCase = convert_bigbird_pegasus(_UpperCAmelCase , _UpperCAmelCase ) torch_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase = parser.parse_args() lowercase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" from functools import lru_cache @lru_cache def UpperCAmelCase ( A : int ): '''simple docstring''' if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" from __future__ import annotations class lowercase__ : '''simple docstring''' def __init__( self , snake_case ) -> None: _UpperCAmelCase = data _UpperCAmelCase = None _UpperCAmelCase = None def UpperCAmelCase ( A : Tuple ): # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCAmelCase ( A : str ): '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCAmelCase ( A : Tuple ): '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCAmelCase ( ): # Main function for testing. '''simple docstring''' _UpperCAmelCase = Node(1 ) _UpperCAmelCase = Node(2 ) _UpperCAmelCase = Node(3 ) _UpperCAmelCase = Node(4 ) _UpperCAmelCase = Node(5 ) _UpperCAmelCase = Node(6 ) _UpperCAmelCase = Node(7 ) _UpperCAmelCase = Node(8 ) _UpperCAmelCase = Node(9 ) print(is_full_binary_tree(_lowercase ) ) print(depth_of_tree(_lowercase ) ) print('Tree is: ' ) display(_lowercase ) if __name__ == "__main__": main()
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase_ ) def UpperCAmelCase ( A : Any ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowercase_ , id=lowercase_ )
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" lowercase = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''\"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase ( A : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase ( A : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'Morse code here!' print(lowerCAmelCase__ ) _UpperCAmelCase = encrypt(lowerCAmelCase__ ) print(lowerCAmelCase__ ) _UpperCAmelCase = decrypt(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": main()
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DebertaVaTokenizer _UpperCAmelCase = DebertaVaTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(UpperCamelCase__ ) , 30001 ) def lowerCamelCase_ ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = ' \tHeLLo!how \n Are yoU? ' _UpperCAmelCase = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowerCamelCase_ ( self ) -> List[Any]: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowerCamelCase_ ( self ) -> Optional[int]: pass def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = ' \tHeLLo!how \n Are yoU? ' _UpperCAmelCase = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = 'This is a test' _UpperCAmelCase = [13, 1, 4398, 25, 21, 1289] _UpperCAmelCase = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] _UpperCAmelCase = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) _UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # fmt: off _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _UpperCAmelCase = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _UpperCAmelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = DebertaVaTokenizer(UpperCamelCase__ ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase__ , ) @slow def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = {'input_ids': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) _UpperCAmelCase = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(snake_case ) from datasets import load_dataset _UpperCAmelCase = load_dataset('nielsr/rvlcdip-demo' ) _UpperCAmelCase = dataset['train'][0]['image'].convert('RGB' ) _UpperCAmelCase = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) _UpperCAmelCase = outputs.logits _UpperCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , snake_case ) _UpperCAmelCase = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=snake_case , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case , atol=1E-4 ) )
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : Union[str, Any] , A : Any ): '''simple docstring''' print(f'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(f'{i}\t\t{d}' ) def UpperCAmelCase ( A : List[str] , A : Optional[Any] , A : str ): '''simple docstring''' for j in range(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase ( A : str , A : int , A : List[str] , A : int ): '''simple docstring''' _UpperCAmelCase = [float('inf' )] * vertex_count _UpperCAmelCase = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: _UpperCAmelCase = distance[u] + w _UpperCAmelCase = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase = int(input('''Enter number of vertices: ''').strip()) lowercase = int(input('''Enter number of edges: ''').strip()) lowercase = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowercase , lowercase , lowercase = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowercase = {'''src''': src, '''dst''': dest, '''weight''': weight} lowercase = int(input('''\nEnter shortest path source:''').strip()) lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase = logging.get_logger(__name__) # General docstring lowercase = '''PoolFormerConfig''' # Base docstring lowercase = '''sail/poolformer_s12''' lowercase = [1, 5_12, 7, 7] # Image classification docstring lowercase = '''sail/poolformer_s12''' lowercase = '''tabby, tabby cat''' lowercase = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCAmelCase ( A : str , A : float = 0.0 , A : bool = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input _UpperCAmelCase = 1 - drop_prob _UpperCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _UpperCAmelCase = keep_prob + torch.rand(__lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _UpperCAmelCase = input.div(__lowercase ) * random_tensor return output class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = None ) -> List[Any]: super().__init__() _UpperCAmelCase = drop_prob def lowerCamelCase_ ( self , snake_case ) -> str: return drop_path(snake_case , self.drop_prob , self.training ) def lowerCamelCase_ ( self ) -> Any: return "p={}".format(self.drop_prob ) class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None ) -> Any: super().__init__() _UpperCAmelCase = patch_size if isinstance(snake_case , collections.abc.Iterable ) else (patch_size, patch_size) _UpperCAmelCase = stride if isinstance(snake_case , collections.abc.Iterable ) else (stride, stride) _UpperCAmelCase = padding if isinstance(snake_case , collections.abc.Iterable ) else (padding, padding) _UpperCAmelCase = nn.Convad(snake_case , snake_case , kernel_size=snake_case , stride=snake_case , padding=snake_case ) _UpperCAmelCase = norm_layer(snake_case ) if norm_layer else nn.Identity() def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: _UpperCAmelCase = self.projection(snake_case ) _UpperCAmelCase = self.norm(snake_case ) return embeddings class lowercase__ ( nn.GroupNorm ): '''simple docstring''' def __init__( self , snake_case , **snake_case ) -> str: super().__init__(1 , snake_case , **snake_case ) class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case ) -> int: super().__init__() _UpperCAmelCase = nn.AvgPoolad(snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=snake_case ) def lowerCamelCase_ ( self , snake_case ) -> Union[str, Any]: return self.pool(snake_case ) - hidden_states class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case ) -> Dict: super().__init__() _UpperCAmelCase = nn.Convad(snake_case , snake_case , 1 ) _UpperCAmelCase = nn.Convad(snake_case , snake_case , 1 ) _UpperCAmelCase = PoolFormerDropPath(snake_case ) if isinstance(config.hidden_act , snake_case ): _UpperCAmelCase = ACTaFN[config.hidden_act] else: _UpperCAmelCase = config.hidden_act def lowerCamelCase_ ( self , snake_case ) -> List[str]: _UpperCAmelCase = self.conva(snake_case ) _UpperCAmelCase = self.act_fn(snake_case ) _UpperCAmelCase = self.drop(snake_case ) _UpperCAmelCase = self.conva(snake_case ) _UpperCAmelCase = self.drop(snake_case ) return hidden_states class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: super().__init__() _UpperCAmelCase = PoolFormerPooling(snake_case ) _UpperCAmelCase = PoolFormerOutput(snake_case , snake_case , snake_case , snake_case ) _UpperCAmelCase = PoolFormerGroupNorm(snake_case ) _UpperCAmelCase = PoolFormerGroupNorm(snake_case ) # Useful for training neural nets _UpperCAmelCase = PoolFormerDropPath(snake_case ) if drop_path > 0.0 else nn.Identity() _UpperCAmelCase = config.use_layer_scale if config.use_layer_scale: _UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case) ) , requires_grad=snake_case ) _UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case) ) , requires_grad=snake_case ) def lowerCamelCase_ ( self , snake_case ) -> Dict: if self.use_layer_scale: _UpperCAmelCase = self.pooling(self.before_norm(snake_case ) ) _UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _UpperCAmelCase = hidden_states + self.drop_path(snake_case ) _UpperCAmelCase = () _UpperCAmelCase = self.output(self.after_norm(snake_case ) ) _UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _UpperCAmelCase = hidden_states + self.drop_path(snake_case ) _UpperCAmelCase = (output,) + outputs return outputs else: _UpperCAmelCase = self.drop_path(self.pooling(self.before_norm(snake_case ) ) ) # First residual connection _UpperCAmelCase = pooling_output + hidden_states _UpperCAmelCase = () # Second residual connection inside the PoolFormerOutput block _UpperCAmelCase = self.drop_path(self.output(self.after_norm(snake_case ) ) ) _UpperCAmelCase = hidden_states + layer_output _UpperCAmelCase = (output,) + outputs return outputs class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case ) -> List[Any]: super().__init__() _UpperCAmelCase = config # stochastic depth decay rule _UpperCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _UpperCAmelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _UpperCAmelCase = nn.ModuleList(snake_case ) # Transformer blocks _UpperCAmelCase = [] _UpperCAmelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _UpperCAmelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(snake_case ) ) _UpperCAmelCase = nn.ModuleList(snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case=False , snake_case=True ) -> str: _UpperCAmelCase = () if output_hidden_states else None _UpperCAmelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _UpperCAmelCase = layers # Get patch embeddings from hidden_states _UpperCAmelCase = embedding_layer(snake_case ) # Send the embeddings through the blocks for _, blk in enumerate(snake_case ): _UpperCAmelCase = blk(snake_case ) _UpperCAmelCase = layer_outputs[0] if output_hidden_states: _UpperCAmelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=snake_case , hidden_states=snake_case ) class lowercase__ ( __A ): '''simple docstring''' _UpperCAmelCase = PoolFormerConfig _UpperCAmelCase = '''poolformer''' _UpperCAmelCase = '''pixel_values''' _UpperCAmelCase = True def lowerCamelCase_ ( self , snake_case ) -> Any: if isinstance(snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCamelCase_ ( self , snake_case , snake_case=False ) -> Dict: if isinstance(snake_case , snake_case ): _UpperCAmelCase = value lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''', __A, ) class lowercase__ ( __A ): '''simple docstring''' def __init__( self , snake_case ) -> Dict: super().