code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import pprint import requests lowercase = '''https://zenquotes.io/api''' def UpperCAmelCase ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/today' ).json() def UpperCAmelCase ( ): '''simple docstring''' return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowercase = random_quotes() pprint.pprint(response)
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Node(1 ) _UpperCAmelCase = Node(2 ) _UpperCAmelCase = Node(3 ) _UpperCAmelCase = Node(4 ) _UpperCAmelCase = Node(5 ) return tree def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCAmelCase ( A : Node | None ): '''simple docstring''' _UpperCAmelCase = [] if root is None: return output _UpperCAmelCase = deque([root] ) while process_queue: _UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCAmelCase ( A : Node | None , A : int ): '''simple docstring''' _UpperCAmelCase = [] def populate_output(A : Node | None , A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A , A ) return output def UpperCAmelCase ( A : Node | None , A : int ): '''simple docstring''' _UpperCAmelCase = [] def populate_output(A : Node | None , A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A , A ) return output def UpperCAmelCase ( A : Node | None ): '''simple docstring''' if root is None: return [] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = height(A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A , A ) ) _UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(A , A ) ) _UpperCAmelCase = 0 return output def UpperCAmelCase ( ): # Main function for testing. '''simple docstring''' _UpperCAmelCase = make_tree() print(f'In-order Traversal: {inorder(A )}' ) print(f'Pre-order Traversal: {preorder(A )}' ) print(f'Post-order Traversal: {postorder(A )}' , '\n' ) print(f'Height of Tree: {height(A )}' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(A ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(A , level=A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( A : str , A : Optional[int] ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) _UpperCAmelCase = DatasetInfosDict.from_directory(A ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( A : str , A : DatasetInfo ): '''simple docstring''' _UpperCAmelCase = str(A ) dataset_info.write_to_directory(A ) _UpperCAmelCase = DatasetInfo.from_directory(A ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A , 'dataset_info.json' ) ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _UpperCAmelCase = dataset_info._to_yaml_dict() assert sorted(A ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _UpperCAmelCase = yaml.safe_dump(A ) _UpperCAmelCase = yaml.safe_load(A ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = DatasetInfo() _UpperCAmelCase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( A : Tuple , A : DatasetInfosDict ): '''simple docstring''' _UpperCAmelCase = str(A ) dataset_infos_dict.write_to_directory(A ) _UpperCAmelCase = DatasetInfosDict.from_directory(A ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A , 'README.md' ) )
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist groรŸartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(A ) ) _UpperCAmelCase = os.path.join(A , 'triangle.txt' ) with open(A ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] for line in triangle: _UpperCAmelCase = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(A ) ) a.append(A ) for i in range(1 , len(A ) ): for j in range(len(a[i] ) ): _UpperCAmelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 _UpperCAmelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A , A ) return max(a[-1] ) if __name__ == "__main__": print(solution())
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCAmelCase ( A : Tuple ): '''simple docstring''' for param in module.parameters(): _UpperCAmelCase = False def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def UpperCAmelCase ( A : Dict ): '''simple docstring''' _UpperCAmelCase = plt.imshow(A ) fig.axes.get_xaxis().set_visible(A ) fig.axes.get_yaxis().set_visible(A ) plt.show() def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = datetime.now() _UpperCAmelCase = current_time.strftime('%H:%M:%S' ) return timestamp
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase ( A : Optional[int] , A : Dict , A : List[Any] , A : Union[str, Any] , A : List[Any] , A : List[str] ): '''simple docstring''' for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _UpperCAmelCase = 'lm_head' _UpperCAmelCase = getattr(A , A ) if weight_type is not None: _UpperCAmelCase = getattr(A , A ).shape else: _UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( A : str , A : Dict , A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(A )[0].split('.' )[-2] _UpperCAmelCase = mapped_key.replace('*' , A ) if "weight_g" in name: _UpperCAmelCase = 'weight_g' elif "weight_v" in name: _UpperCAmelCase = 'weight_v' elif "bias" in name: _UpperCAmelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase = 'weight' else: _UpperCAmelCase = None set_recursively(A , A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( A : Union[str, Any] , A : List[Any] , A : Union[str, Any] , A : Optional[int] , A : int ): '''simple docstring''' _UpperCAmelCase = full_name.split('conv_layers.' )[-1] _UpperCAmelCase = name.split('.' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A ) @torch.no_grad() def UpperCAmelCase ( A : str , A : List[str] , A : Any=None , A : Any=None , A : Dict=True ): '''simple docstring''' if config_path is not None: _UpperCAmelCase = UniSpeechConfig.from_pretrained(A ) else: _UpperCAmelCase = UniSpeechConfig() if is_finetuned: if dict_path: _UpperCAmelCase = Dictionary.load_from_json(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.eos_index _UpperCAmelCase = len(target_dict.symbols ) _UpperCAmelCase = os.path.join(A , 'vocab.json' ) if not os.path.isdir(A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A ) ) return os.makedirs(A , exist_ok=A ) _UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase = 42 _UpperCAmelCase = 43 with open(A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(A , A ) _UpperCAmelCase = WavaVecaPhonemeCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , ) _UpperCAmelCase = True if config.feat_extract_norm == 'layer' else False _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) _UpperCAmelCase = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) _UpperCAmelCase = UniSpeechForCTC(A ) else: _UpperCAmelCase = UniSpeechForPreTraining(A ) if is_finetuned: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _UpperCAmelCase = model[0].eval() recursively_load_weights(A , A , A ) hf_unispeech.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowercase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return number | (1 << position) def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return number & ~(1 << position) def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return number ^ (1 << position) def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return ((number >> position) & 1) == 1 def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" def UpperCAmelCase ( A : Optional[Any] , A : Optional[int] , A : Dict , A : Dict , A : Optional[Any] , A : Tuple ): '''simple docstring''' if index == r: for j in range(A ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCAmelCase = arr[i] combination_util(A , A , A , index + 1 , A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(A , A , A , A , A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCAmelCase ( A : Any , A : str , A : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(A , A , A , 0 , A , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" from collections import deque def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' _UpperCAmelCase = len(A ) _UpperCAmelCase = deque() _UpperCAmelCase = [False for _ in range(A )] _UpperCAmelCase = [-1 for _ in range(A )] _UpperCAmelCase = index_of[:] def strong_connect(A : List[Any] , A : List[str] , A : Optional[int] ): _UpperCAmelCase = index # the number when this node is seen _UpperCAmelCase = index # lowest rank node reachable from here index += 1 stack.append(A ) _UpperCAmelCase = True for w in g[v]: if index_of[w] == -1: _UpperCAmelCase = strong_connect(A , A , A ) _UpperCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _UpperCAmelCase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _UpperCAmelCase = [] _UpperCAmelCase = stack.pop() _UpperCAmelCase = False component.append(A ) while w != v: _UpperCAmelCase = stack.pop() _UpperCAmelCase = False component.append(A ) components.append(A ) return index _UpperCAmelCase = [] for v in range(A ): if index_of[v] == -1: strong_connect(A , 0 , A ) return components def UpperCAmelCase ( A : List[Any] , A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = [[] for _ in range(A )] for u, v in edges: g[u].append(A ) return g if __name__ == "__main__": # Test lowercase = 7 lowercase = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowercase = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowercase = [(u, v) for u, v in zip(source, target)] lowercase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = StableDiffusionSAGPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase = CLIPTextModel(snake_case ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Tuple: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _UpperCAmelCase = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _UpperCAmelCase = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _UpperCAmelCase = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = '.' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) _UpperCAmelCase = output.images assert image.shape == (1, 512, 768, 3)
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist groรŸartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = '''โ–''' lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowercase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } lowercase = { '''facebook/mbart-large-en-ro''': 10_24, '''facebook/mbart-large-cc25''': 10_24, } # fmt: off lowercase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase = [] _UpperCAmelCase = [] def __init__( self , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=None , snake_case=None , snake_case=None , snake_case = None , snake_case=None , **snake_case , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , tokenizer_file=snake_case , src_lang=snake_case , tgt_lang=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | 'โ–' | 's' | 'โ–de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | 'โ–' | 's' | 'โ–de' | '-' | 'โ–a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case ) } _UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCAmelCase = src_lang if src_lang is not None else 'en_XX' _UpperCAmelCase = self.lang_code_to_id[self._src_lang] _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Optional[Any]: _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case ) -> str: _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase_ ( self ) -> List[Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase_ ( self ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase_ ( self , snake_case ) -> None: _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self , snake_case , snake_case = None , snake_case = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case )) + suffix_ones return prefix_ones + ([0] * len(snake_case )) + ([0] * len(snake_case )) + suffix_ones def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , **snake_case ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(snake_case , add_special_tokens=snake_case , return_tensors=snake_case , **snake_case ) _UpperCAmelCase = self.convert_tokens_to_ids(snake_case ) _UpperCAmelCase = tgt_lang_id return inputs def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self , snake_case ) -> List[str]: return self.sp_model.encode(snake_case , out_type=snake_case ) def lowerCamelCase_ ( self , snake_case ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase_ ( self , snake_case ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase_ ( self , snake_case ) -> Optional[Any]: _UpperCAmelCase = ''.join(snake_case ).replace(snake_case , ' ' ).strip() return out_string def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,) def lowerCamelCase_ ( self , snake_case , snake_case = "en_XX" , snake_case = None , snake_case = "ro_RO" , **snake_case , ) -> BatchEncoding: _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(snake_case , snake_case , **snake_case ) def lowerCamelCase_ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self , snake_case ) -> None: _UpperCAmelCase = self.lang_code_to_id[src_lang] _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] def lowerCamelCase_ ( self , snake_case ) -> None: _UpperCAmelCase = self.lang_code_to_id[lang] _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code]
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = KandinskyImgaImgPipeline _UpperCAmelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _UpperCAmelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _UpperCAmelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCAmelCase = False @property def lowerCamelCase_ ( self ) -> List[Any]: return 32 @property def lowerCamelCase_ ( self ) -> Dict: return 32 @property def lowerCamelCase_ ( self ) -> Optional[Any]: return self.time_input_dim @property def lowerCamelCase_ ( self ) -> List[Any]: return self.time_input_dim * 4 @property def lowerCamelCase_ ( self ) -> Any: return 100 @property def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowerCamelCase_ ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _UpperCAmelCase = MultilingualCLIP(snake_case ) _UpperCAmelCase = text_encoder.eval() return text_encoder @property def lowerCamelCase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCAmelCase = UNetaDConditionModel(**snake_case ) return model @property def lowerCamelCase_ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_unet _UpperCAmelCase = self.dummy_movq _UpperCAmelCase = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _UpperCAmelCase = DDIMScheduler(**snake_case ) _UpperCAmelCase = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> List[str]: _UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case ) ).to(snake_case ) _UpperCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case ) # create init_image _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case ) ).to(snake_case ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((256, 256) ) if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = pipe(**self.get_dummy_inputs(snake_case ) ) _UpperCAmelCase = output.images _UpperCAmelCase = pipe( **self.get_dummy_inputs(snake_case ) , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _UpperCAmelCase = 'A red cartoon frog, 4k' _UpperCAmelCase = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case ) _UpperCAmelCase = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase = pipe_prior( snake_case , generator=snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _UpperCAmelCase = pipeline( snake_case , image=snake_case , image_embeds=snake_case , negative_image_embeds=snake_case , generator=snake_case , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case , snake_case )
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = StableDiffusionLDMaDPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase = CLIPTextModel(snake_case ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Dict: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) _UpperCAmelCase = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = 3 * [inputs['prompt']] # forward _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = 3 * [inputs.pop('prompt' )] _UpperCAmelCase = ldmad_pipe.tokenizer( snake_case , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase = text_inputs['input_ids'].to(snake_case ) _UpperCAmelCase = ldmad_pipe.text_encoder(snake_case )[0] _UpperCAmelCase = prompt_embeds # forward _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler(skip_prk_steps=snake_case ) _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = 'french fries' _UpperCAmelCase = ldmad_pipe(**snake_case , negative_prompt=snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) _UpperCAmelCase = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self , snake_case , snake_case="cpu" , snake_case=torch.floataa , snake_case=0 ) -> Union[str, Any]: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = np.random.RandomState(snake_case ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) _UpperCAmelCase = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) _UpperCAmelCase = ldmad_pipe.to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1].flatten() _UpperCAmelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _UpperCAmelCase = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) _UpperCAmelCase = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self , snake_case , snake_case="cpu" , snake_case=torch.floataa , snake_case=0 ) -> List[str]: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = np.random.RandomState(snake_case ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) _UpperCAmelCase = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.495586 _UpperCAmelCase = 0.33795515 _UpperCAmelCase = 112.48518 _UpperCAmelCase = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(snake_case ) ldmad_pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_inputs(snake_case ) _UpperCAmelCase = ldmad_pipe(**snake_case ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.4194127 _UpperCAmelCase = 0.35375586 _UpperCAmelCase = 0.5638502 _UpperCAmelCase = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" from __future__ import annotations lowercase = [True] * 1_00_00_01 lowercase = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): lowercase = False i += 1 def UpperCAmelCase ( A : int ): '''simple docstring''' return seive[n] def UpperCAmelCase ( A : int ): '''simple docstring''' return any(digit in '02468' for digit in str(A ) ) def UpperCAmelCase ( A : int = 100_0000 ): '''simple docstring''' _UpperCAmelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(A ) and not contains_an_even_digit(A ): _UpperCAmelCase = str(A ) _UpperCAmelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(A ) )] if all(is_prime(A ) for i in list_nums ): result.append(A ) return result def UpperCAmelCase ( ): '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCAmelCase ( A : int ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def UpperCAmelCase ( A : Any ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(A , id=A )
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsรฉ.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modรจle d\'apprentissage profond introduit en 2017, ' 'utilisรฉ principalement dans le domaine du traitement automatique des langues (TAL).', 'ร€ l\'instar des rรฉseaux de neurones rรฉcurrents (RNN), les transformeurs sont conรงus ' 'pour gรฉrer des donnรฉes sรฉquentielles, telles que le langage naturel, pour des tรขches ' 'telles que la traduction et la synthรจse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase = logging.getLogger(__name__) lowercase = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = field( default=A, metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) }, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A )}, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = field( default=A, metadata={'''help''': '''The input training data file (a text file).'''} ) _UpperCAmelCase = field( default=A, metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) }, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''}, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''}, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''}, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''}, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) _UpperCAmelCase = field(default=A, metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) _UpperCAmelCase = field( default=0.15, metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _UpperCAmelCase = field( default=1 / 6, metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) }, ) _UpperCAmelCase = field( default=5, metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) _UpperCAmelCase = field( default=-1, metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) }, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCAmelCase ( A : DataTrainingArguments , A : PreTrainedTokenizer , A : bool = False , A : Optional[str] = None , ): '''simple docstring''' def _dataset(A : List[Any] , A : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=A , file_path=A , block_size=args.block_size , ref_path=A , ) return LineByLineTextDataset(tokenizer=A , file_path=A , block_size=args.block_size ) else: return TextDataset( tokenizer=A , file_path=A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = AutoModelWithLMHead.from_config(A ) model.resize_token_embeddings(len(A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: _UpperCAmelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCAmelCase = min(data_args.block_size , tokenizer.max_len ) # Get datasets _UpperCAmelCase = ( get_dataset(A , tokenizer=A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCAmelCase = ( get_dataset(A , tokenizer=A , evaluate=A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCAmelCase = DataCollatorForPermutationLanguageModeling( tokenizer=A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCAmelCase = DataCollatorForWholeWordMask( tokenizer=A , mlm_probability=data_args.mlm_probability ) else: _UpperCAmelCase = DataCollatorForLanguageModeling( tokenizer=A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=A , args=A , data_collator=A , train_dataset=A , eval_dataset=A , prediction_loss_only=A , ) # Training if training_args.do_train: _UpperCAmelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['eval_loss'] ) _UpperCAmelCase = {'perplexity': perplexity} _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , A , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(A ) return results def UpperCAmelCase ( A : int ): '''simple docstring''' main() if __name__ == "__main__": main()
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase = logging.get_logger(__name__) @add_end_docstrings(A ) class lowercase__ ( A ): '''simple docstring''' def __init__( self , **snake_case ) -> List[Any]: super().__init__(**snake_case ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , snake_case , **snake_case ) -> Tuple: return super().__call__(snake_case , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> str: _UpperCAmelCase = {} if "candidate_labels" in kwargs: _UpperCAmelCase = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _UpperCAmelCase = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowerCamelCase_ ( self , snake_case , snake_case=None , snake_case="This is a photo of {}." ) -> int: _UpperCAmelCase = load_image(snake_case ) _UpperCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _UpperCAmelCase = candidate_labels _UpperCAmelCase = [hypothesis_template.format(snake_case ) for x in candidate_labels] _UpperCAmelCase = self.tokenizer(snake_case , return_tensors=self.framework , padding=snake_case ) _UpperCAmelCase = [text_inputs] return inputs def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: _UpperCAmelCase = model_inputs.pop('candidate_labels' ) _UpperCAmelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , snake_case ): _UpperCAmelCase = text_inputs[0] else: # Batching case. _UpperCAmelCase = text_inputs[0][0] _UpperCAmelCase = self.model(**snake_case , **snake_case ) _UpperCAmelCase = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: _UpperCAmelCase = model_outputs.pop('candidate_labels' ) _UpperCAmelCase = model_outputs['logits'][0] if self.framework == "pt": _UpperCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _UpperCAmelCase = probs.tolist() if not isinstance(snake_case , snake_case ): _UpperCAmelCase = [scores] elif self.framework == "tf": _UpperCAmelCase = stable_softmax(snake_case , axis=-1 ) _UpperCAmelCase = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) _UpperCAmelCase = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(snake_case , snake_case ) , key=lambda snake_case : -x[0] ) ] return result
