code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
| 25 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def SCREAMING_SNAKE_CASE ( snake_case_ : dict ):
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ):
snake_case__ : Optional[int] = XGBClassifier()
classifier.fit(snake_case_ , snake_case_ )
return classifier
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = load_iris()
snake_case__, snake_case__ : str = data_handling(snake_case_ )
snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split(
snake_case_ , snake_case_ , test_size=0.25 )
snake_case__ : Dict = iris["target_names"]
# Create an XGBoost Classifier from the training data
snake_case__ : Dict = xgboost(snake_case_ , snake_case_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 25 | 1 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : int ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : List[str] ):
snake_case__ : Tuple = ort.SessionOptions()
snake_case__ : Optional[Any] = False
return options
def _lowercase ( self : str ):
snake_case__ : List[str] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
snake_case__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
snake_case__ : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" )
# using the PNDM scheduler by default
snake_case__ : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Any = "A red cat sitting on a park bench"
snake_case__ : int = np.random.RandomState(0 )
snake_case__ : Tuple = pipe(
prompt=__A , image=__A , mask_image=__A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=__A , output_type="np" , )
snake_case__ : str = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 25 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ):
snake_case__ : Tuple = args.log_outputs
snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
snake_case__ : List[str] = load_metric("wer" )
snake_case__ : List[str] = load_metric("cer" )
# compute metrics
snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] )
snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}'''
print(snake_case_ )
with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt'''
snake_case__ : int = F'''log_{dataset_id}_targets.txt'''
with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ):
p.write(F'''{i}''' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(F'''{i}''' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case_ , with_indices=snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) )
return text
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
# load dataset
snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id )
snake_case__ : List[Any] = feature_extractor.sampling_rate
# resample audio
snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
snake_case__ : int = 0 if torch.cuda.is_available() else -1
snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Any ):
snake_case__ : Union[str, Any] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
snake_case__ : Optional[int] = prediction["text"]
snake_case__ : Optional[Any] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ , snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
__lowerCamelCase : str = parser.parse_args()
main(args)
| 25 | 1 |
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__lowerCamelCase : str = 5_0003
__lowerCamelCase : List[Any] = 5_0002
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = PLBartTokenizer
a_ = None
a_ = False
def _lowercase ( self : int ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ : List[Any] = PLBartTokenizer(__A , language_codes="base" , keep_accents=__A )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self : Tuple ):
snake_case__ : Tuple = PLBartTokenizer(__A , language_codes="base" , keep_accents=__A )
snake_case__ : Optional[int] = tokenizer.tokenize("This is a test" )
self.assertListEqual(__A , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case__ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__A , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__A )
self.assertListEqual(
__A , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
] , )
snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__A )
self.assertListEqual(
__A , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
snake_case__ : int = tokenizer.vocab_size
snake_case__ : Tuple = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 4 , __A )]
self.assertListEqual(__A , ["__java__", "__python__", "__en_XX__", "<mask>"] )
snake_case__ : Tuple = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
snake_case__ : Dict = tokenizer(__A ).input_ids
self.assertEqual(
tokenizer.decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) , __A , )
def _lowercase ( self : Dict ):
snake_case__ : Dict = PLBartTokenizer(__A , language_codes="multi" , keep_accents=__A )
snake_case__ : Optional[Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(__A , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case__ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__A , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__A )
self.assertListEqual(
__A , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
] , )
snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__A )
self.assertListEqual(
__A , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
snake_case__ : List[Any] = tokenizer.vocab_size
snake_case__ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 7 , __A )]
self.assertListEqual(
__A , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
snake_case__ : str = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