__init__(snake_case ) _UpperCAmelCase = config _UpperCAmelCase = PoolFormerEncoder(snake_case ) # Initialize weights and apply final processing self.post_init() def lowerCamelCase_ ( self ) -> List[Any]: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase_ ( self , snake_case = None , snake_case = None , snake_case = None , ) -> Union[str, Any]: _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _UpperCAmelCase = self.encoder( snake_case , output_hidden_states=snake_case , return_dict=snake_case , ) _UpperCAmelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=snake_case , hidden_states=encoder_outputs.hidden_states , ) class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case ) -> str: super().__init__() _UpperCAmelCase = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCamelCase_ ( self , snake_case ) -> List[Any]: _UpperCAmelCase = self.dense(snake_case ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''', __A, ) class lowercase__ ( __A ): '''simple docstring''' def __init__( self , snake_case ) -> Any: super().__init__(snake_case ) _UpperCAmelCase = config.num_labels _UpperCAmelCase = PoolFormerModel(snake_case ) # Final norm _UpperCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _UpperCAmelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase_ ( self , snake_case = None , snake_case = None , snake_case = None , snake_case = None , ) -> Any: _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.poolformer( snake_case , output_hidden_states=snake_case , return_dict=snake_case , ) _UpperCAmelCase = outputs[0] _UpperCAmelCase = self.classifier(self.norm(snake_case ).mean([-2, -1] ) ) _UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase = 'single_label_classification' else: _UpperCAmelCase = 'multi_label_classification' if self.config.problem_type == "regression": _UpperCAmelCase = MSELoss() if self.num_labels == 1: _UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCAmelCase = loss_fct(snake_case , snake_case ) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase = BCEWithLogitsLoss() _UpperCAmelCase = loss_fct(snake_case , snake_case ) if not return_dict: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states )
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" def UpperCAmelCase ( A : str , A : Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = [[] for _ in range(__snake_case )] _UpperCAmelCase = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(__snake_case ) <= key: return input_string for position, character in enumerate(__snake_case ): _UpperCAmelCase = position % (lowest * 2) # puts it in bounds _UpperCAmelCase = min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__snake_case ) _UpperCAmelCase = [''.join(__snake_case ) for row in temp_grid] _UpperCAmelCase = ''.join(__snake_case ) return output_string def UpperCAmelCase ( A : List[Any] , A : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string _UpperCAmelCase = [[] for _ in range(__snake_case )] # generates template for position in range(len(__snake_case ) ): _UpperCAmelCase = position % (lowest * 2) # puts it in bounds _UpperCAmelCase = min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) _UpperCAmelCase = 0 for row in temp_grid: # fills in the characters _UpperCAmelCase = input_string[counter : counter + len(__snake_case )] grid.append(list(__snake_case ) ) counter += len(__snake_case ) _UpperCAmelCase = '' # reads as zigzag for position in range(len(__snake_case ) ): _UpperCAmelCase = position % (lowest * 2) # puts it in bounds _UpperCAmelCase = min(__snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase ( A : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {} for key_guess in range(1 , len(__snake_case ) ): # tries every key _UpperCAmelCase = decrypt(__snake_case , __snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : Dict ): '''simple docstring''' if len(lowerCAmelCase__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _UpperCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : Optional[Any] , A : List[Any] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = sum(lowerCAmelCase_ ) create_state_space_tree(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return result def UpperCAmelCase ( A : int , A : List[str] , A : Union[str, Any] , A : List[str] , A : Optional[int] , A : int , ): '''simple docstring''' if sum(lowerCAmelCase_ ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase_ )) < max_sum: return if sum(lowerCAmelCase_ ) == max_sum: result.append(lowerCAmelCase_ ) return for index in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): create_state_space_tree( lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , [*path, nums[index]] , lowerCAmelCase_ , remaining_nums_sum - nums[index] , ) lowercase = [3, 34, 4, 12, 5, 2] lowercase = 9 lowercase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''''' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , snake_case = "" , snake_case = None , snake_case = None , **snake_case ) -> Union[str, Any]: super().__init__(self , **snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _UpperCAmelCase = fsspec.open( snake_case , mode='rb' , protocol=snake_case , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _UpperCAmelCase = os.path.basename(self.file.path.split('::' )[0] ) _UpperCAmelCase = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) _UpperCAmelCase = None @classmethod def lowerCamelCase_ ( cls , snake_case ) -> List[str]: # compressed file paths are always relative to the archive root return super()._strip_protocol(snake_case ).lstrip('/' ) def lowerCamelCase_ ( self ) -> int: if self.dir_cache is None: _UpperCAmelCase = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} _UpperCAmelCase = {f['name']: f} def lowerCamelCase_ ( self , snake_case ) -> List[Any]: return self.file.open().read() def lowerCamelCase_ ( self , snake_case , snake_case = "rb" , snake_case=None , snake_case=True , snake_case=None , **snake_case , ) -> Union[str, Any]: _UpperCAmelCase = self._strip_protocol(snake_case ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''bz2''' _UpperCAmelCase = '''bz2''' _UpperCAmelCase = '''.bz2''' class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''gzip''' _UpperCAmelCase = '''gzip''' _UpperCAmelCase = '''.gz''' class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''lz4''' _UpperCAmelCase = '''lz4''' _UpperCAmelCase = '''.lz4''' class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''xz''' _UpperCAmelCase = '''xz''' _UpperCAmelCase = '''.xz''' class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''zstd''' _UpperCAmelCase = '''zstd''' _UpperCAmelCase = '''.zst''' def __init__( self , snake_case , snake_case = "rb" , snake_case = None , snake_case = None , snake_case = DEFAULT_BLOCK_SIZE , **snake_case , ) -> int: super().__init__( fo=snake_case , mode=snake_case , target_protocol=snake_case , target_options=snake_case , block_size=snake_case , **snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _UpperCAmelCase = self.file.__enter__ class lowercase__ : '''simple docstring''' def __init__( self , snake_case ) -> List[str]: _UpperCAmelCase = file_ def __enter__( self ) -> Any: self._file.__enter__() return self def __exit__( self , *snake_case , **snake_case ) -> Optional[Any]: self._file.__exit__(*snake_case , **snake_case ) def __iter__( self ) -> Union[str, Any]: return iter(self._file ) def lowerCamelCase_ ( self ) -> List[str]: return next(self._file ) def __getattr__( self , snake_case ) -> int: return getattr(self._file , snake_case ) def fixed_enter(*snake_case , **snake_case ): return WrappedFile(_enter(*snake_case , **snake_case ) ) _UpperCAmelCase = fixed_enter
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" from math import loga def UpperCAmelCase ( A : int ): '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_A , _A ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {} class lowercase__ ( _A ): '''simple docstring''' _UpperCAmelCase = '''llama''' _UpperCAmelCase = ['''past_key_values'''] def __init__( self , snake_case=32000 , snake_case=4096 , snake_case=11008 , snake_case=32 , snake_case=32 , snake_case=None , snake_case="silu" , snake_case=2048 , snake_case=0.02 , snake_case=1E-6 , snake_case=True , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=1 , snake_case=False , snake_case=None , **snake_case , ) -> str: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: _UpperCAmelCase = num_attention_heads _UpperCAmelCase = num_key_value_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = pretraining_tp _UpperCAmelCase = use_cache _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ , ) def lowerCamelCase_ ( self ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) _UpperCAmelCase = self.rope_scaling.get('type' , UpperCamelCase__ ) _UpperCAmelCase = self.rope_scaling.get('factor' , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCAmelCase ( A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A , A ) def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(A , A , bias=A ) _UpperCAmelCase = emb.weight.data return lin_layer def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = torch.load(A , map_location='cpu' ) _UpperCAmelCase = mam_aaa['args'] or mam_aaa['cfg']['model'] _UpperCAmelCase = mam_aaa['model'] remove_ignore_keys_(A ) _UpperCAmelCase = state_dict['encoder.embed_tokens.weight'].shape[0] _UpperCAmelCase = MaMaaaConfig( vocab_size=A , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) _UpperCAmelCase = state_dict['decoder.embed_tokens.weight'] _UpperCAmelCase = MaMaaaForConditionalGeneration(A ) model.model.load_state_dict(A , strict=A ) _UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase = parser.parse_args() lowercase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = AutoencoderKL _UpperCAmelCase = '''sample''' _UpperCAmelCase = 1E-2 @property def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (32, 32) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def lowerCamelCase_ ( self ) -> Union[str, Any]: return (3, 32, 32) @property def lowerCamelCase_ ( self ) -> Optional[int]: return (3, 32, 32) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> str: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.model_class(**__a ) model.to(__a ) assert not model.is_gradient_checkpointing and model.training _UpperCAmelCase = model(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _UpperCAmelCase = torch.randn_like(__a ) _UpperCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _UpperCAmelCase = self.model_class(**__a ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__a ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _UpperCAmelCase = model_a(**__a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _UpperCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _UpperCAmelCase = dict(model.named_parameters() ) _UpperCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase , _UpperCAmelCase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__a ) _UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) _UpperCAmelCase = model.to(__a ) model.eval() if torch_device == "mps": _UpperCAmelCase = torch.manual_seed(0 ) else: _UpperCAmelCase = torch.Generator(device=__a ).manual_seed(0 ) _UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _UpperCAmelCase = image.to(__a ) with torch.no_grad(): _UpperCAmelCase = model(__a , sample_posterior=__a , generator=__a ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _UpperCAmelCase = torch.tensor( [ -4.00_78E-01, -3.83_23E-04, -1.26_81E-01, -1.14_62E-01, 2.00_95E-01, 1.08_93E-01, -8.82_47E-02, -3.03_61E-01, -9.86_44E-03, ] ) elif torch_device == "cpu": _UpperCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _UpperCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(__a , __a , rtol=1E-2 ) ) @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy' def lowerCamelCase_ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self , snake_case=0 , snake_case=(4, 3, 512, 512) , snake_case=False ) -> str: _UpperCAmelCase = torch.floataa if fpaa else torch.floataa _UpperCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(__a , __a ) ) ).to(__a ).to(__a ) return image def lowerCamelCase_ ( self , snake_case="CompVis/stable-diffusion-v1-4" , snake_case=False ) -> Union[str, Any]: _UpperCAmelCase = 'fp16' if fpaa else None _UpperCAmelCase = torch.floataa if fpaa else torch.floataa _UpperCAmelCase = AutoencoderKL.from_pretrained( __a , subfolder='vae' , torch_dtype=__a , revision=__a , ) model.to(__a ).eval() return model def lowerCamelCase_ ( self , snake_case=0 ) -> Tuple: if torch_device == "mps": return torch.manual_seed(__a ) return torch.Generator(device=__a ).manual_seed(__a ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Any: _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(__a ) _UpperCAmelCase = self.get_generator(__a ) with torch.no_grad(): _UpperCAmelCase = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape _UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(__a , __a , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCamelCase_ ( self , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = self.get_sd_vae_model(fpaa=__a ) _UpperCAmelCase = self.get_sd_image(__a , fpaa=__a ) _UpperCAmelCase = self.get_generator(__a ) with torch.no_grad(): _UpperCAmelCase = model(__a , generator=__a , sample_posterior=__a ).sample assert sample.shape == image.shape _UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCAmelCase = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(__a ) with torch.no_grad(): _UpperCAmelCase = model(__a ).sample assert sample.shape == image.shape _UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(__a , __a , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCamelCase_ ( self , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): _UpperCAmelCase = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] _UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _UpperCAmelCase = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.get_sd_vae_model(fpaa=__a ) _UpperCAmelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): _UpperCAmelCase = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] _UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _UpperCAmelCase = torch.tensor(__a ) assert torch_all_close(__a , __a , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = self.get_sd_vae_model(fpaa=__a ) _UpperCAmelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) , fpaa=__a ) with torch.no_grad(): _UpperCAmelCase = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCAmelCase = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def lowerCamelCase_ ( self , snake_case ) -> int: _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(__a , shape=(3, 4, 64, 64) ) with torch.no_grad(): _UpperCAmelCase = model.decode(__a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _UpperCAmelCase = model.decode(__a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(__a , __a , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = self.get_sd_vae_model() _UpperCAmelCase = self.get_sd_image(__a ) _UpperCAmelCase = self.get_generator(__a ) with torch.no_grad(): _UpperCAmelCase = model.encode(__a ).latent_dist _UpperCAmelCase = dist.sample(generator=__a ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _UpperCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _UpperCAmelCase = torch.tensor(__a ) _UpperCAmelCase = 3E-3 if torch_device != 'mps' else 1E-2 assert torch_all_close(__a , __a , atol=__a )
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase , lowercase , lowercase = False, False, False @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = None _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = None # Automatically constructed _UpperCAmelCase = '''dict''' _UpperCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _UpperCAmelCase = field(default='''Audio''', init=lowercase_, repr=lowercase_ ) def __call__( self ) -> int: return self.pa_type def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(lowerCamelCase_ , lowerCamelCase_ ): return {"bytes": None, "path": value} elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _UpperCAmelCase = BytesIO() sf.write(lowerCamelCase_ , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _UpperCAmelCase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: _UpperCAmelCase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32767 _UpperCAmelCase = BytesIO(bytes() ) sf.write(lowerCamelCase_ , lowerCamelCase_ , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> Optional[int]: if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) _UpperCAmelCase = (value["""path"""], BytesIO(value['bytes'] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err _UpperCAmelCase = xsplitext(lowerCamelCase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ' ) if file is None: _UpperCAmelCase = token_per_repo_id or {} _UpperCAmelCase = path.split('::' )[-1] try: _UpperCAmelCase = string_to_dict(lowerCamelCase_ , config.HUB_DATASETS_URL )["""repo_id"""] _UpperCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): _UpperCAmelCase = None with xopen(lowerCamelCase_ , 'rb' , use_auth_token=lowerCamelCase_ ) as f: _UpperCAmelCase = sf.read(lowerCamelCase_ ) else: _UpperCAmelCase = sf.read(lowerCamelCase_ ) _UpperCAmelCase = array.T if self.mono: _UpperCAmelCase = librosa.to_mono(lowerCamelCase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: _UpperCAmelCase = librosa.resample(lowerCamelCase_ , orig_sr=lowerCamelCase_ , target_sr=self.sampling_rate ) _UpperCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase_ ( self ) -> List[Any]: from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def lowerCamelCase_ ( self , snake_case ) -> List[str]: if pa.types.is_string(storage.type ): _UpperCAmelCase = pa.array([None] * len(lowerCamelCase_ ) , type=pa.binary() ) _UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _UpperCAmelCase = pa.array([None] * len(lowerCamelCase_ ) , type=pa.string() ) _UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): _UpperCAmelCase = pa.array([Audio().encode_example(lowerCamelCase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: _UpperCAmelCase = storage.field('bytes' ) else: _UpperCAmelCase = pa.array([None] * len(lowerCamelCase_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: _UpperCAmelCase = storage.field('path' ) else: _UpperCAmelCase = pa.array([None] * len(lowerCamelCase_ ) , type=pa.string() ) _UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(lowerCamelCase_ , self.pa_type ) def lowerCamelCase_ ( self , snake_case ) -> Dict: @no_op_if_value_is_null def path_to_bytes(snake_case ): with xopen(lowerCamelCase_ , 'rb' ) as f: _UpperCAmelCase = f.read() return bytes_ _UpperCAmelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _UpperCAmelCase = pa.array( [os.path.basename(lowerCamelCase_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) _UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase_ , self.pa_type )
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize lowercase = '''\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n''' lowercase = '''\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n''' lowercase = '''\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def lowerCamelCase_ ( self , snake_case ) -> Optional[Any]: import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=0.9 , snake_case=3 , snake_case=0.5 ) -> Union[str, Any]: if NLTK_VERSION >= version.Version('3.6.5' ): _UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(UpperCamelCase_ ) , word_tokenize(UpperCamelCase_ ) , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] else: _UpperCAmelCase = [ meteor_score.single_meteor_score(UpperCamelCase_ , UpperCamelCase_ , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return {"meteor": np.mean(UpperCamelCase_ )}
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''OwlViTFeatureExtractor'''] lowercase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=2 , snake_case=3 , snake_case=4 , snake_case=2 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=36 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=6 , snake_case=6 , snake_case=3 , snake_case=4 , snake_case=None , snake_case=1000 , ) -> List[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase = text_seq_length _UpperCAmelCase = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase = self.text_seq_length + self.image_seq_length def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _UpperCAmelCase = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = tmp_coordinate _UpperCAmelCase = tf.constant(lowercase_ ) _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _UpperCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TFLayoutLMvaModel(config=lowercase_ ) # text + image _UpperCAmelCase = model(lowercase_ , pixel_values=lowercase_ , training=lowercase_ ) _UpperCAmelCase = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , training=lowercase_ , ) _UpperCAmelCase = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase = model(lowercase_ , training=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase = model({'pixel_values': pixel_values} , training=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFLayoutLMvaForSequenceClassification(config=lowercase_ ) _UpperCAmelCase = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , training=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFLayoutLMvaForTokenClassification(config=lowercase_ ) _UpperCAmelCase = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , training=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = 2 _UpperCAmelCase = TFLayoutLMvaForQuestionAnswering(config=lowercase_ ) _UpperCAmelCase = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , training=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = config_and_inputs _UpperCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _UpperCAmelCase = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: return True def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=False ) -> dict: _UpperCAmelCase = copy.deepcopy(lowercase_ ) if model_class in get_values(lowercase_ ): _UpperCAmelCase = { k: tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowercase_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_ ): _UpperCAmelCase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase_ ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase_ ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowercase_ ): _UpperCAmelCase = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = TFLayoutLMvaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def lowerCamelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowercase_ ) if getattr(lowercase_ , 'hf_compute_loss' , lowercase_ ): # The number of elements in the loss should be the same as the number of elements in the label _UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _UpperCAmelCase = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowercase_ )[0] ] _UpperCAmelCase = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _UpperCAmelCase = prepared_for_class.pop('input_ids' ) _UpperCAmelCase = model(lowercase_ , **lowercase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _UpperCAmelCase = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: _UpperCAmelCase = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _UpperCAmelCase = -100 _UpperCAmelCase = tf.convert_to_tensor(lowercase_ ) _UpperCAmelCase = model(lowercase_ , **lowercase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) _UpperCAmelCase = model(lowercase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , lowercase_ , return_labels=lowercase_ ) # Get keys that were added with the _prepare_for_class function _UpperCAmelCase = prepared_for_class.keys() - inputs_dict.keys() _UpperCAmelCase = inspect.signature(model.call ).parameters _UpperCAmelCase = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _UpperCAmelCase = {0: 'input_ids'} for label_key in label_keys: _UpperCAmelCase = signature_names.index(lowercase_ ) _UpperCAmelCase = label_key _UpperCAmelCase = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _UpperCAmelCase = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _UpperCAmelCase = prepared_for_class[value] _UpperCAmelCase = tuple(lowercase_ ) # Send to model _UpperCAmelCase = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowerCamelCase_ ( self ) -> Optional[int]: ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase_ ( self ) -> Dict: ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase_ ( self ) -> Optional[int]: ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase_ ( self ) -> Optional[int]: ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase_ ( self ) -> int: ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFLayoutLMvaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> Optional[int]: return LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) if is_vision_available() else None @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowercase_ , return_tensors='tf' ).pixel_values _UpperCAmelCase = tf.constant([[1, 2]] ) _UpperCAmelCase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _UpperCAmelCase = model(input_ids=lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , training=lowercase_ ) # verify the logits _UpperCAmelCase = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) _UpperCAmelCase = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ) )
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowercase__ ( __lowerCAmelCase ): '''simple docstring''' _UpperCAmelCase = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase = '''BlipImageProcessor''' _UpperCAmelCase = '''AutoTokenizer''' def __init__( self , snake_case , snake_case , snake_case ) -> List[str]: super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) # add QFormer tokenizer _UpperCAmelCase = qformer_tokenizer def __call__( self , snake_case = None , snake_case = None , snake_case = True , snake_case = False , snake_case = None , snake_case = None , snake_case = 0 , snake_case = None , snake_case = None , snake_case = False , snake_case = False , snake_case = False , snake_case = False , snake_case = False , snake_case = True , snake_case = None , **snake_case , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _UpperCAmelCase = BatchFeature() if text is not None: _UpperCAmelCase = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) encoding.update(lowerCAmelCase_ ) _UpperCAmelCase = self.qformer_tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) _UpperCAmelCase = qformer_text_encoding.pop('input_ids' ) _UpperCAmelCase = qformer_text_encoding.pop('attention_mask' ) if images is not None: _UpperCAmelCase = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) encoding.update(lowerCAmelCase_ ) return encoding def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> Dict: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase_ ( self , *snake_case , **snake_case ) -> Any: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase_ ( self , snake_case , **snake_case ) -> Dict: if os.path.isfile(lowerCAmelCase_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _UpperCAmelCase = os.path.join(lowerCAmelCase_ , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(lowerCAmelCase_ ) return super().save_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowerCamelCase_ ( cls , snake_case , **snake_case ) -> Dict: _UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , subfolder='qformer_tokenizer' ) _UpperCAmelCase = cls._get_arguments_from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) args.append(lowerCAmelCase_ ) return cls(*lowerCAmelCase_ )
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {'vocab_file': 'vocab.txt'} lowercase = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } lowercase = { 'facebook/esm2_t6_8M_UR50D': 10_24, 'facebook/esm2_t12_35M_UR50D': 10_24, } def UpperCAmelCase ( A : Dict ): '''simple docstring''' with open(A , 'r' ) as f: _UpperCAmelCase = f.read().splitlines() return [l.strip() for l in lines] class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , snake_case , snake_case="<unk>" , snake_case="<cls>" , snake_case="<pad>" , snake_case="<mask>" , snake_case="<eos>" , **snake_case , ) -> Tuple: super().__init__(**UpperCAmelCase__ ) _UpperCAmelCase = load_vocab_file(UpperCAmelCase__ ) _UpperCAmelCase = dict(enumerate(self.all_tokens ) ) _UpperCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} _UpperCAmelCase = unk_token _UpperCAmelCase = cls_token _UpperCAmelCase = pad_token _UpperCAmelCase = mask_token _UpperCAmelCase = eos_token _UpperCAmelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCamelCase_ ( self , snake_case ) -> Optional[Any]: return self._id_to_token.get(UpperCAmelCase__ , self.unk_token ) def lowerCamelCase_ ( self , snake_case ) -> Union[str, Any]: return self._token_to_id.get(UpperCAmelCase__ , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase_ ( self , snake_case , **snake_case ) -> Tuple: return text.split() def lowerCamelCase_ ( self , snake_case=False ) -> List[str]: return len(self._id_to_token ) def lowerCamelCase_ ( self ) -> Optional[Any]: return {token: i for i, token in enumerate(self.all_tokens )} def lowerCamelCase_ ( self , snake_case ) -> List[str]: return self._token_to_id.get(UpperCAmelCase__ , self._token_to_id.get(self.unk_token ) ) def lowerCamelCase_ ( self , snake_case ) -> int: return self._id_to_token.get(UpperCAmelCase__ , self.unk_token ) def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> Any: _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCamelCase_ ( self , snake_case , snake_case = None , snake_case = False ) -> Any: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _UpperCAmelCase = [1] + ([0] * len(UpperCAmelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase__ ) + [1] return mask def lowerCamelCase_ ( self , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = os.path.join(UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(UpperCAmelCase__ , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def lowerCamelCase_ ( self ) -> Union[str, Any]: return self.get_vocab_size(with_added_tokens=UpperCAmelCase__ ) def lowerCamelCase_ ( self , snake_case , snake_case = False ) -> List[str]: return super()._add_tokens(UpperCAmelCase__ , special_tokens=UpperCAmelCase__ )
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _UpperCAmelCase = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(snake_case__ ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = "sgugger/tiny-distilbert-classification" _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , only_pretrain_model=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , torchscript=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , fpaa=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ ) # set architectures equal to `None` _UpperCAmelCase = None _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=snake_case__ , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = "sshleifer/tinier_bart" _UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = "sshleifer/tiny-gpt2" _UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = "sshleifer/tinier_bart" _UpperCAmelCase = AutoConfig.from_pretrained(snake_case__ ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , save_to_csv=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(snake_case__ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(snake_case__ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(snake_case__ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(snake_case__ , 'train_time.csv' ) , env_info_csv_file=os.path.join(snake_case__ , 'env.csv' ) , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) benchmark.run() self.assertTrue(Path(os.path.join(snake_case__ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , 'env.csv' ) ).exists() ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(snake_case ): self.assertTrue(hasattr(snake_case__ , 'sequential' ) ) self.assertTrue(hasattr(snake_case__ , 'cumulative' ) ) self.assertTrue(hasattr(snake_case__ , 'current' ) ) self.assertTrue(hasattr(snake_case__ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(snake_case__ , 'log.txt' ) , log_print=snake_case__ , trace_memory_line_by_line=snake_case__ , multi_process=snake_case__ , ) _UpperCAmelCase = PyTorchBenchmark(snake_case__ ) _UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(snake_case__ , 'log.txt' ) ).exists() )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