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=None , snake_case=True , ) -> Dict: _UpperCAmelCase = size if size is not None else {'shortest_edge': 20} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_flip_channel_order def lowerCamelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = MobileViTImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case , 'center_crop' ) ) self.assertTrue(hasattr(snake_case , 'do_flip_channel_order' ) ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Tuple: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> List[str]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> Dict: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=False , snake_case=True , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , ) -> List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def lowerCamelCase_ ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DonutImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = DonutImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_thumbnail' ) ) self.assertTrue(hasattr(snake_case , 'do_align_long_axis' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def lowerCamelCase_ ( self ) -> Any: pass @is_flaky() def lowerCamelCase_ ( self ) -> Optional[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def lowerCamelCase_ ( self ) -> List[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def lowerCamelCase_ ( self ) -> Dict: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist groรŸartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = ['''input_features''', '''attention_mask'''] def __init__( self , snake_case=80 , snake_case=16000 , snake_case=80 , snake_case=0.0 , snake_case=True , snake_case=True , snake_case=True , **snake_case , ) -> Tuple: super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) _UpperCAmelCase = num_mel_bins _UpperCAmelCase = do_ceptral_normalize _UpperCAmelCase = normalize_means _UpperCAmelCase = normalize_vars _UpperCAmelCase = True def lowerCamelCase_ ( self , snake_case , ) -> np.ndarray: _UpperCAmelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _UpperCAmelCase = torch.from_numpy(snake_case ).unsqueeze(0 ) _UpperCAmelCase = ta_kaldi.fbank(snake_case , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCamelCase_ ( snake_case , snake_case , snake_case = True , snake_case = True , snake_case = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: _UpperCAmelCase = x[:input_length].mean(axis=0 ) _UpperCAmelCase = np.subtract(snake_case , snake_case ) if normalize_vars: _UpperCAmelCase = x[:input_length].std(axis=0 ) _UpperCAmelCase = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: _UpperCAmelCase = padding_value # make sure array is in float32 _UpperCAmelCase = x.astype(np.floataa ) return x def lowerCamelCase_ ( self , snake_case , snake_case = None ) -> List[np.ndarray]: _UpperCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(snake_case , snake_case , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(snake_case , snake_case ) ] def __call__( self , snake_case , snake_case = False , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _UpperCAmelCase = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _UpperCAmelCase = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): _UpperCAmelCase = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase = [raw_speech] # extract fbank features _UpperCAmelCase = [self._extract_fbank_features(snake_case ) for waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase = BatchFeature({'input_features': features} ) _UpperCAmelCase = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format _UpperCAmelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , snake_case ): _UpperCAmelCase = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: _UpperCAmelCase = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCAmelCase = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCAmelCase = self.normalize( padded_inputs['input_features'] , attention_mask=snake_case ) if return_tensors is not None: _UpperCAmelCase = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''gpt_neox''' def __init__( self , snake_case=50432 , snake_case=6144 , snake_case=44 , snake_case=64 , snake_case=24576 , snake_case="gelu" , snake_case=0.25 , snake_case=10000 , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case=2048 , snake_case=0.02 , snake_case=1E-5 , snake_case=True , snake_case=0 , snake_case=2 , snake_case=False , snake_case=True , snake_case=None , **snake_case , ) -> Union[str, Any]: super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = rotary_pct _UpperCAmelCase = rotary_emb_base _UpperCAmelCase = attention_dropout _UpperCAmelCase = hidden_dropout _UpperCAmelCase = classifier_dropout _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = tie_word_embeddings _UpperCAmelCase = use_parallel_residual _UpperCAmelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def lowerCamelCase_ ( self ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) _UpperCAmelCase = self.rope_scaling.get('type' , snake_case ) _UpperCAmelCase = self.rope_scaling.get('factor' , snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(snake_case , snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" import math import os import sys def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = '' try: with open(A , 'rb' ) as binary_file: _UpperCAmelCase = binary_file.read() for dat in data: _UpperCAmelCase = f'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase ( A : dict[str, str] , A : str , A : int , A : str ): '''simple docstring''' lexicon.pop(A ) _UpperCAmelCase = last_match_id if math.loga(A ).is_integer(): for curr_key in lexicon: _UpperCAmelCase = '0' + lexicon[curr_key] _UpperCAmelCase = bin(A )[2:] def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = {'0': '0', '1': '1'} _UpperCAmelCase , _UpperCAmelCase = '', '' _UpperCAmelCase = len(A ) for i in range(len(A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(A , A , A , A ) index += 1 _UpperCAmelCase = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _UpperCAmelCase = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = os.path.getsize(A ) _UpperCAmelCase = bin(A )[2:] _UpperCAmelCase = len(A ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = 8 try: with open(A , 'wb' ) as opened_file: _UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(A ) , A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = read_file_binary(A ) _UpperCAmelCase = compress_data(A ) _UpperCAmelCase = add_file_length(A , A ) write_file_binary(A , A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ) -> Dict: _UpperCAmelCase = parent _UpperCAmelCase = 13 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 99 _UpperCAmelCase = 384 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 37 _UpperCAmelCase = 'gelu' _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 512 _UpperCAmelCase = 16 _UpperCAmelCase = 2 _UpperCAmelCase = 0.02 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = 128 _UpperCAmelCase = 2 _UpperCAmelCase = 9 _UpperCAmelCase = 1 _UpperCAmelCase = None def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Any: _UpperCAmelCase = TFConvBertModel(config=snake_case ) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: _UpperCAmelCase = TFConvBertForMaskedLM(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFConvBertForSequenceClassification(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> int: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFConvBertForMultipleChoice(config=snake_case ) _UpperCAmelCase = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFConvBertForTokenClassification(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = TFConvBertForQuestionAnswering(config=snake_case ) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = TFConvBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> int: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = True if hasattr(snake_case , 'use_cache' ): _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , snake_case ) for model_class in self.all_model_classes: _UpperCAmelCase = self._prepare_for_class(snake_case , snake_case ) _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = len(model(snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case , saved_model=snake_case ) _UpperCAmelCase = os.path.join(snake_case , 'saved_model' , '1' ) _UpperCAmelCase = tf.keras.models.load_model(snake_case ) _UpperCAmelCase = model(snake_case ) if self.is_encoder_decoder: _UpperCAmelCase = outputs['encoder_hidden_states'] _UpperCAmelCase = outputs['encoder_attentions'] else: _UpperCAmelCase = outputs['hidden_states'] _UpperCAmelCase = outputs['attentions'] self.assertEqual(len(snake_case ) , snake_case ) _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case ) , snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(snake_case ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) _UpperCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , snake_case ) _UpperCAmelCase = getattr(self.model_tester , 'key_length' , snake_case ) def check_decoder_attentions_output(snake_case ): _UpperCAmelCase = len(snake_case ) self.assertEqual(out_len % 2 , 0 ) _UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case ): _UpperCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = len(snake_case ) self.assertEqual(config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) if self.is_encoder_decoder: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(config.output_hidden_states , snake_case ) check_decoder_attentions_output(snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case ) ) self.assertEqual(model.config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(snake_case )[0] _UpperCAmelCase = [1, 6, 768] self.assertEqual(output.shape , snake_case ) _UpperCAmelCase = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1E-4 )
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
from __future__ import annotations from PIL import Image # Define glider example lowercase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' _UpperCAmelCase = [] for i in range(len(A ) ): _UpperCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A ) - 1: neighbour_count += cells[i + 1][j] if i < len(A ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A ) return next_generation def UpperCAmelCase ( A : list[list[int]] , A : int ): '''simple docstring''' _UpperCAmelCase = [] for _ in range(A ): # Create output image _UpperCAmelCase = Image.new('RGB' , (len(cells[0] ), len(A )) ) _UpperCAmelCase = img.load() # Save cells to image for x in range(len(A ) ): for y in range(len(cells[0] ) ): _UpperCAmelCase = 255 - cells[y][x] * 255 _UpperCAmelCase = (colour, colour, colour) # Save image images.append(A ) _UpperCAmelCase = new_generation(A ) return images if __name__ == "__main__": lowercase = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _UpperCAmelCase = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) sd_pipe.set_scheduler('sample_euler' ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe([prompt] , generator=snake_case , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _UpperCAmelCase = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) sd_pipe.set_scheduler('sample_euler' ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe([prompt] , generator=snake_case , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _UpperCAmelCase = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=snake_case , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowercase = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": lowercase = '''hopper-medium-v2''' lowercase = gym.make(env_name) lowercase = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) lowercase = env.reset() lowercase = 0 lowercase = 0 lowercase = 10_00 lowercase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowercase = pipeline(obs, planning_horizon=32) # execute action in environment lowercase , lowercase , lowercase , lowercase = env.step(denorm_actions) lowercase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) lowercase = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase ( A : str , A : complex , A : str = "x" , A : float = 10**-10 , A : int = 1 , ): '''simple docstring''' _UpperCAmelCase = symbols(A ) _UpperCAmelCase = lambdify(A , A ) _UpperCAmelCase = lambdify(A , diff(A , A ) ) _UpperCAmelCase = starting_point while True: if diff_function(A ) != 0: _UpperCAmelCase = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(F'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F'''{newton_raphson('exp(x) - 1', 10, precision=0.005)}''', ) # Find root of cos(x) print(F'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import random def UpperCAmelCase ( A : list , A : List[Any] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = [], [], [] for element in data: if element < pivot: less.append(A ) elif element > pivot: greater.append(A ) else: equal.append(A ) return less, equal, greater def UpperCAmelCase ( A : list , A : int ): '''simple docstring''' if index >= len(A ) or index < 0: return None _UpperCAmelCase = items[random.randint(0 , len(A ) - 1 )] _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _partition(A , A ) _UpperCAmelCase = len(A ) _UpperCAmelCase = len(A ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(A , A ) # must be in larger else: return quick_select(A , index - (m + count) )
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = FunnelTokenizer _UpperCAmelCase = FunnelTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> int: super().setUp() _UpperCAmelCase = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCamelCase_ ( self , **snake_case ) -> Any: return FunnelTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Union[str, Any]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , snake_case ) -> int: _UpperCAmelCase = 'UNwant\u00E9d,running' _UpperCAmelCase = 'unwanted, running' return input_text, output_text def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.get_tokenizers(do_lower_case=snake_case ) for tokenizer in tokenizers: _UpperCAmelCase = tokenizer('UNwant\u00E9d,running' ) _UpperCAmelCase = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) _UpperCAmelCase = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case , snake_case = None , snake_case = None , snake_case = True , snake_case = None , snake_case = False , snake_case = None , snake_case = True , snake_case = "arrow" , **snake_case , ) -> Optional[int]: super().__init__( split=snake_case , features=snake_case , cache_dir=snake_case , keep_in_memory=snake_case , streaming=snake_case , **snake_case , ) _UpperCAmelCase = load_from_cache_file _UpperCAmelCase = file_format _UpperCAmelCase = Spark( df=snake_case , features=snake_case , cache_dir=snake_case , working_dir=snake_case , **snake_case , ) def lowerCamelCase_ ( self ) -> Optional[Any]: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=snake_case , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" def UpperCAmelCase ( A : int , A : int ) -> Any: '''simple docstring''' while b: _UpperCAmelCase , _UpperCAmelCase = b, a % b return a def UpperCAmelCase ( A : int , A : int ) -> Tuple: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(A , a % b ) def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def UpperCAmelCase ( A : int , A : str , A : Tuple ): '''simple docstring''' _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(A , config=A ) _UpperCAmelCase = downstream_dict['projector.weight'] _UpperCAmelCase = downstream_dict['projector.bias'] _UpperCAmelCase = downstream_dict['model.post_net.linear.weight'] _UpperCAmelCase = downstream_dict['model.post_net.linear.bias'] return model def UpperCAmelCase ( A : str , A : int , A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(A , config=A ) _UpperCAmelCase = downstream_dict['model.linear.weight'] _UpperCAmelCase = downstream_dict['model.linear.bias'] return model def UpperCAmelCase ( A : int , A : Optional[Any] , A : Dict ): '''simple docstring''' _UpperCAmelCase = WavaVecaForXVector.from_pretrained(A , config=A ) _UpperCAmelCase = downstream_dict['connector.weight'] _UpperCAmelCase = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] _UpperCAmelCase = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _UpperCAmelCase = downstream_dict['objective.W'] return model @torch.no_grad() def UpperCAmelCase ( A : Optional[int] , A : Optional[Any] , A : str , A : Dict ): '''simple docstring''' _UpperCAmelCase = torch.load(A , map_location='cpu' ) _UpperCAmelCase = checkpoint['Downstream'] _UpperCAmelCase = WavaVecaConfig.from_pretrained(A ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( A , return_attention_mask=A , do_normalize=A ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _UpperCAmelCase = convert_classification(A , A , A ) elif arch.endswith('ForAudioFrameClassification' ): _UpperCAmelCase = convert_diarization(A , A , A ) elif arch.endswith('ForXVector' ): _UpperCAmelCase = convert_xvector(A , A , A ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(A ) hf_model.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') lowercase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _UpperCAmelCase = dict(zip(snake_case , range(len(snake_case ) ) ) ) _UpperCAmelCase = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _UpperCAmelCase = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 16000, 'return_attention_mask': False, 'do_normalize': True, } _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join(self.tmpdirname , snake_case ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) # load decoder from hub _UpperCAmelCase = 'hf-internal-testing/ngram-beam-search-decoder' def lowerCamelCase_ ( self , **snake_case ) -> Tuple: _UpperCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(snake_case ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> int: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(snake_case , 'include' ): WavaVecaProcessorWithLM( tokenizer=snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) _UpperCAmelCase = floats_list((3, 1000) ) _UpperCAmelCase = feature_extractor(snake_case , return_tensors='np' ) _UpperCAmelCase = processor(snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) _UpperCAmelCase = 'This is a test string' _UpperCAmelCase = processor(text=snake_case ) _UpperCAmelCase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self , snake_case=(2, 10, 16) , snake_case=77 ) -> Optional[Any]: np.random.seed(snake_case ) return np.random.rand(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) _UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _UpperCAmelCase = processor.decode(snake_case ) _UpperCAmelCase = decoder.decode_beams(snake_case )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowerCamelCase_ ( self , snake_case ) -> List[Any]: _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) _UpperCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _UpperCAmelCase = processor.batch_decode(snake_case ) else: with get_context(snake_case ).Pool() as pool: _UpperCAmelCase = processor.batch_decode(snake_case , snake_case ) _UpperCAmelCase = list(snake_case ) with get_context('fork' ).Pool() as p: _UpperCAmelCase = decoder.decode_beams_batch(snake_case , snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(snake_case , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(snake_case , decoded_processor.logit_score ) self.assertListEqual(snake_case , decoded_processor.lm_score ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = 15 _UpperCAmelCase = -20.0 _UpperCAmelCase = -4.0 _UpperCAmelCase = processor.batch_decode( snake_case , beam_width=snake_case , beam_prune_logp=snake_case , token_min_logp=snake_case , ) _UpperCAmelCase = decoded_processor_out.text _UpperCAmelCase = list(snake_case ) with get_context('fork' ).Pool() as pool: _UpperCAmelCase = decoder.decode_beams_batch( snake_case , snake_case , beam_width=snake_case , beam_prune_logp=snake_case , token_min_logp=snake_case , ) _UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] _UpperCAmelCase = [d[0][2] for d in decoded_decoder_out] _UpperCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , snake_case ) self.assertTrue(np.array_equal(snake_case , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , snake_case , atol=1E-3 ) ) self.assertTrue(np.array_equal(snake_case , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , snake_case , atol=1E-3 ) ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = 2.0 _UpperCAmelCase = 5.0 _UpperCAmelCase = -20.0 _UpperCAmelCase = True _UpperCAmelCase = processor.batch_decode( snake_case , alpha=snake_case , beta=snake_case , unk_score_offset=snake_case , lm_score_boundary=snake_case , ) _UpperCAmelCase = decoded_processor_out.text _UpperCAmelCase = list(snake_case ) decoder.reset_params( alpha=snake_case , beta=snake_case , unk_score_offset=snake_case , lm_score_boundary=snake_case , ) with get_context('fork' ).Pool() as pool: _UpperCAmelCase = decoder.decode_beams_batch( snake_case , snake_case , ) _UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , snake_case ) _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , snake_case ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _UpperCAmelCase = os.listdir(snake_case ) _UpperCAmelCase = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = snapshot_download('hf-internal-testing/processor_with_lm' ) _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(snake_case ) _UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] _UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _UpperCAmelCase = os.listdir(snake_case ) _UpperCAmelCase = os.listdir(snake_case ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _UpperCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) _UpperCAmelCase = floats_list((3, 1000) ) _UpperCAmelCase = processor_wavaveca(snake_case , return_tensors='np' ) _UpperCAmelCase = processor_auto(snake_case , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = processor_wavaveca.batch_decode(snake_case ) _UpperCAmelCase = processor_auto.batch_decode(snake_case ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = self.get_feature_extractor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_decoder() _UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=snake_case , feature_extractor=snake_case , decoder=snake_case ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowerCamelCase_ ( snake_case , snake_case ) -> Dict: _UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _UpperCAmelCase = self._get_dummy_logits()[0] _UpperCAmelCase = processor.decode(snake_case , output_word_offsets=snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(snake_case , snake_case ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _UpperCAmelCase = self._get_dummy_logits() _UpperCAmelCase = processor.batch_decode(snake_case , output_word_offsets=snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(snake_case , snake_case ) ) self.assertListEqual( [' '.join(self.get_from_offsets(snake_case , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase_ ( self ) -> List[str]: import torch _UpperCAmelCase = load_dataset('common_voice' , 'en' , split='train' , streaming=snake_case ) _UpperCAmelCase = ds.cast_column('audio' , datasets.Audio(sampling_rate=16000 ) ) _UpperCAmelCase = iter(snake_case ) _UpperCAmelCase = next(snake_case ) _UpperCAmelCase = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) _UpperCAmelCase = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _UpperCAmelCase = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): _UpperCAmelCase = model(snake_case ).logits.cpu().numpy() _UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=snake_case ) _UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _UpperCAmelCase = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _UpperCAmelCase = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(snake_case , 'word' ) ) , snake_case ) self.assertEqual(' '.join(self.get_from_offsets(snake_case , 'word' ) ) , output.text ) # output times _UpperCAmelCase = torch.tensor(self.get_from_offsets(snake_case , 'start_time' ) ) _UpperCAmelCase = torch.tensor(self.get_from_offsets(snake_case , 'end_time' ) ) # fmt: off _UpperCAmelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) _UpperCAmelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(snake_case , snake_case , atol=0.01 ) ) self.assertTrue(torch.allclose(snake_case , snake_case , atol=0.01 ) )