snake_case__ : List[Any] = tokenizer(__A ).input_ids
self.assertEqual(
tokenizer.decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) , __A , )
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
a_ = "uclanlp/plbart-python-en_XX"
a_ = [
"def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])",
"def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])",
]
a_ = [
"Returns the maximum value of a b c.",
"Sums the values of a b c.",
]
a_ = [
1_3_4,
5_4_5_2,
3_3_4_6_0,
3_3_4_4_1,
3_3_4_6_3,
3_3_4_6_5,
3_3_4_6_3,
3_3_4_4_9,
9_8_8,
2_0,
3_3_4_5_6,
1_9,
3_3_4_5_6,
7_7_1,
3_9,
4_2_5_8,
8_8_9,
3_3_1_8,
3_3_4_4_1,
3_3_4_6_3,
3_3_4_6_5,
3_3_4_6_3,
3_3_4_4_9,
2_4_7_1,
2,
PYTHON_CODE,
]
@classmethod
def _lowercase ( cls : Optional[int] ):
snake_case__ : PLBartTokenizer = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
snake_case__ : Optional[Any] = 1
return cls
def _lowercase ( self : Optional[Any] ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 )
def _lowercase ( self : Optional[Any] ):
snake_case__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __A )
def _lowercase ( self : Optional[Any] ):
self.assertIn(__A , self.tokenizer.all_special_ids )
snake_case__ : List[str] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2]
snake_case__ : List[str] = self.tokenizer.decode(__A , skip_special_tokens=__A )
snake_case__ : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__A )
self.assertEqual(__A , __A )
self.assertNotIn(self.tokenizer.eos_token , __A )
def _lowercase ( self : Optional[Any] ):
snake_case__ : int = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0]
self.assertIsInstance(src_text[0] , __A )
snake_case__ : Dict = 1_0
snake_case__ : List[Any] = self.tokenizer(__A , max_length=__A , truncation=__A ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __A )
self.assertEqual(len(__A ) , __A )
def _lowercase ( self : Optional[Any] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] )
def _lowercase ( self : Optional[int] ):
snake_case__ : str = tempfile.mkdtemp()
snake_case__ : List[Any] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__A )
snake_case__ : List[Any] = PLBartTokenizer.from_pretrained(__A )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __A )
@require_torch
def _lowercase ( self : Optional[Any] ):
snake_case__ : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__A , return_tensors="pt" )
snake_case__ : int = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , __A )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def _lowercase ( self : Optional[Any] ):
snake_case__ : Optional[int] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__A , truncation=__A , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
snake_case__ : Optional[Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(__A , __A )
self.assertEqual((2, 2_6) , batch.input_ids.shape )
self.assertEqual((2, 2_6) , batch.attention_mask.shape )
snake_case__ : Optional[int] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __A )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def _lowercase ( self : Any ):
snake_case__ : List[Any] = self.tokenizer(self.src_text , padding=__A , truncation=__A , max_length=3 , return_tensors="pt" )
snake_case__ : str = self.tokenizer(
text_target=self.tgt_text , padding=__A , truncation=__A , max_length=1_0 , return_tensors="pt" )
snake_case__ : int = targets["input_ids"]
snake_case__ : Tuple = shift_tokens_right(__A , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def _lowercase ( self : Tuple ):
snake_case__ : str = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(__A ) , {
# A, test, EOS, en_XX
"input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 5_0_0_0_1,
} , )
| 25 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
a_ = Features({"text": Value("string" )} )
a_ = Features({"labels": ClassLabel} )
a_ = "text"
a_ = "labels"
def _lowercase ( self : Tuple , __A : List[Any] ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
snake_case__ : Any = copy.deepcopy(self )
snake_case__ : Optional[Any] = self.label_schema.copy()
snake_case__ : List[str] = features[self.label_column]
snake_case__ : Dict = label_schema
return task_template
@property
def _lowercase ( self : Tuple ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 25 | 1 |
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : Union[str, Any] , __A : Union[str, Any]=3 , __A : Optional[int]=3_2 , __A : Optional[int]=3 , __A : int=1_0 , __A : Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , __A : Dict=[1, 1, 2, 1] , __A : str=True , __A : Tuple=True , __A : Any="relu" , __A : Optional[int]=3 , __A : int=None , ):
snake_case__ : List[str] = parent
snake_case__ : List[str] = batch_size
snake_case__ : Optional[Any] = image_size
snake_case__ : str = num_channels
snake_case__ : int = embeddings_size
snake_case__ : List[str] = hidden_sizes
snake_case__ : str = depths
snake_case__ : List[Any] = is_training
snake_case__ : Dict = use_labels
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Any = num_labels
snake_case__ : List[str] = scope
snake_case__ : List[str] = len(__A )
def _lowercase ( self : int ):
snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : List[str] = None
if self.use_labels:
snake_case__ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ : List[Any] = self.get_config()
return config, pixel_values, labels
def _lowercase ( self : List[str] ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _lowercase ( self : Optional[int] , __A : List[str] , __A : Optional[int] , __A : List[Any] ):