def UpperCAmelCase ( A : int | float | str ): '''simple docstring''' try: _UpperCAmelCase = float(__a ) except ValueError: raise ValueError('Please enter a valid number' ) _UpperCAmelCase = decimal - int(__a ) if fractional_part == 0: return int(__a ), 1 else: _UpperCAmelCase = len(str(__a ).split('.' )[1] ) _UpperCAmelCase = int(decimal * (10**number_of_frac_digits) ) _UpperCAmelCase = 10**number_of_frac_digits _UpperCAmelCase , _UpperCAmelCase = denominator, numerator while True: _UpperCAmelCase = dividend % divisor if remainder == 0: break _UpperCAmelCase , _UpperCAmelCase = divisor, remainder _UpperCAmelCase , _UpperCAmelCase = numerator / divisor, denominator / divisor return int(__a ), int(__a ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction('67') = }''') print(F'''{decimal_to_fraction('45.0') = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction('6.25') = }''') print(F'''{decimal_to_fraction('78td') = }''')
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase = logging.get_logger(__name__) lowercase = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class lowercase__ ( _snake_case ): '''simple docstring''' _UpperCAmelCase = """table-transformer""" _UpperCAmelCase = ["""past_key_values"""] _UpperCAmelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case=True , snake_case=None , snake_case=3 , snake_case=100 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=0.0 , snake_case=0.0 , snake_case=True , snake_case="relu" , snake_case=256 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1.0 , snake_case=False , snake_case="sine" , snake_case="resnet50" , snake_case=True , snake_case=False , snake_case=1 , snake_case=5 , snake_case=2 , snake_case=1 , snake_case=1 , snake_case=5 , snake_case=2 , snake_case=0.1 , **snake_case , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _UpperCAmelCase = CONFIG_MAPPING["resnet"](out_features=['stage4'] ) elif isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = backbone_config.get('model_type' ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(snake_case_ ) # set timm attributes to None _UpperCAmelCase = None, None, None _UpperCAmelCase = use_timm_backbone _UpperCAmelCase = backbone_config _UpperCAmelCase = num_channels _UpperCAmelCase = num_queries _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = init_xavier_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = encoder_layers _UpperCAmelCase = auxiliary_loss _UpperCAmelCase = position_embedding_type _UpperCAmelCase = backbone _UpperCAmelCase = use_pretrained_backbone _UpperCAmelCase = dilation # Hungarian matcher _UpperCAmelCase = class_cost _UpperCAmelCase = bbox_cost _UpperCAmelCase = giou_cost # Loss coefficients _UpperCAmelCase = mask_loss_coefficient _UpperCAmelCase = dice_loss_coefficient _UpperCAmelCase = bbox_loss_coefficient _UpperCAmelCase = giou_loss_coefficient _UpperCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCamelCase_ ( self ) -> List[str]: return self.encoder_attention_heads @property def lowerCamelCase_ ( self ) -> Optional[int]: return self.d_model class lowercase__ ( _snake_case ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Dict: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def lowerCamelCase_ ( self ) -> int: return 1E-5 @property def lowerCamelCase_ ( self ) -> Any: return 12
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase__ ( lowercase__, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = XLNetTokenizer _UpperCAmelCase = XLNetTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = XLNetTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = '''<s>''' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(UpperCAmelCase__ ) , 1006 ) def lowerCamelCase_ ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = XLNetTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [285, 46, 10, 170, 382] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = XLNetTokenizer(UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = XLNetTokenizer(UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) _UpperCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = {'''input_ids''': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def UpperCAmelCase ( A : Any ): '''simple docstring''' if "resnet-50" in model_name: _UpperCAmelCase = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: _UpperCAmelCase = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) _UpperCAmelCase = DetrConfig(use_timm_backbone=_lowerCAmelCase , backbone_config=_lowerCAmelCase ) # set label attributes _UpperCAmelCase = 'panoptic' in model_name if is_panoptic: _UpperCAmelCase = 250 else: _UpperCAmelCase = 91 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'coco-detection-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' _UpperCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def UpperCAmelCase ( A : Optional[Any] , A : List[str] , A : int ): '''simple docstring''' _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val def UpperCAmelCase ( A : Any , A : Union[str, Any]=False ): '''simple docstring''' _UpperCAmelCase = '' if is_panoptic: _UpperCAmelCase = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:256, :] _UpperCAmelCase = in_proj_bias[:256] _UpperCAmelCase = in_proj_weight[256:512, :] _UpperCAmelCase = in_proj_bias[256:512] _UpperCAmelCase = in_proj_weight[-256:, :] _UpperCAmelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:256, :] _UpperCAmelCase = in_proj_bias[:256] _UpperCAmelCase = in_proj_weight[256:512, :] _UpperCAmelCase = in_proj_bias[256:512] _UpperCAmelCase = in_proj_weight[-256:, :] _UpperCAmelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase = in_proj_weight_cross_attn[:256, :] _UpperCAmelCase = in_proj_bias_cross_attn[:256] _UpperCAmelCase = in_proj_weight_cross_attn[256:512, :] _UpperCAmelCase = in_proj_bias_cross_attn[256:512] _UpperCAmelCase = in_proj_weight_cross_attn[-256:, :] _UpperCAmelCase = in_proj_bias_cross_attn[-256:] def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( A : str , A : Dict=None , A : Optional[int]=False ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = get_detr_config(_lowerCAmelCase ) # load original model from torch hub _UpperCAmelCase = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(f'Converting model {model_name}...' ) _UpperCAmelCase = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=_lowerCAmelCase ).eval() _UpperCAmelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(_lowerCAmelCase ): if is_panoptic: _UpperCAmelCase = 'detr.' + src rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCAmelCase , is_panoptic=_lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val # finally, create HuggingFace model and load state dict _UpperCAmelCase = DetrForSegmentation(_lowerCAmelCase ) if is_panoptic else DetrForObjectDetection(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # verify our conversion on an image _UpperCAmelCase = 'coco_panoptic' if is_panoptic else 'coco_detection' _UpperCAmelCase = DetrImageProcessor(format=_lowerCAmelCase ) _UpperCAmelCase = processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = detr(_lowerCAmelCase ) _UpperCAmelCase = model(_lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') lowercase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowercase__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , snake_case=0.01 , snake_case=1000 ) -> Union[str, Any]: _UpperCAmelCase = p_stop _UpperCAmelCase = max_length def __iter__( self ) -> Optional[Any]: _UpperCAmelCase = 0 _UpperCAmelCase = False while not stop and count < self.max_length: yield count count += 1 _UpperCAmelCase = random.random() < self.p_stop class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=False , snake_case=True ) -> Tuple: _UpperCAmelCase = [ BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) for i in range(2 ) ] _UpperCAmelCase = [list(__lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCamelCase ) for shard in batch_sampler_shards] , [len(__lowerCamelCase ) for e in expected] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _UpperCAmelCase = [BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , even_batches=__lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case=False , snake_case=2 , snake_case=False ) -> Dict: random.seed(__lowerCamelCase ) _UpperCAmelCase = list(__lowerCamelCase ) _UpperCAmelCase = [ IterableDatasetShard( __lowerCamelCase , batch_size=__lowerCamelCase , drop_last=__lowerCamelCase , num_processes=__lowerCamelCase , process_index=__lowerCamelCase , split_batches=__lowerCamelCase , ) for i in range(__lowerCamelCase ) ] _UpperCAmelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCamelCase ) iterable_dataset_lists.append(list(__lowerCamelCase ) ) _UpperCAmelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _UpperCAmelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(len(__lowerCamelCase ) % shard_batch_size == 0 ) _UpperCAmelCase = [] for idx in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCamelCase ) < len(__lowerCamelCase ): reference += reference self.assertListEqual(__lowerCamelCase , reference[: len(__lowerCamelCase )] ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = 42 _UpperCAmelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) # Edge case with a very small dataset _UpperCAmelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCamelCase ) _UpperCAmelCase = SkipBatchSampler(__lowerCamelCase , 2 ) self.assertListEqual(list(__lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) _UpperCAmelCase = skip_first_batches(__lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase_ ( self ) -> Dict: Accelerator() _UpperCAmelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def UpperCAmelCase ( A : List[str] , A : int ): '''simple docstring''' return (-y * np.log(UpperCamelCase__ ) - (1 - y) * np.log(1 - h )).mean() def UpperCAmelCase ( A : Dict , A : Dict , A : str ): '''simple docstring''' _UpperCAmelCase = np.dot(UpperCamelCase__ , UpperCamelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase__ ) ) ) def UpperCAmelCase ( A : List[Any] , A : Any , A : Optional[int] , A : int=7_0000 ): '''simple docstring''' _UpperCAmelCase = np.zeros(x.shape[1] ) for iterations in range(UpperCamelCase__ ): _UpperCAmelCase = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = sigmoid_function(UpperCamelCase__ ) _UpperCAmelCase = np.dot(x.T , h - y ) / y.size _UpperCAmelCase = theta - alpha * gradient # updating the weights _UpperCAmelCase = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = sigmoid_function(UpperCamelCase__ ) _UpperCAmelCase = cost_function(UpperCamelCase__ , UpperCamelCase__ ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase = datasets.load_iris() lowercase = iris.data[:, :2] lowercase = (iris.target != 0) * 1 lowercase = 0.1 lowercase = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('''theta: ''', theta) # printing the theta i.e our weights vector def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' return sigmoid_function( np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') (lowercase) = (x[:, 0].min(), x[:, 0].max()) (lowercase) = (x[:, 1].min(), x[:, 1].max()) (lowercase) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase = np.c_[xxa.ravel(), xxa.ravel()] lowercase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = f'Input value of [number={number}] must be an integer' raise TypeError(__SCREAMING_SNAKE_CASE ) if number < 1: _UpperCAmelCase = f'Input value of [number={number}] must be > 0' raise ValueError(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 1 for i in range(1 , __SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" def UpperCAmelCase ( A : Optional[int] , A : List[Any] ) -> Optional[int]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(A ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase__ ( A, A, A ): '''simple docstring''' @register_to_config def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = False , ) -> Union[str, Any]: super().