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): _UpperCAmelCase = [image] _UpperCAmelCase = [trans(img.convert('RGB' ) ) for img in image] _UpperCAmelCase = torch.stack(A ) return image class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case , snake_case ) -> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case , scheduler=snake_case ) def lowerCamelCase_ ( self , snake_case ) -> Optional[Any]: if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}' ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> str: # get the original timestep using init_timestep _UpperCAmelCase = min(int(num_inference_steps * strength ) , snake_case ) _UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None ) -> List[str]: if not isinstance(snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case )}' ) _UpperCAmelCase = image.to(device=snake_case , dtype=snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(snake_case )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _UpperCAmelCase = init_latents.shape _UpperCAmelCase = randn_tensor(snake_case , generator=snake_case , device=snake_case , dtype=snake_case ) # get latents print('add noise to latents at timestep' , snake_case ) _UpperCAmelCase = self.scheduler.add_noise(snake_case , snake_case , snake_case ) _UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self , snake_case = None , snake_case = 0.8 , snake_case = 1 , snake_case = None , snake_case = 0.0 , snake_case = 50 , snake_case = None , snake_case = "pil" , snake_case = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(snake_case ) # 2. Preprocess image _UpperCAmelCase = preprocess(snake_case ) # 3. set timesteps self.scheduler.set_timesteps(snake_case , device=self.device ) _UpperCAmelCase , _UpperCAmelCase = self.get_timesteps(snake_case , snake_case , self.device ) _UpperCAmelCase = timesteps[:1].repeat(snake_case ) # 4. Prepare latent variables _UpperCAmelCase = self.prepare_latents(snake_case , snake_case , snake_case , self.unet.dtype , self.device , snake_case ) _UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(snake_case ): # 1. predict noise model_output _UpperCAmelCase = self.unet(snake_case , snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to ฮท in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step( snake_case , snake_case , snake_case , eta=snake_case , use_clipped_model_output=snake_case , generator=snake_case , ).prev_sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=snake_case )
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase = datasets.utils.logging.get_logger(__name__) class lowercase__ ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' _UpperCAmelCase = None _UpperCAmelCase = None class lowercase__ ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' _UpperCAmelCase = datasets.Audio() _UpperCAmelCase = '''audio''' _UpperCAmelCase = AudioFolderConfig _UpperCAmelCase = 42 # definition at the bottom of the script _UpperCAmelCase = AudioClassification(audio_column='''audio''', label_column='''label''' ) lowercase = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowercase = AUDIO_EXTENSIONS
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" def UpperCAmelCase ( A : Any , A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = [1] for i in range(2 , A ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _UpperCAmelCase = [] _UpperCAmelCase = list(range(A ) ) # Find permutation while factorials: _UpperCAmelCase = factorials.pop() _UpperCAmelCase , _UpperCAmelCase = divmod(A , A ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsรฉ.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modรจle d\'apprentissage profond introduit en 2017, ' 'utilisรฉ principalement dans le domaine du traitement automatique des langues (TAL).', 'ร€ l\'instar des rรฉseaux de neurones rรฉcurrents (RNN), les transformeurs sont conรงus ' 'pour gรฉrer des donnรฉes sรฉquentielles, telles que le langage naturel, pour des tรขches ' 'telles que la traduction et la synthรจse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = IFPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCamelCase_ ( self ) -> int: return self._get_dummy_components() def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> int: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowerCamelCase_ ( self ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase_ ( self ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase_ ( self ) -> Any: self._test_save_load_local() def lowerCamelCase_ ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> Dict: # if _UpperCAmelCase = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _UpperCAmelCase = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=snake_case , tokenizer=snake_case ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _UpperCAmelCase , _UpperCAmelCase = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _UpperCAmelCase = None _UpperCAmelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case , snake_case , snake_case , snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _UpperCAmelCase = IFImgaImgPipeline(**pipe_a.components ) _UpperCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case , snake_case , snake_case , snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _UpperCAmelCase = IFInpaintingPipeline(**pipe_a.components ) _UpperCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case , snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: # pipeline 1 _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case , negative_prompt_embeds=snake_case , num_inference_steps=2 , generator=snake_case , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(snake_case , snake_case ) # pipeline 2 _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case , negative_prompt_embeds=snake_case , image=snake_case , generator=snake_case , num_inference_steps=2 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(snake_case , snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case ) _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case , negative_prompt_embeds=snake_case , image=snake_case , num_inference_steps=2 , generator=snake_case , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(snake_case , snake_case ) # pipeline 2 _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case , negative_prompt_embeds=snake_case , image=snake_case , original_image=snake_case , generator=snake_case , num_inference_steps=2 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(snake_case , snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(snake_case ) _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case , negative_prompt_embeds=snake_case , image=snake_case , mask_image=snake_case , num_inference_steps=2 , generator=snake_case , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(snake_case , snake_case ) # pipeline 2 _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case ) _UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case ) _UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(snake_case ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case , negative_prompt_embeds=snake_case , image=snake_case , mask_image=snake_case , original_image=snake_case , generator=snake_case , num_inference_steps=2 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(snake_case , snake_case ) def UpperCAmelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''resnet''' _UpperCAmelCase = ['''basic''', '''bottleneck'''] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ) -> Optional[int]: super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = downsample_in_first_stage _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-3
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCAmelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCAmelCase = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCAmelCase = tf_top_k_top_p_filtering(snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCAmelCase = output[output != -float('inf' )] _UpperCAmelCase = tf.cast( tf.where(tf.not_equal(snake_case , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(snake_case , snake_case , rtol=1E-12 ) tf.debugging.assert_equal(snake_case , snake_case ) @require_tf class lowercase__ ( unittest.TestCase, A ): '''simple docstring''' if is_tf_available(): _UpperCAmelCase = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowerCamelCase_ ( self ) -> List[str]: # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 2 _UpperCAmelCase = 2 class lowercase__ ( tf.Module ): '''simple docstring''' def __init__( self , snake_case ) -> Optional[Any]: super(snake_case , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=snake_case , ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.model.generate( input_ids=snake_case , attention_mask=snake_case , max_new_tokens=snake_case , return_dict_in_generate=snake_case , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2, 0], [102, 103]] _UpperCAmelCase = [[1, 0], [1, 1]] _UpperCAmelCase = DummyModel(model=snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case , snake_case , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(snake_case ).signatures['serving_default'] for batch_size in range(1 , len(snake_case ) + 1 ): _UpperCAmelCase = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCAmelCase = serving_func(**snake_case )['sequences'] _UpperCAmelCase = test_model.generate(**snake_case , max_new_tokens=snake_case ) tf.debugging.assert_equal(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> int: # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 1 _UpperCAmelCase = 2 class lowercase__ ( tf.Module ): '''simple docstring''' def __init__( self , snake_case ) -> str: super(snake_case , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=snake_case , ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> int: _UpperCAmelCase = self.model.generate( input_ids=snake_case , attention_mask=snake_case , max_new_tokens=snake_case , return_dict_in_generate=snake_case , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2], [102, 103]] _UpperCAmelCase = [[1], [1, 1]] _UpperCAmelCase = DummyModel(model=snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case , snake_case , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(snake_case ).signatures['serving_default'] for input_row in range(len(snake_case ) ): _UpperCAmelCase = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } _UpperCAmelCase = serving_func(**snake_case )['sequences'] _UpperCAmelCase = test_model.generate(**snake_case , max_new_tokens=snake_case ) tf.debugging.assert_equal(snake_case , snake_case ) @slow @require_tensorflow_text def lowerCamelCase_ ( self ) -> Any: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=snake_case ) class lowercase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ) -> Dict: super().__init__() _UpperCAmelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(snake_case , 'spiece.model' ) , 'rb' ).read() ) _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def lowerCamelCase_ ( self , snake_case , *snake_case , **snake_case ) -> str: _UpperCAmelCase = self.tokenizer.tokenize(snake_case ) _UpperCAmelCase , _UpperCAmelCase = text.pad_model_inputs( snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _UpperCAmelCase = self.model.generate(input_ids=snake_case , attention_mask=snake_case ) return self.tokenizer.detokenize(snake_case ) _UpperCAmelCase = CompleteSentenceTransformer() _UpperCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) _UpperCAmelCase = complete_model(snake_case ) _UpperCAmelCase = tf.keras.Model(snake_case , snake_case ) keras_model.save(snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: # Has PT equivalent: this test relies on random sampling _UpperCAmelCase = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } _UpperCAmelCase = 14 _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 'Hello, my dog is cute and' _UpperCAmelCase = tokenizer(snake_case , return_tensors='tf' ) _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**snake_case , eos_token_id=snake_case , **snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCAmelCase = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**snake_case , eos_token_id=snake_case , **snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCamelCase_ ( self ) -> Dict: # Has PT equivalent: ample use of framework-specific code _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = 'Hugging Face is a technology company based in New York and Paris.' _UpperCAmelCase = bart_tokenizer(snake_case , return_tensors='tf' ).input_ids _UpperCAmelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(snake_case ).numpy() class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case , snake_case=None , **snake_case ) -> str: return super().call(snake_case , **snake_case ) _UpperCAmelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(snake_case , foo='bar' ).numpy() self.assertTrue(np.array_equal(snake_case , snake_case ) ) class lowercase__ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case , **snake_case ) -> int: return super().call(snake_case , **snake_case ) _UpperCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCAmelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCAmelCase = bart_model.generate(snake_case ).numpy() with self.assertRaises(snake_case ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(snake_case , foo='bar' )
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist groรŸartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase ( A : Dict ): _UpperCAmelCase = filter(lambda A : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase = logging.getLogger(__name__) def UpperCAmelCase ( A : str , A : int ): if metric == "rouge2": _UpperCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _UpperCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _UpperCAmelCase = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _UpperCAmelCase = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) _UpperCAmelCase = ModelCheckpoint( dirpath=A , filename=A , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] ): return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=A , verbose=A , ) class lowercase__ ( pl.Callback ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = {f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case ) @rank_zero_only def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase = od / 'test_results.txt' _UpperCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _UpperCAmelCase = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=snake_case ) generations_file.parent.mkdir(exist_ok=snake_case ) with open(snake_case , 'a+' ) as writer: for key in sorted(snake_case ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(snake_case , torch.Tensor ): _UpperCAmelCase = val.item() _UpperCAmelCase = f'{key}: {val:.6f}\n' writer.write(snake_case ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case ) @rank_zero_only def lowerCamelCase_ ( self , snake_case , snake_case ) -> List[Any]: try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCamelCase_ ( self , snake_case , snake_case ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case , snake_case , 'test' ) @rank_zero_only def lowerCamelCase_ ( self , snake_case , snake_case ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase ( A : Tuple , A : List[str]=False ): '''simple docstring''' try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value lowercase = parse_flag_from_env('''RUN_SLOW''', default=False) lowercase = parse_flag_from_env('''RUN_REMOTE''', default=False) lowercase = parse_flag_from_env('''RUN_LOCAL''', default=True) lowercase = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression lowercase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') lowercase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') lowercase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio lowercase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam lowercase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility lowercase = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows lowercase = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' try: import faiss # noqa except ImportError: _UpperCAmelCase = unittest.skip('test requires faiss' )(A ) return test_case def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' try: import regex # noqa except ImportError: _UpperCAmelCase = unittest.skip('test requires regex' )(A ) return test_case def UpperCAmelCase ( A : List[str] ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: _UpperCAmelCase = unittest.skip('test requires elasticsearch' )(A ) return test_case def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: _UpperCAmelCase = unittest.skip('test requires sqlalchemy' )(A ) return test_case def UpperCAmelCase ( A : str ): '''simple docstring''' if not config.TORCH_AVAILABLE: _UpperCAmelCase = unittest.skip('test requires PyTorch' )(A ) return test_case def UpperCAmelCase ( A : Tuple ): '''simple docstring''' if not config.TF_AVAILABLE: _UpperCAmelCase = unittest.skip('test requires TensorFlow' )(A ) return test_case def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' if not config.JAX_AVAILABLE: _UpperCAmelCase = unittest.skip('test requires JAX' )(A ) return test_case def UpperCAmelCase ( A : str ): '''simple docstring''' if not config.PIL_AVAILABLE: _UpperCAmelCase = unittest.skip('test requires Pillow' )(A ) return test_case def UpperCAmelCase ( A : Union[str, Any] ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(A ) else: return test_case def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(A ) else: return test_case def UpperCAmelCase ( A : Any ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(A ) else: return test_case def UpperCAmelCase ( A : Any ): '''simple docstring''' def _require_spacy_model(A : Dict ): try: import spacy # noqa F401 spacy.load(A ) except ImportError: return unittest.skip('test requires spacy' )(A ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(A ) )(A ) else: return test_case return _require_spacy_model def UpperCAmelCase ( A : str ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(A ) else: return test_case def UpperCAmelCase ( A : Optional[int] ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(A ) else: return test_case def UpperCAmelCase ( A : List[str] ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: _UpperCAmelCase = unittest.skip('test is slow' )(A ) return test_case def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: _UpperCAmelCase = unittest.skip('test is local' )(A ) return test_case def UpperCAmelCase ( A : Dict ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCAmelCase = unittest.skip('test is packaged' )(A ) return test_case def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: _UpperCAmelCase = unittest.skip('test requires remote' )(A ) return test_case def UpperCAmelCase ( *A : List[Any] ): '''simple docstring''' def decorate(cls : Tuple ): for name, fn in cls.__dict__.items(): if callable(A ) and name.startswith('test' ): for decorator in decorators: _UpperCAmelCase = decorator(A ) setattr(cls , A , A ) return cls return decorate class lowercase__ ( A ): '''simple docstring''' pass class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 2 @contextmanager def UpperCAmelCase ( A : Optional[Any]=OfflineSimulationMode.CONNECTION_FAILS , A : Optional[int]=1e-16 ): '''simple docstring''' _UpperCAmelCase = requests.Session().request def timeout_request(A : str , A : Tuple , A : List[Any] , **A : List[str] ): # Change the url to an invalid url so that the connection hangs _UpperCAmelCase = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) _UpperCAmelCase = timeout try: return online_request(A , A , **A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCAmelCase = url _UpperCAmelCase = e.args[0] _UpperCAmelCase = (max_retry_error.args[0].replace('10.255.255.1' , f'OfflineMock[{url}]' ),) _UpperCAmelCase = (max_retry_error,) raise def raise_connection_error(A : Dict , A : int , **A : Optional[int] ): raise requests.ConnectionError('Offline mode is enabled.' , request=A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , A ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase ( *A : List[str] , **A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*A , **A ) as tmp_dir: try: os.chdir(A ) yield finally: os.chdir(A ) @contextmanager def UpperCAmelCase ( ): '''simple docstring''' import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase ( ): '''simple docstring''' import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase ( A : Optional[Any] , A : str ): '''simple docstring''' return deepcopy(A ).integers(0 , 100 , 10 ).tolist() == deepcopy(A ).integers(0 , 100 , 10 ).tolist() def UpperCAmelCase ( A : int ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(A : str , *A : Dict , **A : List[str] ): try: return func(*A , **A ) except HTTPError as err: if str(A ).startswith('500' ) or str(A ).startswith('502' ): pytest.xfail(str(A ) ) raise err return decorator.decorator(_wrapper , A ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def UpperCAmelCase ( A : List[str] , A : int ): '''simple docstring''' while True: _UpperCAmelCase = await stream.readline() if line: callback(A ) else: break async def UpperCAmelCase ( A : str , A : Tuple=None , A : List[str]=None , A : Dict=None , A : int=False , A : Dict=False ): '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(A ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(A : Optional[int] , A : Optional[Any] , A : Optional[int] , A : Optional[Any]="" ): _UpperCAmelCase = line.decode('utf-8' ).rstrip() sink.append(A ) if not quiet: print(A , A , file=A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda A : tee(A , A , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda A : tee(A , A , sys.stderr , label='stderr:' ) ), ] , timeout=A , ) return _RunOutput(await p.wait() , A , A ) def UpperCAmelCase ( A : Tuple , A : Any=None , A : Dict=None , A : Optional[int]=180 , A : str=False , A : Dict=True ): '''simple docstring''' _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(A , env=A , stdin=A , timeout=A , quiet=A , echo=A ) ) _UpperCAmelCase = ' '.join(A ) if result.returncode > 0: _UpperCAmelCase = '\n'.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) _UpperCAmelCase = re.sub(r'^gw' , '' , A , 0 , re.M ) return int(A ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 2_9500 _UpperCAmelCase = pytest_xdist_worker_id() return port + uniq_delta