snake_case__ : Union[str, Any] = TFRegNetModel(config=__A )
snake_case__ : Any = model(__A , training=__A )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def _lowercase ( self : Tuple , __A : Dict , __A : int , __A : Optional[Any] ):
snake_case__ : Tuple = self.num_labels
snake_case__ : Tuple = TFRegNetForImageClassification(__A )
snake_case__ : int = model(__A , labels=__A , training=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase ( self : int ):
snake_case__ : Tuple = self.prepare_config_and_inputs()
snake_case__, snake_case__, snake_case__ : Optional[Any] = config_and_inputs
snake_case__ : List[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
a_ = (
{"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification}
if is_tf_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
a_ = False
def _lowercase ( self : List[str] ):
snake_case__ : Tuple = TFRegNetModelTester(self )
snake_case__ : List[Any] = ConfigTester(self , config_class=__A , has_text_modality=__A )
def _lowercase ( self : Dict ):
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def _lowercase ( self : List[Any] ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , )
@slow
def _lowercase ( self : List[Any] ):
super().test_keras_fit()
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def _lowercase ( self : Optional[int] ):
pass
def _lowercase ( self : Tuple ):
snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(__A )
snake_case__ : List[str] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Union[str, Any] = [*signature.parameters.keys()]
snake_case__ : Optional[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __A )
def _lowercase ( self : Any ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def _lowercase ( self : Tuple ):
def check_hidden_states_output(__A : List[str] , __A : Tuple , __A : str ):
snake_case__ : List[Any] = model_class(__A )
snake_case__ : List[str] = model(**self._prepare_for_class(__A , __A ) , training=__A )
snake_case__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case__ : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(__A ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : int = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
snake_case__ : Optional[int] = layer_type
snake_case__ : Optional[int] = True
check_hidden_states_output(__A , __A , __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ : Dict = True
check_hidden_states_output(__A , __A , __A )
def _lowercase ( self : List[str] ):
snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__A : List[Any] , __A : str , __A : List[Any] , __A : Tuple={} ):
snake_case__ : Tuple = model(__A , return_dict=__A , **__A )
snake_case__ : str = model(__A , return_dict=__A , **__A ).to_tuple()
def recursive_check(__A : Tuple , __A : Dict ):
if isinstance(__A , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__A , __A ):
recursive_check(__A , __A )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__A , __A ) ) , msg=(
"Tuple and dict output are not equal. Difference:"
f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''
) , )
recursive_check(__A , __A )
for model_class in self.all_model_classes:
snake_case__ : List[str] = model_class(__A )
snake_case__ : Union[str, Any] = self._prepare_for_class(__A , __A )
snake_case__ : Tuple = self._prepare_for_class(__A , __A )
check_equivalence(__A , __A , __A )
snake_case__ : Union[str, Any] = self._prepare_for_class(__A , __A , return_labels=__A )
snake_case__ : Any = self._prepare_for_class(__A , __A , return_labels=__A )
check_equivalence(__A , __A , __A )
snake_case__ : List[Any] = self._prepare_for_class(__A , __A )
snake_case__ : List[str] = self._prepare_for_class(__A , __A )
check_equivalence(__A , __A , __A , {"output_hidden_states": True} )
snake_case__ : Dict = self._prepare_for_class(__A , __A , return_labels=__A )
snake_case__ : Any = self._prepare_for_class(__A , __A , return_labels=__A )
check_equivalence(__A , __A , __A , {"output_hidden_states": True} )
def _lowercase ( self : Optional[Any] ):
snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
@slow
def _lowercase ( self : Optional[Any] ):
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ : Dict = TFRegNetModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Dict ):
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _lowercase ( self : List[str] ):
snake_case__ : Tuple = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
snake_case__ : Optional[int] = self.default_image_processor
snake_case__ : List[Any] = prepare_img()
snake_case__ : List[Any] = image_processor(images=__A , return_tensors="tf" )
# forward pass
snake_case__ : Dict = model(**__A , training=__A )
# verify the logits
snake_case__ : Any = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __A )
snake_case__ : int = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
| 25 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_vision_model"
def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ):
super().__init__(**__A )
snake_case__ : List[str] = hidden_size
snake_case__ : Optional[int] = intermediate_size
snake_case__ : List[str] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : str = patch_size
snake_case__ : int = image_size
snake_case__ : int = initializer_range
snake_case__ : Optional[int] = attention_dropout
snake_case__ : str = layer_norm_eps
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Tuple = qkv_bias