__init__() _UpperCAmelCase = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = False _UpperCAmelCase = nn.Dropout(p=__UpperCamelCase ) _UpperCAmelCase = TaConfig( vocab_size=__UpperCamelCase , d_model=__UpperCamelCase , num_heads=__UpperCamelCase , d_kv=__UpperCamelCase , d_ff=__UpperCamelCase , dropout_rate=__UpperCamelCase , feed_forward_proj=__UpperCamelCase , is_decoder=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , ) _UpperCAmelCase = nn.ModuleList() for lyr_num in range(__UpperCamelCase ): _UpperCAmelCase = TaBlock(__UpperCamelCase ) self.encoders.append(__UpperCamelCase ) _UpperCAmelCase = TaLayerNorm(__UpperCamelCase ) _UpperCAmelCase = nn.Dropout(p=__UpperCamelCase ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> int: _UpperCAmelCase = self.token_embedder(__UpperCamelCase ) _UpperCAmelCase = encoder_input_tokens.shape[1] _UpperCAmelCase = torch.arange(__UpperCamelCase , device=encoder_input_tokens.device ) x += self.position_encoding(__UpperCamelCase ) _UpperCAmelCase = self.dropout_pre(__UpperCamelCase ) # inverted the attention mask _UpperCAmelCase = encoder_input_tokens.size() _UpperCAmelCase = self.get_extended_attention_mask(__UpperCamelCase , __UpperCamelCase ) for lyr in self.encoders: _UpperCAmelCase = lyr(__UpperCamelCase , __UpperCamelCase )[0] _UpperCAmelCase = self.layer_norm(__UpperCamelCase ) return self.dropout_post(__UpperCamelCase ), encoder_inputs_mask
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase ( A : List[str] ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase ( A : List[str] , A : List[str] , A : Any ): '''simple docstring''' return max(metric_fn(A , A ) for gt in ground_truths ) def UpperCAmelCase ( A : Tuple , A : Optional[Any] , A : Dict ): '''simple docstring''' _UpperCAmelCase = [line.strip() for line in open(A , 'r' ).readlines()] _UpperCAmelCase = [] if args.gold_data_mode == "qa": _UpperCAmelCase = pd.read_csv(A , sep='\t' , header=A ) for answer_list in data[1]: _UpperCAmelCase = ast.literal_eval(A ) answers.append(A ) else: _UpperCAmelCase = [line.strip() for line in open(A , 'r' ).readlines()] _UpperCAmelCase = [[reference] for reference in references] _UpperCAmelCase = 0 for prediction, ground_truths in zip(A , A ): total += 1 em += metric_max_over_ground_truths(A , A , A ) fa += metric_max_over_ground_truths(A , A , A ) _UpperCAmelCase = 100.0 * em / total _UpperCAmelCase = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def UpperCAmelCase ( A : int , A : Tuple , A : Tuple ): '''simple docstring''' _UpperCAmelCase = args.k _UpperCAmelCase = [line.strip() for line in open(A , 'r' ).readlines()] _UpperCAmelCase = [line.strip() for line in open(A , 'r' ).readlines()] _UpperCAmelCase = 0 for hypo, reference in zip(A , A ): _UpperCAmelCase = set(hypo.split('\t' )[:k] ) _UpperCAmelCase = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _UpperCAmelCase = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def UpperCAmelCase ( A : int , A : Tuple , A : Optional[Any] ): '''simple docstring''' def strip_title(A : List[str] ): if title.startswith('\"' ): _UpperCAmelCase = title[1:] if title.endswith('\"' ): _UpperCAmelCase = title[:-1] return title _UpperCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors='pt' , padding=A , truncation=A , )["""input_ids"""].to(args.device ) _UpperCAmelCase = rag_model.rag.question_encoder(A ) _UpperCAmelCase = question_enc_outputs[0] _UpperCAmelCase = rag_model.retriever( A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) _UpperCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _UpperCAmelCase = [] for docs in all_docs: _UpperCAmelCase = [strip_title(A ) for title in docs["""title"""]] provenance_strings.append('\t'.join(A ) ) return provenance_strings def UpperCAmelCase ( A : List[Any] , A : List[str] , A : Union[str, Any] ): '''simple docstring''' with torch.no_grad(): _UpperCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors='pt' , padding=A , truncation=A ) _UpperCAmelCase = inputs_dict.input_ids.to(args.device ) _UpperCAmelCase = inputs_dict.attention_mask.to(args.device ) _UpperCAmelCase = rag_model.generate( # rag_model overwrites generate A , attention_mask=A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _UpperCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(A , skip_special_tokens=A ) if args.print_predictions: for q, a in zip(A , A ): logger.info('Q: {} - A: {}'.format(A , A ) ) return answers def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=A , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=A , choices=['exact', 'compressed', 'legacy'] , type=A , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=A , type=A , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=A , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=A , type=A , required=A , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=A , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=A , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=A , type=A , required=A , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=A , type=A , required=A , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=A , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=A , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=A , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=A , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=A , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=A , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def UpperCAmelCase ( A : List[str] ): '''simple docstring''' _UpperCAmelCase = {} if args.model_type is None: _UpperCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): _UpperCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration _UpperCAmelCase = args.n_docs if args.index_name is not None: _UpperCAmelCase = args.index_name if args.index_path is not None: _UpperCAmelCase = args.index_path else: _UpperCAmelCase = BartForConditionalGeneration _UpperCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , A ) _UpperCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k _UpperCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(A , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(A ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): _UpperCAmelCase = RagRetriever.from_pretrained(A , **A ) _UpperCAmelCase = model_class.from_pretrained(A , retriever=A , **A ) model.retriever.init_retrieval() else: _UpperCAmelCase = model_class.from_pretrained(A , **A ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: _UpperCAmelCase = [] for line in tqdm(A ): questions.append(line.strip() ) if len(A ) == args.eval_batch_size: _UpperCAmelCase = evaluate_batch_fn(A , A , A ) preds_file.write('\n'.join(A ) + '\n' ) preds_file.flush() _UpperCAmelCase = [] if len(A ) > 0: _UpperCAmelCase = evaluate_batch_fn(A , A , A ) preds_file.write('\n'.join(A ) ) preds_file.flush() score_fn(A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase = get_args() main(args)
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" import sys import turtle def UpperCAmelCase ( A : tuple[float, float] , A : tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase ( A : tuple[float, float] , A : tuple[float, float] , A : tuple[float, float] , A : int , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) triangle(lowerCAmelCase__ , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , get_mid(lowerCAmelCase__ , lowerCAmelCase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowercase = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCAmelCase ( A : Optional[int] , A : Dict , A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = OmegaConf.load(A ) _UpperCAmelCase = torch.load(A , map_location='cpu' )['model'] _UpperCAmelCase = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase = {} _UpperCAmelCase = 'first_stage_model.' for key in keys: if key.startswith(A ): _UpperCAmelCase = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase = {} _UpperCAmelCase = 'model.diffusion_model.' for key in keys: if key.startswith(A ): _UpperCAmelCase = state_dict[key] _UpperCAmelCase = config.model.params.first_stage_config.params _UpperCAmelCase = config.model.params.unet_config.params _UpperCAmelCase = VQModel(**A ).eval() vqvae.load_state_dict(A ) _UpperCAmelCase = UNetLDMModel(**A ).eval() unet.load_state_dict(A ) _UpperCAmelCase = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , ) _UpperCAmelCase = LDMPipeline(A , A , A ) pipeline.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowercase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase = "src/transformers" lowercase = "docs/source/en/tasks" def UpperCAmelCase ( A : List[Any] , A : Tuple , A : Tuple ): '''simple docstring''' with open(__lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase = f.readlines() # Find the start prompt. _UpperCAmelCase = 0 while not lines[start_index].startswith(__lowerCAmelCase ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index while not lines[end_index].startswith(__lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase = direct_transformers_import(TRANSFORMERS_PATH) lowercase = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] _UpperCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowerCAmelCase , set() ) _UpperCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def UpperCAmelCase ( A : Union[str, Any] , A : str=False ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _find_text_in_file( filename=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _UpperCAmelCase = get_model_list_for_task(__lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowercase__ ( unittest.TestCase, _UpperCamelCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = load_tool('text-to-speech' ) self.tool.setup() def lowerCamelCase_ ( self ) -> str: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _UpperCAmelCase = self.tool('hey' ) _UpperCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def lowerCamelCase_ ( self ) -> Any: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _UpperCAmelCase = self.tool('hey' ) _UpperCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Any: debug_launcher(test_script.main ) def lowerCamelCase_ ( self ) -> Tuple: debug_launcher(test_ops.main )