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowercase = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowercase = '''UperNetConfig''' class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case = 0 , snake_case = False , snake_case = 1 , ) -> None: super().__init__() _UpperCAmelCase = nn.Convad( in_channels=snake_case , out_channels=snake_case , kernel_size=snake_case , padding=snake_case , bias=snake_case , dilation=snake_case , ) _UpperCAmelCase = nn.BatchNormad(snake_case ) _UpperCAmelCase = nn.ReLU() def lowerCamelCase_ ( self , snake_case ) -> torch.Tensor: _UpperCAmelCase = self.conv(snake_case ) _UpperCAmelCase = self.batch_norm(snake_case ) _UpperCAmelCase = self.activation(snake_case ) return output class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case ) -> None: super().__init__() _UpperCAmelCase = [ nn.AdaptiveAvgPoolad(snake_case ), UperNetConvModule(snake_case , snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(snake_case ) , snake_case ) def lowerCamelCase_ ( self , snake_case ) -> torch.Tensor: _UpperCAmelCase = input for layer in self.layers: _UpperCAmelCase = layer(snake_case ) return hidden_state class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case ) -> None: super().__init__() _UpperCAmelCase = pool_scales _UpperCAmelCase = align_corners _UpperCAmelCase = in_channels _UpperCAmelCase = channels _UpperCAmelCase = [] for i, pool_scale in enumerate(snake_case ): _UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=snake_case , in_channels=snake_case , channels=snake_case ) self.blocks.append(snake_case ) self.add_module(str(snake_case ) , snake_case ) def lowerCamelCase_ ( self , snake_case ) -> List[torch.Tensor]: _UpperCAmelCase = [] for ppm in self.blocks: _UpperCAmelCase = ppm(snake_case ) _UpperCAmelCase = nn.functional.interpolate( snake_case , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(snake_case ) return ppm_outs class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case ) -> List[str]: super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6) _UpperCAmelCase = in_channels _UpperCAmelCase = config.hidden_size _UpperCAmelCase = False _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _UpperCAmelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _UpperCAmelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _UpperCAmelCase = UperNetConvModule(snake_case , self.channels , kernel_size=1 ) _UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(snake_case ) self.fpn_convs.append(snake_case ) _UpperCAmelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowerCamelCase_ ( self ) -> Optional[int]: self.apply(self._init_weights ) def lowerCamelCase_ ( self , snake_case ) -> Tuple: if isinstance(snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase_ ( self , snake_case ) -> Optional[int]: _UpperCAmelCase = inputs[-1] _UpperCAmelCase = [x] psp_outs.extend(self.psp_modules(snake_case ) ) _UpperCAmelCase = torch.cat(snake_case , dim=1 ) _UpperCAmelCase = self.bottleneck(snake_case ) return output def lowerCamelCase_ ( self , snake_case ) -> torch.Tensor: # build laterals _UpperCAmelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(snake_case ) ) # build top-down path _UpperCAmelCase = len(snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _UpperCAmelCase = laterals[i - 1].shape[2:] _UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=snake_case , mode='bilinear' , align_corners=self.align_corners ) # build outputs _UpperCAmelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _UpperCAmelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) _UpperCAmelCase = torch.cat(snake_case , dim=1 ) _UpperCAmelCase = self.fpn_bottleneck(snake_case ) _UpperCAmelCase = self.classifier(snake_case ) return output class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case = 2 , snake_case = 3 , snake_case = 1 ) -> None: super().__init__() _UpperCAmelCase = config _UpperCAmelCase = config.auxiliary_in_channels _UpperCAmelCase = config.auxiliary_channels _UpperCAmelCase = config.auxiliary_num_convs _UpperCAmelCase = config.auxiliary_concat_input _UpperCAmelCase = in_index _UpperCAmelCase = (kernel_size // 2) * dilation _UpperCAmelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=snake_case , padding=snake_case , dilation=snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=snake_case , padding=snake_case , dilation=snake_case ) ) if self.num_convs == 0: _UpperCAmelCase = nn.Identity() else: _UpperCAmelCase = nn.Sequential(*snake_case ) if self.concat_input: _UpperCAmelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=snake_case , padding=kernel_size // 2 ) _UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowerCamelCase_ ( self ) -> Dict: self.apply(self._init_weights ) def lowerCamelCase_ ( self , snake_case ) -> Union[str, Any]: if isinstance(snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase_ ( self , snake_case ) -> torch.Tensor: # just take the relevant feature maps _UpperCAmelCase = encoder_hidden_states[self.in_index] _UpperCAmelCase = self.convs(snake_case ) if self.concat_input: _UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _UpperCAmelCase = self.classifier(snake_case ) return output class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = UperNetConfig _UpperCAmelCase = '''pixel_values''' _UpperCAmelCase = True def lowerCamelCase_ ( self , snake_case ) -> List[str]: if isinstance(snake_case , snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowerCamelCase_ ( self ) -> Optional[int]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowerCamelCase_ ( self , snake_case , snake_case=False ) -> Any: if isinstance(snake_case , snake_case ): _UpperCAmelCase = value lowercase = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''', A, ) class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case ) -> Dict: super().__init__(snake_case ) _UpperCAmelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _UpperCAmelCase = UperNetHead(snake_case , in_channels=self.backbone.channels ) _UpperCAmelCase = UperNetFCNHead(snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=snake_case , config_class=_CONFIG_FOR_DOC ) def lowerCamelCase_ ( self , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , ) -> Union[tuple, SemanticSegmenterOutput]: _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions _UpperCAmelCase = self.backbone.forward_with_filtered_kwargs( snake_case , output_hidden_states=snake_case , output_attentions=snake_case ) _UpperCAmelCase = outputs.feature_maps _UpperCAmelCase = self.decode_head(snake_case ) _UpperCAmelCase = nn.functional.interpolate(snake_case , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=snake_case ) _UpperCAmelCase = None if self.auxiliary_head is not None: _UpperCAmelCase = self.auxiliary_head(snake_case ) _UpperCAmelCase = nn.functional.interpolate( snake_case , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=snake_case ) _UpperCAmelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss _UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _UpperCAmelCase = loss_fct(snake_case , snake_case ) _UpperCAmelCase = loss_fct(snake_case , snake_case ) _UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _UpperCAmelCase = (logits,) + outputs[1:] else: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = SwinConfig() _UpperCAmelCase = swin_name.split('_' ) _UpperCAmelCase = name_split[1] _UpperCAmelCase = int(name_split[4] ) _UpperCAmelCase = int(name_split[3][-1] ) if model_size == "tiny": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 6, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "small": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "base": _UpperCAmelCase = 128 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (4, 8, 16, 32) else: _UpperCAmelCase = 192 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (6, 12, 24, 48) if "in22k" in swin_name: _UpperCAmelCase = 2_1841 else: _UpperCAmelCase = 1000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = img_size _UpperCAmelCase = num_classes _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size return config def UpperCAmelCase ( A : List[str] ): '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _UpperCAmelCase = 'encoder.' + name if "attn.proj" in name: _UpperCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _UpperCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: _UpperCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _UpperCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _UpperCAmelCase = 'layernorm.weight' if name == "norm.bias": _UpperCAmelCase = 'layernorm.bias' if "head" in name: _UpperCAmelCase = name.replace('head' , 'classifier' ) else: _UpperCAmelCase = 'swin.' + name return name def UpperCAmelCase ( A : Dict , A : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(A ) if "mask" in key: continue elif "qkv" in key: _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_split[1] ) _UpperCAmelCase = int(key_split[3] ) _UpperCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[ dim : dim * 2, : ] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[ :dim ] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[ -dim: ] else: _UpperCAmelCase = val return orig_state_dict def UpperCAmelCase ( A : Optional[Any] , A : List[str] ): '''simple docstring''' _UpperCAmelCase = timm.create_model(A , pretrained=A ) timm_model.eval() _UpperCAmelCase = get_swin_config(A ) _UpperCAmelCase = SwinForImageClassification(A ) model.eval() _UpperCAmelCase = convert_state_dict(timm_model.state_dict() , A ) model.load_state_dict(A ) _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) _UpperCAmelCase = image_processor(images=A , return_tensors='pt' ) _UpperCAmelCase = timm_model(inputs['pixel_values'] ) _UpperCAmelCase = model(**A ).logits assert torch.allclose(A , A , atol=1e-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase ( A : Dict ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase = k.replace(A , A ) return k def UpperCAmelCase ( A : dict , A : dict ): '''simple docstring''' _UpperCAmelCase = DEFAULTS.copy() cfg_kwargs.update(A ) _UpperCAmelCase = PegasusConfig(**A ) _UpperCAmelCase = PegasusForConditionalGeneration(A ) _UpperCAmelCase = torch_model.model.state_dict() _UpperCAmelCase = {} for k, v in tf_weights.items(): _UpperCAmelCase = rename_state_dict_key(A ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: _UpperCAmelCase = v.T _UpperCAmelCase = torch.tensor(A , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected _UpperCAmelCase = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) _UpperCAmelCase = mapping['shared.weight'] _UpperCAmelCase = mapping['shared.weight'] _UpperCAmelCase = {k: torch.zeros_like(A ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**A ) _UpperCAmelCase , _UpperCAmelCase = torch_model.model.load_state_dict(A , strict=A ) _UpperCAmelCase = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase ( A : Optional[Any]="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _UpperCAmelCase = tf.train.list_variables(A ) _UpperCAmelCase = {} _UpperCAmelCase = ['Adafactor', 'global_step'] for name, shape in tqdm(A , desc='converting tf checkpoint to dict' ): _UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase = tf.train.load_variable(A , A ) _UpperCAmelCase = array return tf_weights def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = Path(A ).parent.name _UpperCAmelCase = task_specific_params[f'summarization_{dataset}']['max_position_embeddings'] _UpperCAmelCase = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(A ) # convert model _UpperCAmelCase = get_tf_weights_as_numpy(A ) _UpperCAmelCase = task_specific_params[f'summarization_{dataset}'] if dataset == "large": _UpperCAmelCase = task_specific_params _UpperCAmelCase = convert_pegasus(A , A ) torch_model.save_pretrained(A ) _UpperCAmelCase = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(A , Path(A ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase = parser.parse_args() if args.save_dir is None: lowercase = Path(args.tf_ckpt_path).parent.name lowercase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase = (7_20, 12_80) # Height, Width lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase = 1 / 1_00 lowercase = '''''' lowercase = '''''' lowercase = '''''' lowercase = 2_50 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = get_dataset(A , A ) for index in range(A ): _UpperCAmelCase = random.sample(range(len(A ) ) , 4 ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = update_image_and_anno( A , A , A , A , A , filter_scale=A , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCAmelCase = random_chars(32 ) _UpperCAmelCase = path.split(os.sep )[-1].rsplit('.' , 1 )[0] _UpperCAmelCase = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) _UpperCAmelCase = [] for anno in new_annos: _UpperCAmelCase = anno[3] - anno[1] _UpperCAmelCase = anno[4] - anno[2] _UpperCAmelCase = anno[1] + width / 2 _UpperCAmelCase = anno[2] + height / 2 _UpperCAmelCase = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(A ) with open(f'{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] for label_file in glob.glob(os.path.join(A , '*.txt' ) ): _UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(A ) as in_file: _UpperCAmelCase = in_file.readlines() _UpperCAmelCase = os.path.join(A , f'{label_name}.jpg' ) _UpperCAmelCase = [] for obj_list in obj_lists: _UpperCAmelCase = obj_list.rstrip('\n' ).split(' ' ) _UpperCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 _UpperCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 _UpperCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 _UpperCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(A ) labels.append(A ) return img_paths, labels def UpperCAmelCase ( A : list , A : list , A : list[int] , A : tuple[int, int] , A : tuple[float, float] , A : float = 0.0 , ): '''simple docstring''' _UpperCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _UpperCAmelCase = int(scale_x * output_size[1] ) _UpperCAmelCase = int(scale_y * output_size[0] ) _UpperCAmelCase = [] _UpperCAmelCase = [] for i, index in enumerate(A ): _UpperCAmelCase = all_img_list[index] path_list.append(A ) _UpperCAmelCase = all_annos[index] _UpperCAmelCase = cva.imread(A ) if i == 0: # top-left _UpperCAmelCase = cva.resize(A , (divid_point_x, divid_point_y) ) _UpperCAmelCase = img for bbox in img_annos: _UpperCAmelCase = bbox[1] * scale_x _UpperCAmelCase = bbox[2] * scale_y _UpperCAmelCase = bbox[3] * scale_x _UpperCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _UpperCAmelCase = cva.resize(A , (output_size[1] - divid_point_x, divid_point_y) ) _UpperCAmelCase = img for bbox in img_annos: _UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x) _UpperCAmelCase = bbox[2] * scale_y _UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x) _UpperCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _UpperCAmelCase = cva.resize(A , (divid_point_x, output_size[0] - divid_point_y) ) _UpperCAmelCase = img for bbox in img_annos: _UpperCAmelCase = bbox[1] * scale_x _UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y) _UpperCAmelCase = bbox[3] * scale_x _UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _UpperCAmelCase = cva.resize( A , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _UpperCAmelCase = img for bbox in img_annos: _UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x) _UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y) _UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x) _UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _UpperCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase ( A : int ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" _UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(A ) for _ in range(A ) ) if __name__ == "__main__": main() print('''DONE โœ…''')
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = { '''post_extract_proj''': '''feature_projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.upsample.0''': '''encoder.upsample.projection''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCAmelCase ( A : Optional[int] , A : Optional[Any] , A : str , A : Optional[int] , A : Dict ): '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase = getattr(A , A ) if weight_type is not None: _UpperCAmelCase = getattr(A , A ).shape else: _UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( A : Optional[Any] , A : str , A : List[Any] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(A )[0].split('.' )[-2] _UpperCAmelCase = mapped_key.replace('*' , A ) if "weight_g" in name: _UpperCAmelCase = 'weight_g' elif "weight_v" in name: _UpperCAmelCase = 'weight_v' elif "weight" in name: _UpperCAmelCase = 'weight' elif "bias" in name: _UpperCAmelCase = 'bias' else: _UpperCAmelCase = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( A : List[Any] , A : List[str] , A : List[str] , A : List[str] , A : List[str] ): '''simple docstring''' _UpperCAmelCase = full_name.split('conv_layers.' )[-1] _UpperCAmelCase = name.split('.' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A ) def UpperCAmelCase ( A : Dict , A : Any ): '''simple docstring''' _UpperCAmelCase = SEWConfig() if is_finetuned: _UpperCAmelCase = model.wav_encoder.wav_model.cfg else: _UpperCAmelCase = model.cfg _UpperCAmelCase = fs_config.conv_bias _UpperCAmelCase = eval(fs_config.conv_feature_layers ) _UpperCAmelCase = [x[0] for x in conv_layers] _UpperCAmelCase = [x[1] for x in conv_layers] _UpperCAmelCase = [x[2] for x in conv_layers] _UpperCAmelCase = 'gelu' _UpperCAmelCase = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' _UpperCAmelCase = 0.0 _UpperCAmelCase = fs_config.activation_fn.name _UpperCAmelCase = fs_config.encoder_embed_dim _UpperCAmelCase = 0.02 _UpperCAmelCase = fs_config.encoder_ffn_embed_dim _UpperCAmelCase = 1e-5 _UpperCAmelCase = fs_config.encoder_layerdrop _UpperCAmelCase = fs_config.encoder_attention_heads _UpperCAmelCase = fs_config.conv_pos_groups _UpperCAmelCase = fs_config.conv_pos _UpperCAmelCase = len(A ) _UpperCAmelCase = fs_config.encoder_layers _UpperCAmelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCAmelCase = model.cfg _UpperCAmelCase = fs_config.final_dropout _UpperCAmelCase = fs_config.layerdrop _UpperCAmelCase = fs_config.activation_dropout _UpperCAmelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCAmelCase = fs_config.attention_dropout _UpperCAmelCase = fs_config.dropout_input _UpperCAmelCase = fs_config.dropout _UpperCAmelCase = fs_config.mask_channel_length _UpperCAmelCase = fs_config.mask_channel_prob _UpperCAmelCase = fs_config.mask_length _UpperCAmelCase = fs_config.mask_prob _UpperCAmelCase = 'Wav2Vec2FeatureExtractor' _UpperCAmelCase = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCAmelCase ( A : List[Any] , A : Any , A : Optional[Any]=None , A : Tuple=None , A : Union[str, Any]=True ): '''simple docstring''' if is_finetuned: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCAmelCase = SEWConfig.from_pretrained(A ) else: _UpperCAmelCase = convert_config(model[0] , A ) _UpperCAmelCase = model[0].eval() _UpperCAmelCase = True if config.feat_extract_norm == 'layer' else False _UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) if is_finetuned: if dict_path: _UpperCAmelCase = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.pad_index _UpperCAmelCase = target_dict.bos_index _UpperCAmelCase = target_dict.eos_index _UpperCAmelCase = len(target_dict.symbols ) _UpperCAmelCase = os.path.join(A , 'vocab.json' ) if not os.path.isdir(A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A ) ) return os.makedirs(A , exist_ok=A ) with open(A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , A ) _UpperCAmelCase = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , ) _UpperCAmelCase = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) _UpperCAmelCase = SEWForCTC(A ) else: _UpperCAmelCase = SEWModel(A ) feature_extractor.save_pretrained(A ) recursively_load_weights(A , A , A ) hf_model.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--is_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowercase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = 'ylacombe/bark-small' _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = 'en_speaker_1' _UpperCAmelCase = 'This is a test string' _UpperCAmelCase = 'speaker_embeddings_path.json' _UpperCAmelCase = 'speaker_embeddings' def lowerCamelCase_ ( self , **snake_case ) -> Optional[int]: return AutoTokenizer.from_pretrained(self.checkpoint , **snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BarkProcessor(tokenizer=snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _UpperCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase = 35 _UpperCAmelCase = 2 _UpperCAmelCase = 8 _UpperCAmelCase = { 'semantic_prompt': np.ones(snake_case ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCAmelCase = processor(text=self.input_string , voice_preset=snake_case ) _UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCAmelCase = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(snake_case , **snake_case ) _UpperCAmelCase = processor(text=self.input_string , voice_preset=snake_case ) _UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BarkProcessor(tokenizer=snake_case ) _UpperCAmelCase = processor(text=self.input_string ) _UpperCAmelCase = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=snake_case , return_attention_mask=snake_case , return_token_type_ids=snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = XGLMTokenizer _UpperCAmelCase = XGLMTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = XGLMTokenizer(snake_case , keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(snake_case ) , 1008 ) def lowerCamelCase_ ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = XGLMTokenizer(snake_case , keep_accents=snake_case ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case , ['โ–This', 'โ–is', 'โ–a', 'โ–t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'รฉ', '.', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCamelCase_ ( self ) -> int: return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def lowerCamelCase_ ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case , f.name ) _UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=snake_case ) _UpperCAmelCase = pickle.dumps(snake_case ) pickle.loads(snake_case ) def lowerCamelCase_ ( self ) -> int: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsรฉ.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = 'Hello World!' _UpperCAmelCase = [2, 31227, 4447, 35] self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off _UpperCAmelCase = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @slow def lowerCamelCase_ ( self ) -> str: # fmt: off _UpperCAmelCase = { 'input_ids': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='facebook/xglm-564M' , padding=snake_case , )
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( A : Tuple , A : List[Any] , A : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = BertConfig.from_json_file(A ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCAmelCase = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" import random def UpperCAmelCase ( A : Optional[Any] , A : Any , A : str ): '''simple docstring''' _UpperCAmelCase = a[left_index] _UpperCAmelCase = left_index + 1 for j in range(left_index + 1 , A ): if a[j] < pivot: _UpperCAmelCase , _UpperCAmelCase = a[i], a[j] i += 1 _UpperCAmelCase , _UpperCAmelCase = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase ( A : Dict , A : str , A : str ): '''simple docstring''' if left < right: _UpperCAmelCase = random.randint(A , right - 1 ) _UpperCAmelCase , _UpperCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase = partition(A , A , A ) quick_sort_random( A , A , A ) # recursive quicksort to the left of the pivot point quick_sort_random( A , pivot_index + 1 , A ) # recursive quicksort to the right of the pivot point def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = input('Enter numbers separated by a comma:\n' ).strip() _UpperCAmelCase = [int(A ) for item in user_input.split(',' )] quick_sort_random(A , 0 , len(A ) ) print(A ) if __name__ == "__main__": main()
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( A : Union[dict, list, tuple, torch.Tensor] ): '''simple docstring''' _UpperCAmelCase = [] if isinstance(A , A ): for v in tree.values(): shapes.extend(_fetch_dims(A ) ) elif isinstance(A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(A ) ) elif isinstance(A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def UpperCAmelCase ( A : int , A : Tuple[int, ...] ): '''simple docstring''' _UpperCAmelCase = [] for d in reversed(A ): idx.append(flat_idx % d ) _UpperCAmelCase = flat_idx // d return tuple(reversed(A ) ) @torch.jit.ignore def UpperCAmelCase ( A : Sequence[int] , A : Sequence[int] , A : Sequence[int] , A : Optional[Sequence[bool]] = None , A : Optional[Sequence[bool]] = None , ): '''simple docstring''' def reduce_edge_list(A : List[bool] ) -> None: _UpperCAmelCase = True for i in range(len(A ) ): _UpperCAmelCase = -1 * (i + 1) l[reversed_idx] &= tally _UpperCAmelCase = l[reversed_idx] if start_edges is None: _UpperCAmelCase = [s == 0 for s in start] reduce_edge_list(A ) if end_edges is None: _UpperCAmelCase = [e == (d - 1) for e, d in zip(A , A )] reduce_edge_list(A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(A ) == 0: return [()] elif len(A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _UpperCAmelCase = [] _UpperCAmelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(A , A ): if s == e: path_list.append(slice(A , s + 1 ) ) else: break _UpperCAmelCase = tuple(A ) _UpperCAmelCase = len(A ) # start == end, and we're done if divergence_idx == len(A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase = start[divergence_idx] return tuple( path + (slice(A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase = end[divergence_idx] return tuple( path + (slice(A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _UpperCAmelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCAmelCase ( A : torch.Tensor , A : int , A : int , A : int ): '''simple docstring''' _UpperCAmelCase = t.shape[:no_batch_dims] _UpperCAmelCase = list(_flat_idx_to_idx(A , A ) ) # _get_minimal_slice_set is inclusive _UpperCAmelCase = list(_flat_idx_to_idx(flat_end - 1 , A ) ) # Get an ordered list of slices to perform _UpperCAmelCase = _get_minimal_slice_set( A , A , A , ) _UpperCAmelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCAmelCase ( A : Callable , A : Dict[str, Any] , A : int , A : int , A : bool = False , A : Any = None , A : bool = False , ): '''simple docstring''' if not (len(A ) > 0): raise ValueError('Must provide at least one input' ) _UpperCAmelCase = [shape[:no_batch_dims] for shape in _fetch_dims(A )] _UpperCAmelCase = tuple([max(A ) for s in zip(*A )] ) def _prep_inputs(A : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _UpperCAmelCase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _UpperCAmelCase = tensor_tree_map(_prep_inputs , A ) _UpperCAmelCase = None if _out is not None: _UpperCAmelCase = tensor_tree_map(lambda A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _UpperCAmelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d _UpperCAmelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(A : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _UpperCAmelCase = 0 _UpperCAmelCase = prepped_outputs for _ in range(A ): # Chunk the input if not low_mem: _UpperCAmelCase = _select_chunk else: _UpperCAmelCase = partial( _chunk_slice , flat_start=A , flat_end=min(A , i + chunk_size ) , no_batch_dims=len(A ) , ) _UpperCAmelCase = tensor_tree_map(A , A ) # Run the layer on the chunk _UpperCAmelCase = layer(**A ) # Allocate space for the output if out is None: _UpperCAmelCase = tensor_tree_map(lambda A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , A ) # Put the chunk in its pre-allocated space if isinstance(A , A ): def assign(A : dict , A : dict ) -> None: for k, v in da.items(): if isinstance(A , A ): assign(A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _UpperCAmelCase = da[k] assign(A , A ) elif isinstance(A , A ): for xa, xa in zip(A , A ): if _add_into_out: xa[i : i + chunk_size] += xa else: _UpperCAmelCase = xa elif isinstance(A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _UpperCAmelCase = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _UpperCAmelCase = tensor_tree_map(lambda A : t.view(orig_batch_dims + t.shape[1:] ) , A ) return out class lowercase__ : '''simple docstring''' def __init__( self , snake_case = 512 , ) -> str: _UpperCAmelCase = max_chunk_size _UpperCAmelCase = None _UpperCAmelCase = None def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _UpperCAmelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _UpperCAmelCase = [c for c in candidates if c > min_chunk_size] _UpperCAmelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(snake_case ) -> bool: try: with torch.no_grad(): fn(*snake_case , chunk_size=snake_case ) return True except RuntimeError: return False _UpperCAmelCase = 0 _UpperCAmelCase = len(snake_case ) - 1 while i > min_viable_chunk_size_index: _UpperCAmelCase = test_chunk_size(candidates[i] ) if not viable: _UpperCAmelCase = (min_viable_chunk_size_index + i) // 2 else: _UpperCAmelCase = i _UpperCAmelCase = (i + len(snake_case ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCamelCase_ ( self , snake_case , snake_case ) -> bool: _UpperCAmelCase = True for aa, aa in zip(snake_case , snake_case ): assert type(snake_case ) == type(snake_case ) if isinstance(snake_case , (list, tuple) ): consistent &= self._compare_arg_caches(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): _UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda snake_case : x[0] )] _UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda snake_case : x[0] )] consistent &= self._compare_arg_caches(snake_case , snake_case ) else: consistent &= aa == aa return consistent def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , ) -> int: _UpperCAmelCase = True _UpperCAmelCase = tree_map(lambda snake_case : a.shape if isinstance(snake_case , torch.Tensor ) else a , snake_case , snake_case ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(snake_case ) _UpperCAmelCase = self._compare_arg_caches(self.cached_arg_data , snake_case ) else: # Otherwise, we can reuse the precomputed value _UpperCAmelCase = False if not consistent: _UpperCAmelCase = self._determine_favorable_chunk_size( snake_case , snake_case , snake_case , ) _UpperCAmelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : list[float] , A : str ) -> Optional[int]: '''simple docstring''' print(f'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(A ): print(f'{i}\t\t{d}' ) def UpperCAmelCase ( A : list[dict[str, int]] , A : list[float] , A : int ) -> List[Any]: '''simple docstring''' for j in range(A ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase ( A : list[dict[str, int]] , A : int , A : int , A : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [float('inf' )] * vertex_count _UpperCAmelCase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: _UpperCAmelCase = distance[u] + w _UpperCAmelCase = check_negative_cycle(A , A , A ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase = int(input('''Enter number of vertices: ''').strip()) lowercase = int(input('''Enter number of edges: ''').strip()) lowercase = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowercase , lowercase , lowercase = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowercase = {'''src''': src, '''dst''': dest, '''weight''': weight} lowercase = int(input('''\nEnter shortest path source:''').strip()) lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self ) -> Dict: _UpperCAmelCase = {} def lowerCamelCase_ ( self ) -> None: print(self.vertex ) for i in self.vertex: print(snake_case , ' -> ' , ' -> '.join([str(snake_case ) for j in self.vertex[i]] ) ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(snake_case ) else: # else make a new vertex _UpperCAmelCase = [to_vertex] def lowerCamelCase_ ( self ) -> None: # visited array for storing already visited nodes _UpperCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(snake_case , snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case ) -> None: # mark start vertex as visited _UpperCAmelCase = True print(snake_case , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(snake_case , snake_case ) if __name__ == "__main__": lowercase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowercase = '''''' lowercase = '''''' lowercase = '''''' lowercase = 1 # (0 is vertical, 1 is horizontal) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = get_dataset(A , A ) print('Processing...' ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = update_image_and_anno(A , A , A ) for index, image in enumerate(A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCAmelCase = random_chars(32 ) _UpperCAmelCase = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _UpperCAmelCase = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg' , A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Success {index+1}/{len(A )} with {file_name}' ) _UpperCAmelCase = [] for anno in new_annos[index]: _UpperCAmelCase = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(A ) with open(f'/{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] for label_file in glob.glob(os.path.join(A , '*.txt' ) ): _UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(A ) as in_file: _UpperCAmelCase = in_file.readlines() _UpperCAmelCase = os.path.join(A , f'{label_name}.jpg' ) _UpperCAmelCase = [] for obj_list in obj_lists: _UpperCAmelCase = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(A ) labels.append(A ) return img_paths, labels def UpperCAmelCase ( A : list , A : list , A : int = 1 ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for idx in range(len(A ) ): _UpperCAmelCase = [] _UpperCAmelCase = img_list[idx] path_list.append(A ) _UpperCAmelCase = anno_list[idx] _UpperCAmelCase = cva.imread(A ) if flip_type == 1: _UpperCAmelCase = cva.flip(A , A ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCAmelCase = cva.flip(A , A ) for bbox in img_annos: _UpperCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(A ) new_imgs_list.append(A ) return new_imgs_list, new_annos_lists, path_list def UpperCAmelCase ( A : int = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" _UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(A ) for _ in range(A ) ) if __name__ == "__main__": main() print('''DONE โœ…''')
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" lowercase = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase = logging.get_logger(__name__) lowercase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''marian''' _UpperCAmelCase = ['''past_key_values'''] _UpperCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , snake_case=58101 , snake_case=None , snake_case=1024 , snake_case=12 , snake_case=4096 , snake_case=16 , snake_case=12 , snake_case=4096 , snake_case=16 , snake_case=0.0 , snake_case=0.0 , snake_case=True , snake_case=True , snake_case="gelu" , snake_case=1024 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=58100 , snake_case=False , snake_case=58100 , snake_case=0 , snake_case=0 , snake_case=True , **snake_case , ) -> Dict: _UpperCAmelCase = vocab_size _UpperCAmelCase = decoder_vocab_size or vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = encoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , decoder_start_token_id=snake_case , forced_eos_token_id=snake_case , **snake_case , ) class lowercase__ ( A ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _UpperCAmelCase = {0: 'batch'} _UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _UpperCAmelCase , _UpperCAmelCase = self.num_layers for i in range(snake_case ): _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super().outputs else: _UpperCAmelCase = super(snake_case , self ).outputs if self.use_past: _UpperCAmelCase , _UpperCAmelCase = self.num_layers for i in range(snake_case ): _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: _UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case , snake_case , snake_case , snake_case , snake_case ) # Generate decoder inputs _UpperCAmelCase = seq_length if not self.use_past else 1 _UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case , snake_case , snake_case , snake_case , snake_case ) _UpperCAmelCase = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase = dict(**snake_case , **snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape _UpperCAmelCase = common_inputs['decoder_input_ids'].shape[1] _UpperCAmelCase , _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = decoder_seq_length + 3 _UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(snake_case , snake_case )] , dim=1 ) _UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase , _UpperCAmelCase = self.num_layers _UpperCAmelCase = min(snake_case , snake_case ) _UpperCAmelCase = max(snake_case , snake_case ) - min_num_layers _UpperCAmelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case ), torch.zeros(snake_case ), torch.zeros(snake_case ), torch.zeros(snake_case ), ) ) # TODO: test this. _UpperCAmelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(snake_case , snake_case ): common_inputs["past_key_values"].append((torch.zeros(snake_case ), torch.zeros(snake_case )) ) return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: _UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case , snake_case , snake_case , snake_case , snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase , _UpperCAmelCase = self.num_layers _UpperCAmelCase , _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = common_inputs['attention_mask'].dtype _UpperCAmelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(snake_case , snake_case , dtype=snake_case )] , dim=1 ) _UpperCAmelCase = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(snake_case ) ] return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = tokenizer.num_special_tokens_to_add(snake_case ) _UpperCAmelCase = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase = dict(tokenizer(snake_case , return_tensors=snake_case ) ) return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) else: _UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) return common_inputs def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case ) -> str: if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super()._flatten_past_key_values_(snake_case , snake_case , snake_case , snake_case ) else: _UpperCAmelCase = super(snake_case , self )._flatten_past_key_values_( snake_case , snake_case , snake_case , snake_case ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = False , snake_case = False , snake_case = None , **snake_case , ) -> Tuple: _UpperCAmelCase = path_or_paths _UpperCAmelCase = split if split or isinstance(snake_case , snake_case ) else 'train' _UpperCAmelCase = features _UpperCAmelCase = cache_dir _UpperCAmelCase = keep_in_memory _UpperCAmelCase = streaming _UpperCAmelCase = num_proc _UpperCAmelCase = kwargs @abstractmethod def lowerCamelCase_ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case = None , snake_case = None , snake_case = False , snake_case = False , snake_case = None , **snake_case , ) -> Tuple: _UpperCAmelCase = features _UpperCAmelCase = cache_dir _UpperCAmelCase = keep_in_memory _UpperCAmelCase = streaming _UpperCAmelCase = num_proc _UpperCAmelCase = kwargs @abstractmethod def lowerCamelCase_ ( self ) -> Union[Dataset, IterableDataset]: pass
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsรฉ.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modรจle d\'apprentissage profond introduit en 2017, ' 'utilisรฉ principalement dans le domaine du traitement automatique des langues (TAL).', 'ร€ l\'instar des rรฉseaux de neurones rรฉcurrents (RNN), les transformeurs sont conรงus ' 'pour gรฉrer des donnรฉes sรฉquentielles, telles que le langage naturel, pour des tรขches ' 'telles que la traduction et la synthรจse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''umt5''' _UpperCAmelCase = ['''past_key_values'''] def __init__( self , snake_case=250112 , snake_case=512 , snake_case=64 , snake_case=1024 , snake_case=8 , snake_case=None , snake_case=6 , snake_case=32 , snake_case=128 , snake_case=0.1 , snake_case=1E-6 , snake_case=1.0 , snake_case="gated-gelu" , snake_case=True , snake_case=True , snake_case="T5Tokenizer" , snake_case=True , snake_case=0 , snake_case=1 , snake_case=0 , **snake_case , ) -> List[Any]: super().__init__( is_encoder_decoder=snake_case , tokenizer_class=snake_case , tie_word_embeddings=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , decoder_start_token_id=snake_case , **snake_case , ) _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = d_kv _UpperCAmelCase = d_ff _UpperCAmelCase = num_layers _UpperCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase = num_heads _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = dropout_rate _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_factor _UpperCAmelCase = feed_forward_proj _UpperCAmelCase = use_cache _UpperCAmelCase = self.feed_forward_proj.split('-' ) _UpperCAmelCase = act_info[-1] _UpperCAmelCase = act_info[0] == 'gated' if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": _UpperCAmelCase = 'gelu_new' @property def lowerCamelCase_ ( self ) -> Union[str, Any]: return self.d_model @property def lowerCamelCase_ ( self ) -> Tuple: return self.num_heads @property def lowerCamelCase_ ( self ) -> Optional[int]: return self.num_layers class lowercase__ ( A ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: _UpperCAmelCase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _UpperCAmelCase = 'past_encoder_sequence + sequence' _UpperCAmelCase = {0: 'batch'} _UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCamelCase_ ( self ) -> int: return 13 @property def lowerCamelCase_ ( self ) -> float: return 5E-4
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = UnCLIPImageVariationPipeline _UpperCAmelCase = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} _UpperCAmelCase = IMAGE_VARIATION_BATCH_PARAMS _UpperCAmelCase = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] _UpperCAmelCase = False @property def lowerCamelCase_ ( self ) -> List[Any]: return 32 @property def lowerCamelCase_ ( self ) -> Union[str, Any]: return 32 @property def lowerCamelCase_ ( self ) -> int: return self.time_input_dim @property def lowerCamelCase_ ( self ) -> Any: return self.time_input_dim * 4 @property def lowerCamelCase_ ( self ) -> Tuple: return 100 @property def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowerCamelCase_ ( self ) -> Any: torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(snake_case ) @property def lowerCamelCase_ ( self ) -> int: torch.manual_seed(0 ) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(snake_case ) @property def lowerCamelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } _UpperCAmelCase = UnCLIPTextProjModel(**snake_case ) return model @property def lowerCamelCase_ ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } _UpperCAmelCase = UNetaDConditionModel(**snake_case ) return model @property def lowerCamelCase_ ( self ) -> Tuple: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowerCamelCase_ ( self ) -> List[str]: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowerCamelCase_ ( self ) -> List[str]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) _UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.dummy_decoder _UpperCAmelCase = self.dummy_text_proj _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_super_res_first _UpperCAmelCase = self.dummy_super_res_last _UpperCAmelCase = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1000 , ) _UpperCAmelCase = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1000 , ) _UpperCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) _UpperCAmelCase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowerCamelCase_ ( self , snake_case , snake_case=0 , snake_case=True ) -> int: _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) if pil_image: _UpperCAmelCase = input_image * 0.5 + 0.5 _UpperCAmelCase = input_image.clamp(0 , 1 ) _UpperCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase = DiffusionPipeline.numpy_to_pil(snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe(**snake_case ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe( **snake_case , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe(**snake_case ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe( **snake_case , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = [ pipeline_inputs['image'], pipeline_inputs['image'], ] _UpperCAmelCase = pipe(**snake_case ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] _UpperCAmelCase = pipe( **snake_case , return_dict=snake_case , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _UpperCAmelCase = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = torch.device('cpu' ) class lowercase__ : '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) _UpperCAmelCase = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(0 ) _UpperCAmelCase = pipe.decoder.dtype _UpperCAmelCase = 1 _UpperCAmelCase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _UpperCAmelCase = pipe.prepare_latents( snake_case , dtype=snake_case , device=snake_case , generator=snake_case , latents=snake_case , scheduler=DummyScheduler() ) _UpperCAmelCase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _UpperCAmelCase = pipe.prepare_latents( snake_case , dtype=snake_case , device=snake_case , generator=snake_case , latents=snake_case , scheduler=DummyScheduler() ) _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) _UpperCAmelCase = pipe( **snake_case , decoder_latents=snake_case , super_res_latents=snake_case ).images _UpperCAmelCase = self.get_dummy_inputs(snake_case , pil_image=snake_case ) # Don't pass image, instead pass embedding _UpperCAmelCase = pipeline_inputs.pop('image' ) _UpperCAmelCase = pipe.image_encoder(snake_case ).image_embeds _UpperCAmelCase = pipe( **snake_case , decoder_latents=snake_case , super_res_latents=snake_case , image_embeddings=snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _UpperCAmelCase = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=snake_case , expected_max_diff=snake_case ) @skip_mps def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch_device == 'cpu' _UpperCAmelCase = True _UpperCAmelCase = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=snake_case , relax_max_difference=snake_case , additional_params_copy_to_batched_inputs=snake_case , ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _UpperCAmelCase = [2, 3] self._test_inference_batch_consistent( batch_sizes=snake_case , additional_params_copy_to_batched_inputs=snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=snake_case ) @skip_mps def lowerCamelCase_ ( self ) -> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase_ ( self ) -> List[Any]: return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ) -> List[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) _UpperCAmelCase = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _UpperCAmelCase = pipeline( snake_case , generator=snake_case , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(snake_case , snake_case , 15 )