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase ( A : List[str] ): _UpperCAmelCase = [] for line in lines: _UpperCAmelCase = re.sub(r'#.*' , '' , UpperCAmelCase__ ) # remove comments if line: filtered_lines.append(UpperCAmelCase__ ) _UpperCAmelCase = '\n'.join(UpperCAmelCase__ ) # Make a hash from all this code _UpperCAmelCase = full_str.encode('utf-8' ) return shaaaa(UpperCAmelCase__ ).hexdigest() # get importable module names and hash for caching lowercase = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowercase = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowercase = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name lowercase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = """canine""" def __init__( self , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=16384 , snake_case=16 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case=0xe_0_0_0 , snake_case=0xe_0_0_1 , snake_case=4 , snake_case=4 , snake_case=8 , snake_case=16384 , snake_case=128 , **snake_case , ) -> Dict: super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps # Character config: _UpperCAmelCase = downsampling_rate _UpperCAmelCase = upsampling_kernel_size _UpperCAmelCase = num_hash_functions _UpperCAmelCase = num_hash_buckets _UpperCAmelCase = local_transformer_stride
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowercase__ ( __UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase = '''''' _UpperCAmelCase = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self , snake_case = None , snake_case = None , **snake_case , ) -> int: super().__init__(self , **snake_case ) _UpperCAmelCase = repo_info _UpperCAmelCase = token _UpperCAmelCase = None def lowerCamelCase_ ( self ) -> Any: if self.dir_cache is None: _UpperCAmelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCAmelCase = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(snake_case ): {'name': str(snake_case ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCamelCase_ ( self , snake_case , snake_case = "rb" , **snake_case , ) -> int: if not isinstance(self.repo_info , snake_case ): raise NotImplementedError(f'Open is only implemented for dataset repositories, but got {self.repo_info}' ) _UpperCAmelCase = hf_hub_url(self.repo_info.id , snake_case , revision=self.repo_info.sha ) return fsspec.open( snake_case , mode=snake_case , headers=get_authentication_headers_for_url(snake_case , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCamelCase_ ( self , snake_case , **snake_case ) -> List[str]: self._get_dirs() _UpperCAmelCase = self._strip_protocol(snake_case ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case=False , **snake_case ) -> List[Any]: self._get_dirs() _UpperCAmelCase = PurePosixPath(path.strip('/' ) ) _UpperCAmelCase = {} for p, f in self.dir_cache.items(): _UpperCAmelCase = PurePosixPath(p.strip('/' ) ) _UpperCAmelCase = p.parent if root == path: _UpperCAmelCase = f _UpperCAmelCase = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" from math import isclose, sqrt def UpperCAmelCase ( A : float , A : float , A : float ): '''simple docstring''' _UpperCAmelCase = point_y / 4 / point_x _UpperCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCAmelCase = outgoing_gradient**2 + 4 _UpperCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 _UpperCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCAmelCase = x_minus if isclose(A , A ) else x_plus _UpperCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def UpperCAmelCase ( A : float = 1.4 , A : float = -9.6 ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = first_x_coord _UpperCAmelCase = first_y_coord _UpperCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _UpperCAmelCase = next_point(A , A , A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowercase = random.Random() def UpperCAmelCase ( A : int , A : Tuple=1.0 , A : Optional[Any]=None , A : List[Any]=None ): '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=400 , snake_case=2000 , snake_case=10 , snake_case=160 , snake_case=8 , snake_case=0.0 , snake_case=4000 , snake_case=False , snake_case=True , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def lowerCamelCase_ ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self , snake_case=False , snake_case=False ) -> Optional[Any]: def _flatten(snake_case ): return list(itertools.chain(*snake_case ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase__ ( UpperCamelCase_, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(snake_case ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(snake_case , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(snake_case ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(snake_case , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(snake_case , return_tensors='np' ).input_features _UpperCAmelCase = feature_extractor(snake_case , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(snake_case ) _UpperCAmelCase = feature_extractor(snake_case , return_tensors='np' ).input_features _UpperCAmelCase = feature_extractor(snake_case , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(snake_case ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(snake_case , return_tensors='np' ).input_features _UpperCAmelCase = feature_extractor(snake_case , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) def lowerCamelCase_ ( self ) -> Dict: import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort('id' ).select(range(snake_case ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self ) -> int: # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(snake_case , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1E-4 ) ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1E-3 ) )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase = 2_56 class lowercase__ ( lowercase_ ): '''simple docstring''' _UpperCAmelCase = ['''melgan'''] def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> List[str]: super().__init__() # From MELGAN _UpperCAmelCase = math.log(1E-5 ) # Matches MelGAN training. _UpperCAmelCase = 4.0 # Largest value for most examples _UpperCAmelCase = 128 self.register_modules( notes_encoder=snake_case , continuous_encoder=snake_case , decoder=snake_case , scheduler=snake_case , melgan=snake_case , ) def lowerCamelCase_ ( self , snake_case , snake_case=(-1.0, 1.0) , snake_case=False ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase = output_range if clip: _UpperCAmelCase = torch.clip(snake_case , self.min_value , self.max_value ) # Scale to [0, 1]. _UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCamelCase_ ( self , snake_case , snake_case=(-1.0, 1.0) , snake_case=False ) -> Union[str, Any]: _UpperCAmelCase , _UpperCAmelCase = input_range _UpperCAmelCase = torch.clip(snake_case , snake_case , snake_case ) if clip else outputs # Scale to [0, 1]. _UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = input_tokens > 0 _UpperCAmelCase , _UpperCAmelCase = self.notes_encoder( encoder_input_tokens=snake_case , encoder_inputs_mask=snake_case ) _UpperCAmelCase , _UpperCAmelCase = self.continuous_encoder( encoder_inputs=snake_case , encoder_inputs_mask=snake_case ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = noise_time if not torch.is_tensor(snake_case ): _UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _UpperCAmelCase = self.decoder( encodings_and_masks=snake_case , decoder_input_tokens=snake_case , decoder_noise_time=snake_case ) return logits @torch.no_grad() def __call__( self , snake_case , snake_case = None , snake_case = 100 , snake_case = True , snake_case = "numpy" , snake_case = None , snake_case = 1 , ) -> int: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(snake_case )}.' ) _UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _UpperCAmelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) _UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=snake_case , device=self.device ) for i, encoder_input_tokens in enumerate(snake_case ): if i == 0: _UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=snake_case , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _UpperCAmelCase = ones _UpperCAmelCase = self.scale_features( snake_case , output_range=[-1.0, 1.0] , clip=snake_case ) _UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=snake_case , continuous_mask=snake_case , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=snake_case , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(snake_case ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase = self.decode( encodings_and_masks=snake_case , input_tokens=snake_case , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample _UpperCAmelCase = self.scale_to_features(snake_case , input_range=[-1.0, 1.0] ) _UpperCAmelCase = mel[:1] _UpperCAmelCase = mel.cpu().float().numpy() _UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case ) logger.info('Generated segment' , snake_case ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": _UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=snake_case )