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : list[int] , A : int ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = sum(A ) create_state_space_tree(A , A , A , A , A , A ) return result def UpperCAmelCase ( A : list[int] , A : int , A : int , A : list[int] , A : list[list[int]] , A : int , ): '''simple docstring''' if sum(A ) > max_sum or (remaining_nums_sum + sum(A )) < max_sum: return if sum(A ) == max_sum: result.append(A ) return for index in range(A , len(A ) ): create_state_space_tree( A , A , index + 1 , [*path, nums[index]] , A , remaining_nums_sum - nums[index] , ) lowercase = [3, 34, 4, 12, 5, 2] lowercase = 9 lowercase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" lowercase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowercase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowercase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist groรŸartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCAmelCase ( A : float , A : float , A : bool = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(A ), magnitude * sin(A )] return [magnitude * cos(radians(A ) ), magnitude * sin(radians(A ) )] def UpperCAmelCase ( A : NDArray[floataa] , A : NDArray[floataa] , A : float = 10**-1 ): '''simple docstring''' _UpperCAmelCase = cross(A , A ) _UpperCAmelCase = sum(A ) return abs(A ) < eps if __name__ == "__main__": # Test to check if it works lowercase = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' _UpperCAmelCase = botoa.client('iam' ) _UpperCAmelCase = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A , AssumeRolePolicyDocument=json.dumps(A , indent=2 ) ) _UpperCAmelCase = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=A , PolicyName=f'{role_name}_policy_permission' , PolicyDocument=json.dumps(A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'role {role_name} already exists. Using existing one' ) def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = botoa.client('iam' ) return iam_client.get_role(RoleName=A )["Role"]["Arn"] def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , A , ) _UpperCAmelCase = None if credentials_configuration == 0: _UpperCAmelCase = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) _UpperCAmelCase = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) _UpperCAmelCase = _ask_field('AWS Access Key ID: ' ) _UpperCAmelCase = aws_access_key_id _UpperCAmelCase = _ask_field('AWS Secret Access Key: ' ) _UpperCAmelCase = aws_secret_access_key _UpperCAmelCase = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) _UpperCAmelCase = aws_region _UpperCAmelCase = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , A , ) if role_management == 0: _UpperCAmelCase = _ask_field('Enter your IAM role name: ' ) else: _UpperCAmelCase = 'accelerate_sagemaker_execution_role' print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials' ) _create_iam_role_for_sagemaker(A ) _UpperCAmelCase = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) _UpperCAmelCase = None if is_custom_docker_image: _UpperCAmelCase = _ask_field('Enter your Docker image: ' , lambda A : str(A ).lower() ) _UpperCAmelCase = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) _UpperCAmelCase = None if is_sagemaker_inputs_enabled: _UpperCAmelCase = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda A : str(A ).lower() , ) _UpperCAmelCase = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) _UpperCAmelCase = None if is_sagemaker_metrics_enabled: _UpperCAmelCase = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda A : str(A ).lower() , ) _UpperCAmelCase = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) _UpperCAmelCase = {} _UpperCAmelCase = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_dynamo: _UpperCAmelCase = 'dynamo_' _UpperCAmelCase = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) _UpperCAmelCase = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_custom_options: _UpperCAmelCase = _ask_options( 'Which mode do you want to use?' , A , lambda A : TORCH_DYNAMO_MODES[int(A )] , default='default' , ) _UpperCAmelCase = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) _UpperCAmelCase = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) _UpperCAmelCase = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: _UpperCAmelCase = _ask_options( A , A , lambda A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _UpperCAmelCase = _ask_field(A , lambda A : str(A ).lower() , default='ml.p3.2xlarge' ) _UpperCAmelCase = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _UpperCAmelCase = _ask_field( 'How many machines do you want use? [1]: ' , A , default=1 , ) _UpperCAmelCase = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A , use_cpu=A , dynamo_config=A , eca_instance_type=A , profile=A , region=A , iam_role_name=A , mixed_precision=A , num_machines=A , sagemaker_inputs_file=A , sagemaker_metrics_file=A , )
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" from random import randint, random def UpperCAmelCase ( A : int , A : int , A : int , A : bool = False , A : bool = False , A : int = 5 , ): '''simple docstring''' _UpperCAmelCase = [[-1] * number_of_cells] # Create a highway without any car _UpperCAmelCase = 0 _UpperCAmelCase = max(A , 0 ) while i < number_of_cells: _UpperCAmelCase = ( randint(0 , A ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def UpperCAmelCase ( A : list , A : int ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = highway_now[car_index + 1 :] for cell in range(len(A ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(A , -1 ) def UpperCAmelCase ( A : list , A : float , A : int ): '''simple docstring''' _UpperCAmelCase = len(A ) # Beforce calculations, the highway is empty _UpperCAmelCase = [-1] * number_of_cells for car_index in range(A ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _UpperCAmelCase = min(highway_now[car_index] + 1 , A ) # Number of empty cell before the next car _UpperCAmelCase = get_distance(A , A ) - 1 # We can't have the car causing an accident _UpperCAmelCase = min(next_highway[car_index] , A ) if random() < probability: # Randomly, a driver will slow down _UpperCAmelCase = max(next_highway[car_index] - 1 , 0 ) return next_highway def UpperCAmelCase ( A : list , A : int , A : float , A : int ): '''simple docstring''' _UpperCAmelCase = len(highway[0] ) for i in range(A ): _UpperCAmelCase = update(highway[i] , A , A ) _UpperCAmelCase = [-1] * number_of_cells for car_index in range(A ): _UpperCAmelCase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _UpperCAmelCase = (car_index + speed) % number_of_cells # Commit the change of position _UpperCAmelCase = speed highway.append(A ) return highway if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _UpperCAmelCase = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } _UpperCAmelCase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _UpperCAmelCase = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(snake_case , return_tensors='np' ) _UpperCAmelCase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = processor(text=snake_case ) _UpperCAmelCase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(snake_case ): processor() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(snake_case ) _UpperCAmelCase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=A , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=A , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=A , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=A , default='data/dump' , help='The dump file prefix.' ) _UpperCAmelCase = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": _UpperCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['cls_token'] # `[CLS]` _UpperCAmelCase = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": _UpperCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['cls_token'] # `<s>` _UpperCAmelCase = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": _UpperCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _UpperCAmelCase = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` _UpperCAmelCase = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: _UpperCAmelCase = fp.readlines() logger.info('Start encoding' ) logger.info(f'{len(A )} examples to process.' ) _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 1_0000 _UpperCAmelCase = time.time() for text in data: _UpperCAmelCase = f'{bos} {text.strip()} {sep}' _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A ) rslt.append(A ) iter += 1 if iter % interval == 0: _UpperCAmelCase = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) _UpperCAmelCase = time.time() logger.info('Finished binarization' ) logger.info(f'{len(A )} examples processed.' ) _UpperCAmelCase = f'{args.dump_file}.{args.tokenizer_name}.pickle' _UpperCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): _UpperCAmelCase = [np.uintaa(A ) for d in rslt] else: _UpperCAmelCase = [np.intaa(A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(A , 'wb' ) as handle: pickle.dump(rslt_ , A , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase = '''src/diffusers''' lowercase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowercase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase = spec.loader.load_module() def UpperCAmelCase ( A : Any , A : Tuple ): '''simple docstring''' return line.startswith(A ) or len(A ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , A ) is not None def UpperCAmelCase ( A : Dict ): '''simple docstring''' _UpperCAmelCase = object_name.split('.' ) _UpperCAmelCase = 0 # First let's find the module where our object lives. _UpperCAmelCase = parts[i] while i < len(A ) and not os.path.isfile(os.path.join(A , f'{module}.py' ) ): i += 1 if i < len(A ): _UpperCAmelCase = os.path.join(A , parts[i] ) if i >= len(A ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(A , f'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! _UpperCAmelCase = '' _UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(A ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(A ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _UpperCAmelCase = line_index while line_index < len(A ) and _should_continue(lines[line_index] , A ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] return "".join(A ) lowercase = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowercase = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowercase = re.compile(r'''<FILL\s+[^>]*>''') def UpperCAmelCase ( A : Dict ): '''simple docstring''' _UpperCAmelCase = code.split('\n' ) _UpperCAmelCase = 0 while idx < len(A ) and len(lines[idx] ) == 0: idx += 1 if idx < len(A ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def UpperCAmelCase ( A : Any ): '''simple docstring''' _UpperCAmelCase = len(get_indent(A ) ) > 0 if has_indent: _UpperCAmelCase = f'class Bla:\n{code}' _UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=A ) _UpperCAmelCase = black.format_str(A , mode=A ) _UpperCAmelCase , _UpperCAmelCase = style_docstrings_in_code(A ) return result[len('class Bla:\n' ) :] if has_indent else result def UpperCAmelCase ( A : int , A : int=False ): '''simple docstring''' with open(A , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] _UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(A ): _UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = search.groups() _UpperCAmelCase = find_code_in_diffusers(A ) _UpperCAmelCase = get_indent(A ) _UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _UpperCAmelCase = theoretical_indent _UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _UpperCAmelCase = True while line_index < len(A ) and should_continue: line_index += 1 if line_index >= len(A ): break _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _should_continue(A , A ) and re.search(f'^{indent}# End copy' , A ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] _UpperCAmelCase = ''.join(A ) # Remove any nested `Copied from` comments to avoid circular copies _UpperCAmelCase = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(A ) is None] _UpperCAmelCase = '\n'.join(A ) # Before comparing, use the `replace_pattern` on the original code. if len(A ) > 0: _UpperCAmelCase = replace_pattern.replace('with' , '' ).split(',' ) _UpperCAmelCase = [_re_replace_pattern.search(A ) for p in patterns] for pattern in patterns: if pattern is None: continue _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = pattern.groups() _UpperCAmelCase = re.sub(A , A , A ) if option.strip() == "all-casing": _UpperCAmelCase = re.sub(obja.lower() , obja.lower() , A ) _UpperCAmelCase = re.sub(obja.upper() , obja.upper() , A ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _UpperCAmelCase = start_index + 1 if overwrite and len(A ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(A ) return diffs def UpperCAmelCase ( A : bool = False ): '''simple docstring''' _UpperCAmelCase = glob.glob(os.path.join(A , '**/*.py' ) , recursive=A ) _UpperCAmelCase = [] for filename in all_files: _UpperCAmelCase = is_copy_consistent(A , A ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(A ) > 0: _UpperCAmelCase = '\n'.join(A ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
"""simple docstring""" from collections.abc import Callable import numpy as np def UpperCAmelCase ( A : Callable , A : float , A : float , A : float , A : float ): '''simple docstring''' _UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCAmelCase = np.zeros((n + 1,) ) _UpperCAmelCase = ya _UpperCAmelCase = xa for k in range(A ): _UpperCAmelCase = y[k] + step_size * ode_func(A , y[k] ) _UpperCAmelCase = y[k] + ( (step_size / 2) * (ode_func(A , y[k] ) + ode_func(x + step_size , A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" lowercase = range(2, 20 + 1) lowercase = [10**k for k in range(ks[-1] + 1)] lowercase = {} def UpperCAmelCase ( A : int , A : Tuple , A : List[str] , A : Tuple ): '''simple docstring''' _UpperCAmelCase = sum(a_i[j] for j in range(A , len(A ) ) ) _UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) _UpperCAmelCase , _UpperCAmelCase = 0, 0 _UpperCAmelCase = n - i _UpperCAmelCase = memo.get(A ) if sub_memo is not None: _UpperCAmelCase = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over _UpperCAmelCase = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _UpperCAmelCase = _k break if max_jump >= 0: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c _UpperCAmelCase = diff + c for j in range(min(A , len(A ) ) ): _UpperCAmelCase , _UpperCAmelCase = divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: _UpperCAmelCase = [] else: _UpperCAmelCase = {c: []} _UpperCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _UpperCAmelCase , _UpperCAmelCase = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _UpperCAmelCase , _UpperCAmelCase = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped _UpperCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped _UpperCAmelCase = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def UpperCAmelCase ( A : Optional[int] , A : Any , A : Tuple , A : Optional[int] ): '''simple docstring''' if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _UpperCAmelCase = i _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _UpperCAmelCase = ds_c + ds_b diff += addend _UpperCAmelCase = 0 for j in range(A ): _UpperCAmelCase = a_i[j] + addend _UpperCAmelCase , _UpperCAmelCase = divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def UpperCAmelCase ( A : Tuple , A : Dict , A : List[Any] ): '''simple docstring''' for j in range(A , len(A ) ): _UpperCAmelCase = digits[j] + addend if s >= 10: _UpperCAmelCase , _UpperCAmelCase = divmod(A , 10 ) _UpperCAmelCase = addend // 10 + quotient else: _UpperCAmelCase = s _UpperCAmelCase = addend // 10 if addend == 0: break while addend > 0: _UpperCAmelCase , _UpperCAmelCase = divmod(A , 10 ) digits.append(A ) def UpperCAmelCase ( A : int = 10**15 ): '''simple docstring''' _UpperCAmelCase = [1] _UpperCAmelCase = 1 _UpperCAmelCase = 0 while True: _UpperCAmelCase , _UpperCAmelCase = next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break _UpperCAmelCase = 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
701
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
0
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
702
"""simple docstring""" from itertools import permutations def UpperCAmelCase ( A : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(A ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase ( A : int = 10 ): '''simple docstring''' return sum( int(''.join(map(A , A ) ) ) for num in permutations(range(A ) ) if is_substring_divisible(A ) ) if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowercase = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'https://pypi.org/pypi/diffusers/json' _UpperCAmelCase = json.loads(request.urlopen(A ).read() )['releases'].keys() return sorted(A , key=lambda A : version.Version(A ) ) def UpperCAmelCase ( ): '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(A ) os.makedirs(A , exist_ok=A ) _UpperCAmelCase = Path(A ) / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase ( A : Union[str, os.PathLike] ): '''simple docstring''' init_hf_modules() _UpperCAmelCase = Path(A ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(A , exist_ok=A ) _UpperCAmelCase = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' with open(A , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = f.read() # Imports of the form `import .xxx` _UpperCAmelCase = re.findall('^\s*import\s+\.(\S+)\s*$' , A , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , A , flags=re.MULTILINE ) # Unique-ify return list(set(A ) ) def UpperCAmelCase ( A : List[str] ): '''simple docstring''' _UpperCAmelCase = False _UpperCAmelCase = [module_file] _UpperCAmelCase = [] # Let's recurse through all relative imports while not no_change: _UpperCAmelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(A ) ) _UpperCAmelCase = Path(A ).parent _UpperCAmelCase = [str(module_path / m ) for m in new_imports] _UpperCAmelCase = [f for f in new_import_files if f not in all_relative_imports] _UpperCAmelCase = [f'{f}.py' for f in new_import_files] _UpperCAmelCase = len(A ) == 0 all_relative_imports.extend(A ) return all_relative_imports def UpperCAmelCase ( A : str ): '''simple docstring''' with open(A , 'r' , encoding='utf-8' ) as f: _UpperCAmelCase = f.read() # Imports of the form `import xxx` _UpperCAmelCase = re.findall('^\s*import\s+(\S+)\s*$' , A , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , A , flags=re.MULTILINE ) # Only keep the top-level module _UpperCAmelCase = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all _UpperCAmelCase = list(set(A ) ) _UpperCAmelCase = [] for imp in imports: try: importlib.import_module(A ) except ImportError: missing_packages.append(A ) if len(A ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f'{", ".join(A )}. Run `pip install {" ".join(A )}`' ) return get_relative_imports(A ) def UpperCAmelCase ( A : Dict , A : Tuple ): '''simple docstring''' _UpperCAmelCase = module_path.replace(os.path.sep , '.' ) _UpperCAmelCase = importlib.import_module(A ) if class_name is None: return find_pipeline_class(A ) return getattr(A , A ) def UpperCAmelCase ( A : Tuple ): '''simple docstring''' from ..pipelines import DiffusionPipeline _UpperCAmelCase = dict(inspect.getmembers(A , inspect.isclass ) ) _UpperCAmelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , A ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' f' {loaded_module}.' ) _UpperCAmelCase = cls return pipeline_class def UpperCAmelCase ( A : Union[str, os.PathLike] , A : str , A : Optional[Union[str, os.PathLike]] = None , A : bool = False , A : bool = False , A : Optional[Dict[str, str]] = None , A : Optional[Union[bool, str]] = None , A : Optional[str] = None , A : bool = False , ): '''simple docstring''' _UpperCAmelCase = str(A ) _UpperCAmelCase = os.path.join(A , A ) if os.path.isfile(A ): _UpperCAmelCase = module_file_or_url _UpperCAmelCase = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: _UpperCAmelCase = get_diffusers_versions() # cut ".dev0" _UpperCAmelCase = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: _UpperCAmelCase = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: _UpperCAmelCase = f'v{revision}' elif revision == "main": _UpperCAmelCase = revision else: raise ValueError( f'`custom_revision`: {revision} does not exist. Please make sure to choose one of' f' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub _UpperCAmelCase = COMMUNITY_PIPELINES_URL.format(revision=A , pipeline=A ) try: _UpperCAmelCase = cached_download( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , ) _UpperCAmelCase = 'git' _UpperCAmelCase = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached _UpperCAmelCase = hf_hub_download( A , A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , ) _UpperCAmelCase = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment _UpperCAmelCase = check_imports(A ) # Now we move the module inside our cached dynamic modules. _UpperCAmelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(A ) _UpperCAmelCase = Path(A ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(A , submodule_path / module_file ) for module_needed in modules_needed: _UpperCAmelCase = f'{module_needed}.py' shutil.copy(os.path.join(A , A ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(A , A ): _UpperCAmelCase = use_auth_token elif use_auth_token is True: _UpperCAmelCase = HfFolder.get_token() else: _UpperCAmelCase = None _UpperCAmelCase = model_info(A , revision=A , token=A ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _UpperCAmelCase = submodule_path / commit_hash _UpperCAmelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(A ) if not (submodule_path / module_file).exists(): shutil.copy(A , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( A , f'{module_needed}.py' , cache_dir=A , force_download=A , resume_download=A , proxies=A , use_auth_token=A , revision=A , local_files_only=A , ) return os.path.join(A , A ) def UpperCAmelCase ( A : Union[str, os.PathLike] , A : str , A : Optional[str] = None , A : Optional[Union[str, os.PathLike]] = None , A : bool = False , A : bool = False , A : Optional[Dict[str, str]] = None , A : Optional[Union[bool, str]] = None , A : Optional[str] = None , A : bool = False , **A : Dict , ): '''simple docstring''' _UpperCAmelCase = get_cached_module_file( A , A , cache_dir=A , force_download=A , resume_download=A , proxies=A , use_auth_token=A , revision=A , local_files_only=A , ) return get_class_in_module(A , final_module.replace('.py' , '' ) )
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCAmelCase ( A : Optional[int] ) -> str: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCAmelCase ( A : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = np.max(_outputs , axis=-1 , keepdims=A ) _UpperCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=A ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''sigmoid''' _UpperCAmelCase = '''softmax''' _UpperCAmelCase = '''none''' @add_end_docstrings( A, R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''', ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = False _UpperCAmelCase = ClassificationFunction.NONE def __init__( self , **snake_case ) -> List[str]: super().__init__(**snake_case ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCamelCase_ ( self , snake_case=None , snake_case=None , snake_case="" , **snake_case ) -> Optional[Any]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" _UpperCAmelCase = tokenizer_kwargs _UpperCAmelCase = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: _UpperCAmelCase = self.model.config.return_all_scores if isinstance(snake_case , snake_case ) or top_k is None: _UpperCAmelCase = top_k _UpperCAmelCase = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , snake_case , ) if return_all_scores: _UpperCAmelCase = None else: _UpperCAmelCase = 1 if isinstance(snake_case , snake_case ): _UpperCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _UpperCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *snake_case , **snake_case ) -> Dict: _UpperCAmelCase = super().__call__(*snake_case , **snake_case ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _UpperCAmelCase = 'top_k' not in kwargs if isinstance(args[0] , snake_case ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCamelCase_ ( self , snake_case , **snake_case ) -> Dict[str, GenericTensor]: _UpperCAmelCase = self.framework if isinstance(snake_case , snake_case ): return self.tokenizer(**snake_case , return_tensors=snake_case , **snake_case ) elif isinstance(snake_case , snake_case ) and len(snake_case ) == 1 and isinstance(inputs[0] , snake_case ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case , **snake_case ) elif isinstance(snake_case , snake_case ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(snake_case , return_tensors=snake_case , **snake_case ) def lowerCamelCase_ ( self , snake_case ) -> List[Any]: return self.model(**snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case=None , snake_case=1 , snake_case=True ) -> List[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _UpperCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _UpperCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: _UpperCAmelCase = self.model.config.function_to_apply else: _UpperCAmelCase = ClassificationFunction.NONE _UpperCAmelCase = model_outputs['logits'][0] _UpperCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _UpperCAmelCase = sigmoid(snake_case ) elif function_to_apply == ClassificationFunction.SOFTMAX: _UpperCAmelCase = softmax(snake_case ) elif function_to_apply == ClassificationFunction.NONE: _UpperCAmelCase = outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _UpperCAmelCase = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(snake_case ) ] if not _legacy: dict_scores.sort(key=lambda snake_case : x["score"] , reverse=snake_case ) if top_k is not None: _UpperCAmelCase = dict_scores[:top_k] return dict_scores
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self ) -> Any: super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def lowerCamelCase_ ( self , snake_case ) -> Any: return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case , *snake_case , **snake_case ) -> int: return (args[0] + 1,) + args[1:], kwargs class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case , snake_case ) -> str: return output + 1 class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = ModelForTest() _UpperCAmelCase = ModelHook() add_hook_to_module(snake_case , snake_case ) self.assertEqual(test_model._hf_hook , snake_case ) self.assertTrue(hasattr(snake_case , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(snake_case ) self.assertFalse(hasattr(snake_case , '_hf_hook' ) ) self.assertFalse(hasattr(snake_case , '_old_forward' ) ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = ModelForTest() _UpperCAmelCase = ModelHook() add_hook_to_module(snake_case , snake_case ) add_hook_to_module(snake_case , snake_case , append=snake_case ) self.assertEqual(isinstance(test_model._hf_hook , snake_case ) , snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(snake_case , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(snake_case ) self.assertFalse(hasattr(snake_case , '_hf_hook' ) ) self.assertFalse(hasattr(snake_case , '_old_forward' ) ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = ModelForTest() _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = test_model(x + 1 ) _UpperCAmelCase = test_model(x + 2 ) _UpperCAmelCase = PreForwardHook() add_hook_to_module(snake_case , snake_case ) _UpperCAmelCase = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _UpperCAmelCase = PreForwardHook() add_hook_to_module(snake_case , snake_case ) _UpperCAmelCase = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _UpperCAmelCase = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(snake_case , snake_case ) _UpperCAmelCase = test_model(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1E-5 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = ModelForTest() _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = test_model(snake_case ) _UpperCAmelCase = PostForwardHook() add_hook_to_module(snake_case , snake_case ) _UpperCAmelCase = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _UpperCAmelCase = PostForwardHook() add_hook_to_module(snake_case , snake_case ) _UpperCAmelCase = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _UpperCAmelCase = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(snake_case , snake_case ) _UpperCAmelCase = test_model(snake_case ) assert torch.allclose(snake_case , output + 2 , atol=1E-5 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = ModelForTest() _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = test_model(snake_case ) _UpperCAmelCase = PostForwardHook() add_hook_to_module(snake_case , snake_case ) _UpperCAmelCase = test_model(snake_case ) self.assertTrue(torch.allclose(snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _UpperCAmelCase = True _UpperCAmelCase = test_model(snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(snake_case , AlignDevicesHook(io_same_device=snake_case ) ) _UpperCAmelCase = torch.randn(2 , 3 ).to(0 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _UpperCAmelCase = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _UpperCAmelCase = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , snake_case ) _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload _UpperCAmelCase = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _UpperCAmelCase = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(snake_case , execution_device=snake_case , offload=snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _UpperCAmelCase = torch.device(snake_case ) self.assertEqual(model.batchnorm.running_mean.device , snake_case ) _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(snake_case , execution_device=snake_case , offload=snake_case , offload_buffers=snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices _UpperCAmelCase = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( snake_case , execution_device=snake_case , offload=snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _UpperCAmelCase = torch.device(snake_case ) self.assertEqual(model.batchnorm.running_mean.device , snake_case ) _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( snake_case , execution_device=snake_case , offload=snake_case , weights_map=model.state_dict() , offload_buffers=snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) _UpperCAmelCase = torch.randn(2 , 3 ) _UpperCAmelCase = model(snake_case ) self.assertEqual(output.device , snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(snake_case ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
705
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''swin''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: super().__init__(**snake_case ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" def UpperCAmelCase ( A : Tuple ): '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def UpperCAmelCase ( A : dict[int, list[int]] ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = len(A ) # No of vertices in graph _UpperCAmelCase = [0] * n _UpperCAmelCase = [False] * n def dfs(A : Dict , A : List[Any] , A : Any , A : Any ): _UpperCAmelCase = True _UpperCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(A , A , A , id_ ) _UpperCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _UpperCAmelCase = min(low[at] , low[to] ) _UpperCAmelCase = [] for i in range(A ): if not visited[i]: dfs(A , -1 , A , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case = 16 , snake_case = 88 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = 32 , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = "geglu" , snake_case = None , ) -> str: super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case , attention_head_dim=snake_case , in_channels=snake_case , num_layers=snake_case , dropout=snake_case , norm_num_groups=snake_case , cross_attention_dim=snake_case , attention_bias=snake_case , sample_size=snake_case , num_vector_embeds=snake_case , activation_fn=snake_case , num_embeds_ada_norm=snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def lowerCamelCase_ ( self , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case = True , ) -> Any: _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( snake_case , encoder_hidden_states=snake_case , timestep=snake_case , cross_attention_kwargs=snake_case , return_dict=snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case )
24
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase = '''<<<<<<< This should probably be modified because it mentions: ''' lowercase = '''======= >>>>>>> ''' lowercase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowercase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def UpperCAmelCase ( A : Namespace ): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase__ ( A ): '''simple docstring''' @staticmethod def lowerCamelCase_ ( snake_case ) -> str: _UpperCAmelCase = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=snake_case , required=snake_case , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=snake_case , required=snake_case , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=snake_case ) def __init__( self , snake_case , snake_case , *snake_case ) -> Any: _UpperCAmelCase = get_logger('datasets-cli/converting' ) _UpperCAmelCase = tfds_path _UpperCAmelCase = datasets_directory def lowerCamelCase_ ( self ) -> Optional[Any]: if os.path.isdir(self._tfds_path ): _UpperCAmelCase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _UpperCAmelCase = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) _UpperCAmelCase = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} if os.path.isdir(self._tfds_path ): _UpperCAmelCase = os.listdir(snake_case ) else: _UpperCAmelCase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(snake_case , encoding='utf-8' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = [] for line in lines: _UpperCAmelCase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _UpperCAmelCase = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here _UpperCAmelCase = '' continue elif "from absl import logging" in out_line: _UpperCAmelCase = 'from datasets import logging\n' elif "getLogger" in out_line: _UpperCAmelCase = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _UpperCAmelCase = True _UpperCAmelCase = list(filter(lambda snake_case : e in out_line , snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + '\n' ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: _UpperCAmelCase = re.sub(snake_case , snake_case , snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _UpperCAmelCase = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) _UpperCAmelCase = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _UpperCAmelCase = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _UpperCAmelCase = f_name.replace('.py' , '' ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) _UpperCAmelCase = os.path.join(snake_case , snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.writelines(snake_case ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: _UpperCAmelCase = os.path.basename(snake_case ) _UpperCAmelCase = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(snake_case , snake_case ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
707
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
0
"""simple docstring""" import requests from bsa import BeautifulSoup def UpperCAmelCase ( A : str , A : dict ): '''simple docstring''' _UpperCAmelCase = BeautifulSoup(requests.get(A , params=A ).content , 'html.parser' ) _UpperCAmelCase = soup.find('div' , attrs={'class': 'gs_ri'} ) _UpperCAmelCase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowercase = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 20_18, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
708
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowercase = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = BarthezTokenizer _UpperCAmelCase = BarthezTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def lowerCamelCase_ ( self ) -> Optional[int]: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) _UpperCAmelCase = tokenizer def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = '<pad>' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case ) , 101122 ) def lowerCamelCase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsรฉ.' _UpperCAmelCase = tokenizer.tokenize(snake_case ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: # fmt: off _UpperCAmelCase = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ 'Le transformeur est un modรจle d\'apprentissage profond introduit en 2017, ' 'utilisรฉ principalement dans le domaine du traitement automatique des langues (TAL).', 'ร€ l\'instar des rรฉseaux de neurones rรฉcurrents (RNN), les transformeurs sont conรงus ' 'pour gรฉrer des donnรฉes sรฉquentielles, telles que le langage naturel, pour des tรขches ' 'telles que la traduction et la synthรจse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=snake_case , )
24
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowercase = ['''small''', '''medium''', '''large'''] lowercase = '''lm_head.decoder.weight''' lowercase = '''lm_head.weight''' def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = torch.load(A ) _UpperCAmelCase = d.pop(A ) os.makedirs(A , exist_ok=A ) torch.save(A , os.path.join(A , A ) ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) lowercase = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowercase = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') lowercase = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
710
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
24
0
"""simple docstring""" import string from math import logaa def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) _UpperCAmelCase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split('\n' ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(A )) def UpperCAmelCase ( A : int , A : int , A : Union[str, Any]=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return round(tf * idf , 3 )
711
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = abs(A ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase ( A : int ): '''simple docstring''' return sum(int(A ) for c in str(abs(A ) ) ) def UpperCAmelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(A : Callable , A : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(A )} -- {timing:.4f} seconds' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' _UpperCAmelCase = [] create_all_state(1 , A , A , [] , A ) return result def UpperCAmelCase ( A : int , A : int , A : int , A : list[int] , A : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def UpperCAmelCase ( A : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A ) if __name__ == "__main__": lowercase = 4 lowercase = 2 lowercase = generate_all_combinations(n, k) print_all_state(total_list)
24
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class lowercase__ ( nn.Module ): '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = jnp.floataa def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_states.shape _UpperCAmelCase = jax.image.resize( snake_case , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) _UpperCAmelCase = self.conv(snake_case ) return hidden_states class lowercase__ ( nn.Module ): '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = jnp.floataa def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case ) -> Tuple: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _UpperCAmelCase = self.conv(snake_case ) return hidden_states class lowercase__ ( nn.Module ): '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = 0.0 _UpperCAmelCase = None _UpperCAmelCase = jnp.floataa def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _UpperCAmelCase = nn.Conv( snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = nn.Dense(snake_case , dtype=self.dtype ) _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _UpperCAmelCase = nn.Dropout(self.dropout_prob ) _UpperCAmelCase = nn.Conv( snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCAmelCase = None if use_nin_shortcut: _UpperCAmelCase = nn.Conv( snake_case , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , snake_case , snake_case , snake_case=True ) -> Union[str, Any]: _UpperCAmelCase = hidden_states _UpperCAmelCase = self.norma(snake_case ) _UpperCAmelCase = nn.swish(snake_case ) _UpperCAmelCase = self.conva(snake_case ) _UpperCAmelCase = self.time_emb_proj(nn.swish(snake_case ) ) _UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(snake_case , 1 ) , 1 ) _UpperCAmelCase = hidden_states + temb _UpperCAmelCase = self.norma(snake_case ) _UpperCAmelCase = nn.swish(snake_case ) _UpperCAmelCase = self.dropout(snake_case , snake_case ) _UpperCAmelCase = self.conva(snake_case ) if self.conv_shortcut is not None: _UpperCAmelCase = self.conv_shortcut(snake_case ) return hidden_states + residual
713
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase ( A : Path , A : list ): '''simple docstring''' _UpperCAmelCase = '\n'.join(A ) Path(A ).open('w' ).writelines(A ) lowercase = '''patrickvonplaten/t5-tiny-random''' lowercase = '''sshleifer/bart-tiny-random''' lowercase = '''sshleifer/tiny-mbart''' lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case ) -> str: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case , snake_case ) _UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case , 'argv' , snake_case ): run_generate() assert Path(snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase_ ( self ) -> str: self.run_eval_tester(snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> List[Any]: self.run_eval_tester(snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _UpperCAmelCase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _UpperCAmelCase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist groรŸartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = str(tmp_dir / 'scores.json' ) _UpperCAmelCase = str(tmp_dir / 'val.target' ) _dump_articles(snake_case , text['en'] ) _dump_articles(snake_case , text['de'] ) _UpperCAmelCase = 'translation_en_to_de' if model == T5_TINY else 'summarization' _UpperCAmelCase = f'\n run_eval_search.py\n {model}\n {str(snake_case )}\n {str(snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case , 'argv' , snake_case ): with CaptureStdout() as cs: run_search() _UpperCAmelCase = [' num_beams | length_penalty', model, 'Best score args'] _UpperCAmelCase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case ).exists() os.remove(Path(snake_case ) )
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class lowercase__ ( A, A ): '''simple docstring''' _UpperCAmelCase = '''nat''' _UpperCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , snake_case=4 , snake_case=3 , snake_case=64 , snake_case=[3, 4, 6, 5] , snake_case=[2, 4, 8, 16] , snake_case=7 , snake_case=3.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=0.02 , snake_case=1E-5 , snake_case=0.0 , snake_case=None , snake_case=None , **snake_case , ) -> List[str]: super().__init__(**snake_case ) _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case ) _UpperCAmelCase = num_heads _UpperCAmelCase = kernel_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(snake_case ) - 1) ) _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = ['stem'] + [f'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names )
714
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def UpperCAmelCase ( A : List[str] ): '''simple docstring''' _UpperCAmelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _UpperCAmelCase = DetaConfig( backbone_config=A , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=A , with_box_refine=A , two_stage=A , ) # set labels _UpperCAmelCase = 'huggingface/label-files' if "o365" in model_name: _UpperCAmelCase = 366 _UpperCAmelCase = 'object365-id2label.json' else: _UpperCAmelCase = 91 _UpperCAmelCase = 'coco-detection-id2label.json' _UpperCAmelCase = num_labels _UpperCAmelCase = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) _UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def UpperCAmelCase ( A : Any , A : List[Any] , A : List[Any] ): '''simple docstring''' _UpperCAmelCase = dct.pop(A ) _UpperCAmelCase = val def UpperCAmelCase ( A : Any , A : List[str] ): '''simple docstring''' _UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) _UpperCAmelCase = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:dim, :] _UpperCAmelCase = in_proj_bias[: dim] _UpperCAmelCase = in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase = in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase = in_proj_weight[ -dim :, : ] _UpperCAmelCase = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase ( A : Optional[int] , A : int ): '''simple docstring''' _UpperCAmelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:hidden_size, :] _UpperCAmelCase = in_proj_bias[:hidden_size] _UpperCAmelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase = in_proj_weight[-hidden_size:, :] _UpperCAmelCase = in_proj_bias[-hidden_size:] def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def UpperCAmelCase ( A : Dict , A : List[str] , A : List[str] ): '''simple docstring''' _UpperCAmelCase = get_deta_config(A ) # load original state dict if model_name == "deta-swin-large": _UpperCAmelCase = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _UpperCAmelCase = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'Model name {model_name} not supported' ) _UpperCAmelCase = torch.load(A , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(A , param.shape ) # rename keys _UpperCAmelCase = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_swin_q_k_v(A , config.backbone_config ) read_in_decoder_q_k_v(A , A ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCAmelCase = state_dict.pop(A ) _UpperCAmelCase = val if "input_proj" in key: _UpperCAmelCase = state_dict.pop(A ) _UpperCAmelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCAmelCase = state_dict.pop(A ) _UpperCAmelCase = val # finally, create HuggingFace model and load state dict _UpperCAmelCase = DetaForObjectDetection(A ) model.load_state_dict(A ) model.eval() _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(A ) # load image processor _UpperCAmelCase = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _UpperCAmelCase = prepare_img() _UpperCAmelCase = processor(images=A , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = model(pixel_values.to(A ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCAmelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) _UpperCAmelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": _UpperCAmelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) _UpperCAmelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(A ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(A ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) processor.save_pretrained(A ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the ๐Ÿค— hub.''' ) lowercase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