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" def UpperCAmelCase ( A : List[Any] , A : Union[str, Any] , A : List[Any] ): '''simple docstring''' def update_area_of_max_square(A : Optional[Any] , A : Dict ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCAmelCase = update_area_of_max_square(lowerCamelCase__ , col + 1 ) _UpperCAmelCase = update_area_of_max_square(row + 1 , col + 1 ) _UpperCAmelCase = update_area_of_max_square(row + 1 , lowerCamelCase__ ) if mat[row][col]: _UpperCAmelCase = 1 + min([right, diagonal, down] ) _UpperCAmelCase = max(largest_square_area[0] , lowerCamelCase__ ) return sub_problem_sol else: return 0 _UpperCAmelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCAmelCase ( A : List[str] , A : List[Any] , A : Optional[int] ): '''simple docstring''' def update_area_of_max_square_using_dp_array( A : Union[str, Any] , A : Dict , A : Union[str, Any] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCAmelCase = update_area_of_max_square_using_dp_array(lowerCamelCase__ , col + 1 , lowerCamelCase__ ) _UpperCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCamelCase__ ) _UpperCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , lowerCamelCase__ , lowerCamelCase__ ) if mat[row][col]: _UpperCAmelCase = 1 + min([right, diagonal, down] ) _UpperCAmelCase = max(largest_square_area[0] , lowerCamelCase__ ) _UpperCAmelCase = sub_problem_sol return sub_problem_sol else: return 0 _UpperCAmelCase = [0] _UpperCAmelCase = [[-1] * cols for _ in range(lowerCamelCase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCamelCase__ ) return largest_square_area[0] def UpperCAmelCase ( A : Union[str, Any] , A : Optional[Any] , A : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase = dp_array[row][col + 1] _UpperCAmelCase = dp_array[row + 1][col + 1] _UpperCAmelCase = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCAmelCase = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = max(dp_array[row][col] , lowerCamelCase__ ) else: _UpperCAmelCase = 0 return largest_square_area def UpperCAmelCase ( A : List[Any] , A : List[str] , A : Dict ): '''simple docstring''' _UpperCAmelCase = [0] * (cols + 1) _UpperCAmelCase = [0] * (cols + 1) _UpperCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase = current_row[col + 1] _UpperCAmelCase = next_row[col + 1] _UpperCAmelCase = next_row[col] if mat[row][col] == 1: _UpperCAmelCase = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = max(current_row[col] , lowerCamelCase__ ) else: _UpperCAmelCase = 0 _UpperCAmelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self , snake_case ) -> int: _UpperCAmelCase = n _UpperCAmelCase = [None] * self.n _UpperCAmelCase = 0 # index of the first element _UpperCAmelCase = 0 _UpperCAmelCase = 0 def __len__( self ) -> int: return self.size def lowerCamelCase_ ( self ) -> bool: return self.size == 0 def lowerCamelCase_ ( self ) -> int: return False if self.is_empty() else self.array[self.front] def lowerCamelCase_ ( self , snake_case ) -> Union[str, Any]: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _UpperCAmelCase = data _UpperCAmelCase = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase_ ( self ) -> List[str]: if self.size == 0: raise Exception('UNDERFLOW' ) _UpperCAmelCase = self.array[self.front] _UpperCAmelCase = None _UpperCAmelCase = (self.front + 1) % self.n self.size -= 1 return temp
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( A : Any , A : int , A : List[Any] ): '''simple docstring''' _UpperCAmelCase = RemBertConfig.from_json_file(A ) print('Building PyTorch model from configuration: {}'.format(str(A ) ) ) _UpperCAmelCase = RemBertModel(A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A , A , A ) # Save pytorch-model print('Save PyTorch model to {}'.format(A ) ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" from functools import reduce lowercase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase ( A : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 13] ) ) for i in range(len(A ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' lowercase = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' lowercase = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' lowercase = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' lowercase = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Any: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=[1, 10, 100] , snake_case=4 , snake_case=3.0 ) -> str: if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=snake_case ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(snake_case ) for task_id, (candidates, test_case) in enumerate(zip(snake_case , snake_case ) ): for candidate in candidates: _UpperCAmelCase = candidate + '\n' + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(snake_case , *snake_case ) futures.append(snake_case ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(snake_case ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _UpperCAmelCase , _UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]['passed'] for r in result] total.append(len(snake_case ) ) correct.append(sum(snake_case ) ) _UpperCAmelCase = np.array(snake_case ) _UpperCAmelCase = np.array(snake_case ) _UpperCAmelCase = k _UpperCAmelCase = {f'pass@{k}': estimate_pass_at_k(snake_case , snake_case , snake_case ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCAmelCase ( A : int , A : List[str] , A : str ) -> Optional[Any]: '''simple docstring''' def estimator(A : int , A : int , A : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A , A ): _UpperCAmelCase = itertools.repeat(A , len(A ) ) else: assert len(A ) == len(A ) _UpperCAmelCase = iter(A ) return np.array([estimator(int(A ) , int(A ) , A ) for n, c in zip(A , A )] )
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=None , snake_case=True , snake_case=True , snake_case=None , ) -> Any: _UpperCAmelCase = size if size is not None else {'height': 20, 'width': 20} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = do_convert_rgb _UpperCAmelCase = [512, 1024, 2048, 4096] _UpperCAmelCase = patch_size if patch_size is not None else {'height': 16, 'width': 16} def lowerCamelCase_ ( self ) -> Optional[int]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _UpperCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''', ) @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = PixaStructImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_convert_rgb' ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase = 2048 _UpperCAmelCase = image_processor(snake_case , return_tensors='pt' , max_patches=snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCamelCase_ ( self ) -> List[str]: # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase = image_processor( snake_case , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self ) -> Union[str, Any]: # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case ): _UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=snake_case ).flattened_patches _UpperCAmelCase = 'Hello' _UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=snake_case , header_text=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase = image_processor( snake_case , return_tensors='pt' , max_patches=snake_case , header_text=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self ) -> Union[str, Any]: # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) _UpperCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase = image_processor( snake_case , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCamelCase_ ( self ) -> int: # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input _UpperCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase = image_processor( snake_case , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''', ) @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase = 3 @property def lowerCamelCase_ ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_convert_rgb' ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase = image_processor( snake_case , return_tensors='pt' , max_patches=snake_case ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = ['''vqvae'''] def __init__( self , snake_case , snake_case , snake_case , snake_case , ) -> List[Any]: super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case , mel=snake_case , vqvae=snake_case ) def lowerCamelCase_ ( self ) -> int: return 50 if isinstance(self.scheduler , snake_case ) else 1000 @torch.no_grad() def __call__( self , snake_case = 1 , snake_case = None , snake_case = None , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = 0 , snake_case = None , snake_case = None , snake_case=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(snake_case ) _UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=snake_case , device=self.device , ) _UpperCAmelCase = noise _UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(snake_case , snake_case ) _UpperCAmelCase = self.mel.audio_slice_to_image(snake_case ) _UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _UpperCAmelCase = (input_image / 255) * 2 - 1 _UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(snake_case , 0 ) ).latent_dist.sample( generator=snake_case )[0] _UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCAmelCase = self.scheduler.add_noise(snake_case , snake_case , self.scheduler.timesteps[start_step - 1] ) _UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCAmelCase = int(mask_start_secs * pixels_per_second ) _UpperCAmelCase = int(mask_end_secs * pixels_per_second ) _UpperCAmelCase = self.scheduler.add_noise(snake_case , snake_case , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , snake_case ): _UpperCAmelCase = self.unet(snake_case , snake_case , snake_case )['sample'] else: _UpperCAmelCase = self.unet(snake_case , snake_case )['sample'] if isinstance(self.scheduler , snake_case ): _UpperCAmelCase = self.scheduler.step( model_output=snake_case , timestep=snake_case , sample=snake_case , eta=snake_case , generator=snake_case , )['prev_sample'] else: _UpperCAmelCase = self.scheduler.step( model_output=snake_case , timestep=snake_case , sample=snake_case , generator=snake_case , )['prev_sample'] if mask is not None: if mask_start > 0: _UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCAmelCase = self.vqvae.decode(snake_case )['sample'] _UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _UpperCAmelCase = (images * 255).round().astype('uint8' ) _UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(snake_case , mode='RGB' ).convert('L' ) for _ in images) ) _UpperCAmelCase = [self.mel.image_to_audio(snake_case ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(snake_case )[:, np.newaxis, :] ) , **ImagePipelineOutput(snake_case ) ) @torch.no_grad() def lowerCamelCase_ ( self , snake_case , snake_case = 50 ) -> np.ndarray: assert isinstance(self.scheduler , snake_case ) self.scheduler.set_timesteps(snake_case ) _UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _UpperCAmelCase = (sample / 255) * 2 - 1 _UpperCAmelCase = torch.Tensor(snake_case ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCAmelCase = self.scheduler.alphas_cumprod[t] _UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t _UpperCAmelCase = self.unet(snake_case , snake_case )['sample'] _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCamelCase_ ( snake_case , snake_case , snake_case ) -> torch.Tensor: _UpperCAmelCase = acos(torch.dot(torch.flatten(snake_case ) , torch.flatten(snake_case ) ) / torch.norm(snake_case ) / torch.norm(snake_case ) ) return sin((1 - alpha) * theta ) * xa / sin(snake_case ) + sin(alpha * theta ) * xa / sin(snake_case )
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase ( A : Optional[int] , A : List[str] , A : int ): '''simple docstring''' if gpta_config_file == "": _UpperCAmelCase = GPTaConfig() else: _UpperCAmelCase = GPTaConfig.from_json_file(A ) _UpperCAmelCase = GPTaModel(A ) # Load weights from numpy load_tf_weights_in_gpta(A , A , A ) # Save pytorch-model _UpperCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _UpperCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , A ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(A , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) lowercase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case=None , **snake_case ) -> List[Any]: warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , snake_case , ) super().__init__(args=snake_case , **snake_case )
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0