715
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Dict: _UpperCAmelCase = TextaTextGenerationPipeline(model=snake_case , tokenizer=snake_case ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> Dict: _UpperCAmelCase = generator('Something there' ) self.assertEqual(snake_case , [{'generated_text': ANY(snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _UpperCAmelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) _UpperCAmelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=snake_case ) self.assertEqual( snake_case , [ [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], [{'generated_text': ANY(snake_case )}, {'generated_text': ANY(snake_case )}], ] , ) with self.assertRaises(snake_case ): generator(4 ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] ) _UpperCAmelCase = 3 _UpperCAmelCase = generator( 'Something there' , num_return_sequences=snake_case , num_beams=snake_case , ) _UpperCAmelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(snake_case , snake_case ) _UpperCAmelCase = generator('This is a test' , do_sample=snake_case , num_return_sequences=2 , return_tensors=snake_case ) self.assertEqual( snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _UpperCAmelCase = generator.model.config.eos_token_id _UpperCAmelCase = '<pad>' _UpperCAmelCase = generator( ['This is a test', 'This is a second test'] , do_sample=snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=snake_case , ) self.assertEqual( snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _UpperCAmelCase = generator('Something there' , do_sample=snake_case ) self.assertEqual(snake_case , [{'generated_text': ''}] )
24
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=2 , snake_case=True , snake_case=False , snake_case=10 , snake_case=3 , snake_case=32 * 4 , snake_case=32 * 6 , snake_case=4 , snake_case=32 , ) -> Optional[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = num_queries _UpperCAmelCase = num_channels _UpperCAmelCase = min_size _UpperCAmelCase = max_size _UpperCAmelCase = num_labels _UpperCAmelCase = mask_feature_size def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case ) _UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case ) _UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case ) > 0.5 ).float() _UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=snake_case ) > 0.5).long() _UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCamelCase_ ( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCamelCase_ ( self , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = output.encoder_hidden_states _UpperCAmelCase = output.pixel_decoder_hidden_states _UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case ) , config.decoder_config.decoder_layers ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case=False ) -> int: with torch.no_grad(): _UpperCAmelCase = MaskFormerModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(pixel_values=snake_case , pixel_mask=snake_case ) _UpperCAmelCase = model(snake_case , output_hidden_states=snake_case ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case , snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = MaskFormerForInstanceSegmentation(config=snake_case ) model.to(snake_case ) model.eval() def comm_check_on_output(snake_case ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase = model(pixel_values=snake_case , pixel_mask=snake_case ) _UpperCAmelCase = model(snake_case ) comm_check_on_output(snake_case ) _UpperCAmelCase = model( pixel_values=snake_case , pixel_mask=snake_case , mask_labels=snake_case , class_labels=snake_case ) comm_check_on_output(snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = MaskFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case , **snake_case , output_hidden_states=snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*snake_case ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def lowerCamelCase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def lowerCamelCase_ ( self ) -> Tuple: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCamelCase_ ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: _UpperCAmelCase = MaskFormerModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = (self.model_tester.min_size,) * 2 _UpperCAmelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=snake_case ), 'mask_labels': torch.randn((2, 10, *size) , device=snake_case ), 'class_labels': torch.zeros(2 , 10 , device=snake_case ).long(), } _UpperCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(snake_case ) _UpperCAmelCase = model(**snake_case ) self.assertTrue(outputs.loss is not None ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case , **snake_case , output_hidden_states=snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ).to(snake_case ) _UpperCAmelCase = model(**snake_case , output_attentions=snake_case ) self.assertTrue(outputs.attentions is not None ) def lowerCamelCase_ ( self ) -> Any: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.train() _UpperCAmelCase = model(snake_case , mask_labels=snake_case , class_labels=snake_case ).loss loss.backward() def lowerCamelCase_ ( self ) -> Dict: # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.train() _UpperCAmelCase = model(snake_case , mask_labels=snake_case , class_labels=snake_case ) _UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase = 1E-4 def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) _UpperCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) _UpperCAmelCase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case , atol=snake_case ) ) _UpperCAmelCase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case , atol=snake_case ) ) _UpperCAmelCase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case , atol=snake_case ) ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(snake_case ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) _UpperCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] _UpperCAmelCase = torch.tensor(snake_case ).to(snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case , atol=snake_case ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case , atol=snake_case ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(snake_case ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) _UpperCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _UpperCAmelCase = torch.tensor(snake_case ).to(snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case , atol=snake_case ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case , atol=snake_case ) ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(snake_case ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) _UpperCAmelCase = inputs['pixel_values'].to(snake_case ) _UpperCAmelCase = [el.to(snake_case ) for el in inputs['mask_labels']] _UpperCAmelCase = [el.to(snake_case ) for el in inputs['class_labels']] with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) self.assertTrue(outputs.loss is not None )
716
"""simple docstring""" def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = [[0 for _ in range(A )] for _ in range(m + 1 )] for i in range(m + 1 ): _UpperCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowercase = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowercase = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
24
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
717
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } _UpperCAmelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(snake_case ) , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(snake_case ) , x.transpose() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , transpose(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , transpose(snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case ) , np.asarray(transpose(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(transpose(snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(snake_case , axes=(1, 2, 0) ) ) ) ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.reshape(snake_case , (4, 3) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.reshape(snake_case , (12, 5) ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , reshape(snake_case , (4, 3) ).numpy() ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , reshape(snake_case , (12, 5) ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (4, 3) ) , np.asarray(reshape(snake_case , (4, 3) ) ) ) ) _UpperCAmelCase = np.random.randn(3 , 4 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(reshape(snake_case , (12, 5) ) , np.asarray(reshape(snake_case , (12, 5) ) ) ) ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.squeeze(snake_case ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.squeeze(snake_case , axis=2 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , squeeze(snake_case ).numpy() ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , squeeze(snake_case , axis=2 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(1 , 3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case ) , np.asarray(squeeze(snake_case ) ) ) ) _UpperCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(squeeze(snake_case , axis=2 ) , np.asarray(squeeze(snake_case , axis=2 ) ) ) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.expand_dims(snake_case , axis=1 ) ) ) @require_torch def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = torch.tensor(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_tf def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = tf.constant(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , expand_dims(snake_case , axis=1 ).numpy() ) ) @require_flax def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = np.random.randn(3 , 4 ) _UpperCAmelCase = jnp.array(snake_case ) self.assertTrue(np.allclose(expand_dims(snake_case , axis=1 ) , np.asarray(expand_dims(snake_case , axis=1 ) ) ) )
24
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = GPTSanJapaneseTokenizer _UpperCAmelCase = False _UpperCAmelCase = {'''do_clean_text''': False, '''add_prefix_space''': False} def lowerCamelCase_ ( self ) -> List[str]: super().setUp() # fmt: off _UpperCAmelCase = ['ใ“ใ‚“', 'ใ“ใ‚“ใซ', 'ใซใกใฏ', 'ใฐใ‚“ใฏ', 'ไธ–็•Œ,ใ”บ็•Œ', 'ใ€', 'ใ€‚', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # ๐Ÿ˜€ _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(snake_case ) ) def lowerCamelCase_ ( self , **snake_case ) -> Tuple: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , snake_case ) -> List[Any]: _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' return input_text, output_text def lowerCamelCase_ ( self , snake_case ) -> List[str]: _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(snake_case ) _UpperCAmelCase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case , clean_up_tokenization_spaces=snake_case ) return text, ids def lowerCamelCase_ ( self ) -> int: pass # TODO add if relevant def lowerCamelCase_ ( self ) -> Dict: pass # TODO add if relevant def lowerCamelCase_ ( self ) -> List[Any]: pass # TODO add if relevant def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.get_tokenizer() # Testing tokenization _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ€€ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚' _UpperCAmelCase = ['ใ“ใ‚“', 'ใซใกใฏ', 'ใ€', 'ไธ–็•Œ', 'ใ€‚', '<SP>', 'ใ“ใ‚“', 'ใฐใ‚“ใฏ', 'ใ€', 'ใ”บ็•Œ', 'ใ€‚'] _UpperCAmelCase = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) # Testing conversion to ids without special tokens _UpperCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual(snake_case , snake_case ) # Testing conversion to ids with special tokens _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.get_tokenizer() # Testing tokenization _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€<|bagoftoken|>ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€<|bagoftoken|>ใ”บ็•Œใ€‚' _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚' _UpperCAmelCase = tokenizer.encode(snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) self.assertEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' _UpperCAmelCase = 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' _UpperCAmelCase = tokenizer.encode(prefix_text + input_text ) _UpperCAmelCase = tokenizer.encode('' , prefix_text=prefix_text + input_text ) _UpperCAmelCase = tokenizer.encode(snake_case , prefix_text=snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) _UpperCAmelCase = tokenizer.decode(snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _UpperCAmelCase = 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' _UpperCAmelCase = 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' _UpperCAmelCase = len(tokenizer.encode(snake_case ) ) - 2 _UpperCAmelCase = len(tokenizer.encode(snake_case ) ) - 2 _UpperCAmelCase = [1] + [0] * (len_prefix + len_text + 1) _UpperCAmelCase = [1] * (len_prefix + len_text + 1) + [0] _UpperCAmelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _UpperCAmelCase = tokenizer(prefix_text + input_text ).token_type_ids _UpperCAmelCase = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids _UpperCAmelCase = tokenizer(snake_case , prefix_text=snake_case ).token_type_ids self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _UpperCAmelCase = tokenizer.encode('ใ‚ใƒณใ„ใƒฏ' ) _UpperCAmelCase = tokenizer.encode('' , prefix_text='ใ‚ใƒณใ„ใƒฏ' ) _UpperCAmelCase = tokenizer.encode('ใ„ใƒฏ' , prefix_text='ใ‚ใƒณ' ) self.assertEqual(tokenizer.decode(snake_case ) , tokenizer.decode(snake_case ) ) self.assertEqual(tokenizer.decode(snake_case ) , tokenizer.decode(snake_case ) ) self.assertNotEqual(snake_case , snake_case ) self.assertNotEqual(snake_case , snake_case ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _UpperCAmelCase = [['ๆญฆ็”ฐไฟก็Ž„', 'ใฏใ€'], ['็น”็”ฐไฟก้•ท', 'ใฎ้…ไธ‹ใฎใ€']] _UpperCAmelCase = tokenizer(snake_case , padding=snake_case ) _UpperCAmelCase = tokenizer.batch_encode_plus(snake_case , padding=snake_case ) # fmt: off _UpperCAmelCase = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] _UpperCAmelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _UpperCAmelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case ) self.assertListEqual(x_token.token_type_ids , snake_case ) self.assertListEqual(x_token.attention_mask , snake_case ) self.assertListEqual(x_token_a.input_ids , snake_case ) self.assertListEqual(x_token_a.token_type_ids , snake_case ) self.assertListEqual(x_token_a.attention_mask , snake_case ) def lowerCamelCase_ ( self ) -> List[str]: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase_ ( self ) -> List[str]: # tokenizer has no padding token pass
719
"""simple docstring""" import os def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = os.path.join(os.path.dirname(A ) , 'num.txt' ) with open(A ) as file_hand: return str(sum(int(A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
24
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> str: torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def lowerCamelCase_ ( self , snake_case , snake_case=0 ) -> Optional[Any]: if str(snake_case ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(snake_case ) else: _UpperCAmelCase = torch.Generator(device=snake_case ).manual_seed(snake_case ) _UpperCAmelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _UpperCAmelCase = self.get_dummy_inputs(snake_case ) _UpperCAmelCase = pipe(**snake_case ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1E-3 ) def lowerCamelCase_ ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=snake_case , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCamelCase_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=40 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _UpperCAmelCase = ['vase', 'umbrella'] _UpperCAmelCase = pipe.get_label_ids(snake_case ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(snake_case , generator=snake_case , num_inference_steps=25 , output_type='np' ).images for word, image in zip(snake_case , snake_case ): _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
721
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase = logging.get_logger(__name__) class lowercase__ ( A ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
24
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): print("Loading config file..." ) def flatten_yaml_as_dict(snake_case_ : str , snake_case_ : Dict="" , snake_case_ : List[Any]="." ): snake_case__ : Tuple = [] for k, v in d.items(): snake_case__ : int = parent_key + sep + k if parent_key else k if isinstance(snake_case_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_ , snake_case_ , sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) snake_case__ : int = argparse.Namespace() with open(snake_case_ , "r" ) as yaml_file: try: snake_case__ : Dict = yaml.load(snake_case_ , Loader=yaml.FullLoader ) snake_case__ : Any = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_ , snake_case_ , snake_case_ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(snake_case_ , str(snake_case_ ) ) ) return config def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : str ): snake_case__ : List[Any] = MobileViTVaConfig() snake_case__ : Optional[int] = False # dataset if task_name.startswith("imagenet1k_" ): snake_case__ : List[Any] = 1000 if int(task_name.strip().split("_" )[-1] ) == 384: snake_case__ : Any = 384 else: snake_case__ : int = 256 snake_case__ : Union[str, Any] = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): snake_case__ : str = 21000 if int(task_name.strip().split("_" )[-1] ) == 384: snake_case__ : Union[str, Any] = 384 else: snake_case__ : str = 256 snake_case__ : List[Any] = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): snake_case__ : Tuple = 151 snake_case__ : Union[str, Any] = 512 snake_case__ : Optional[int] = "ade20k-id2label.json" snake_case__ : int = True elif task_name.startswith("voc_" ): snake_case__ : List[Any] = 21 snake_case__ : Union[str, Any] = 512 snake_case__ : int = "pascal-voc-id2label.json" snake_case__ : Dict = True # orig_config snake_case__ : Optional[Any] = load_orig_config_file(snake_case_ ) assert getattr(snake_case_ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" snake_case__ : int = getattr(snake_case_ , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(snake_case_ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" snake_case__ : Union[str, Any] = getattr(snake_case_ , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: snake_case__ : Any = getattr(snake_case_ , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: snake_case__ : List[str] = getattr(snake_case_ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) snake_case__ : List[Any] = getattr(snake_case_ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) snake_case__ : Union[str, Any] = getattr(snake_case_ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label snake_case__ : Optional[int] = "huggingface/label-files" snake_case__ : Any = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) snake_case__ : Tuple = {int(snake_case_ ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[Any] ): snake_case__ : int = dct.pop(snake_case_ ) snake_case__ : List[str] = val def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : str=False ): if base_model: snake_case__ : Optional[int] = "" else: snake_case__ : Optional[int] = "mobilevitv2." snake_case__ : List[str] = [] for k in state_dict.keys(): if k[:8] == "encoder.": snake_case__ : Tuple = k[8:] else: snake_case__ : Union[str, Any] = k if ".block." in k: snake_case__ : List[Any] = k_new.replace(".block." , "." ) if ".conv." in k: snake_case__ : Optional[int] = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: snake_case__ : str = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: snake_case__ : int = k_new.replace("conv_1." , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: snake_case__ : int = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: snake_case__ : List[Any] = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: snake_case__ : Any = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: snake_case__ : int = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: snake_case__ : Optional[Any] = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: snake_case__ : Dict = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: snake_case__ : int = [0, 1] elif i == 4: snake_case__ : List[str] = [0, 1, 2, 3] elif i == 5: snake_case__ : Optional[Any] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: snake_case__ : Any = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: snake_case__ : str = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: snake_case__ : List[str] = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: snake_case__ : Any = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: snake_case__ : str = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: snake_case__ : Union[str, Any] = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: snake_case__ : Union[str, Any] = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: snake_case__ : Dict = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: snake_case__ : str = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: snake_case__ : Dict = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: snake_case__ : Dict = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: snake_case__ : int = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): snake_case__ : Optional[int] = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" snake_case__ : Optional[Any] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int , snake_case_ : Tuple , snake_case_ : Dict ): snake_case__ : List[Any] = get_mobilevitva_config(snake_case_ , snake_case_ ) # load original state_dict snake_case__ : List[Any] = torch.load(snake_case_ , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): snake_case__ : Union[str, Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() snake_case__ : List[str] = False else: snake_case__ : int = MobileViTVaForImageClassification(snake_case_ ).eval() snake_case__ : Tuple = False # remove and rename some keys of load the original model snake_case__ : List[str] = checkpoint remove_unused_keys(snake_case_ ) snake_case__ : List[str] = create_rename_keys(snake_case_ , base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case__ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case__ : List[str] = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case__ : str = model(**snake_case_ ) # verify classification model if task_name.startswith("imagenet" ): snake_case__ : List[Any] = outputs.logits snake_case__ : int = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant snake_case__ : Union[str, Any] = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) __lowerCamelCase : Optional[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1