@classmethod
def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : Union[str, Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_qformer"
def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ):
super().__init__(pad_token_id=__A , **__A )
snake_case__ : Dict = vocab_size
snake_case__ : Optional[int] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : str = num_attention_heads
snake_case__ : int = hidden_act
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : List[Any] = max_position_embeddings
snake_case__ : int = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : str = position_embedding_type
snake_case__ : Dict = cross_attention_frequency
snake_case__ : List[str] = encoder_hidden_size
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : List[Any] = config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip"
a_ = True
def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ):
super().__init__(**__A )
if vision_config is None:
snake_case__ : Any = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." )
if qformer_config is None:
snake_case__ : Optional[Any] = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." )
if text_config is None:
snake_case__ : Optional[int] = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." )
snake_case__ : List[Any] = InstructBlipVisionConfig(**__A )
snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A )
snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt"
snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A )
snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings
snake_case__ : Tuple = self.text_config.is_encoder_decoder
snake_case__ : str = num_query_tokens
snake_case__ : Dict = self.vision_config.hidden_size
snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
snake_case__ : int = 1.0
snake_case__ : Optional[int] = 0.0_2
@classmethod
def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , )
def _lowercase ( self : Optional[int] ):
snake_case__ : Any = copy.deepcopy(self.__dict__ )
snake_case__ : Optional[Any] = self.vision_config.to_dict()
snake_case__ : List[str] = self.qformer_config.to_dict()
snake_case__ : List[Any] = self.text_config.to_dict()
snake_case__ : List[Any] = self.__class__.model_type
return output
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ):
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def SCREAMING_SNAKE_CASE ( snake_case_ : dict[int, list[int]] ):
snake_case__ : int = 0
snake_case__ : Dict = len(snake_case_ ) # No of vertices in graph
snake_case__ : int = [0] * n
snake_case__ : List[str] = [False] * n
def dfs(snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[str] ):
snake_case__ : Dict = True
snake_case__ : int = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(snake_case_ , snake_case_ , snake_case_ , id_ )
snake_case__ : int = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
snake_case__ : str = min(low[at] , low[to] )
snake_case__ : list[tuple[int, int]] = []
for i in range(snake_case_ ):
if not visited[i]:
dfs(snake_case_ , -1 , snake_case_ , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : list ):
if len(snake_case_ ) <= 1:
return lst
snake_case__ : List[Any] = 1
while i < len(snake_case_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case__ : Union[str, Any] = 1
return lst
if __name__ == "__main__":
__lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip()
__lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")]
print(gnome_sort(unsorted))
| 25 | 1 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
snake_case__ : Optional[int] = tf.convert_to_tensor(
[
[
8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0
-0.5_6_2_0_0_4_4,
5.2_3_2_2_9_7_5_2,
4.0_3_8_6_3_9_3,
-6.8_7_9_8_3_7_8,
-0.5_4_7_8_5_8_0_2,
-3.2_0_1_2_1_5_3,
2.9_2_7_7_7_1_7_6,
1.8_8_1_7_1_9_5_3,
7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9
8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10
-9.8_5_7_1_1_8_3_6,
-5.9_6_2_0_9_2_3_6,
-1.1_3_0_3_9_1_6_1,
-7.1_1_1_5_2_9_4,
-0.8_3_6_9_6_3_3,
-5.3_1_8_6_4_0_8,
7.0_6_4_2_7_4_0_7,
0.8_1_3_6_9_3_4_4,
-0.8_2_0_2_3_8_1_7,
-5.9_1_7_9_7_9_6,
0.5_8_8_1_3_4_4_3,
-6.9_9_7_7_8_4_3_8,
4.7_1_5_5_1_1_8_9,
-0.1_8_7_7_1_6_3_7,
7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25
9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26
2.1_2_6_6_2_9_4_1,
-9.3_2_5_6_2_0_3_8,
2.3_5_6_5_2_5_2_2,
], # cummulative prob of 5 highest values <= 0.6
[
0.5_8_4_2_5_5_1_8,
4.5_3_1_3_9_2_3_8,
-5.5_7_5_1_0_4_6_4,
-6.2_8_0_3_0_6_9_9,
-7.1_9_5_2_9_5_0_3,
-4.0_2_1_2_2_5_5_1,
1.3_9_3_3_7_0_3_7,
-6.0_6_7_0_7_0_5_7,
1.5_9_4_8_0_5_1_7,
-9.6_4_3_1_1_9,
0.0_3_9_0_7_7_9_9,
0.6_7_2_3_1_7_6_2,
-8.8_8_2_0_6_7_2_6,
6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13
2.2_8_5_2_0_7_2_3,
4.8_2_7_6_7_5_0_6,
4.3_0_4_2_1_3_6_8,
8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17
5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18
-4.4_7_3_5_7_9_4,
7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20
-2.9_1_0_5_1_6_6_3,
2.6_1_9_4_6_0_7_7,
-2.5_6_7_4_7_6_2,
-9.4_8_9_5_9_3_0_2,
-4.0_2_9_2_2_6_4_5,
-1.3_5_4_1_6_9_1_8,
9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27
-5.8_9_4_7_8_5_5_3,
1.8_5_3_7_0_4_6_7,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
snake_case__ : Optional[Any] = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
snake_case__ : List[Any] = tf.convert_to_tensor(
[8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above
snake_case__ : Any = tf_top_k_top_p_filtering(__A , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 )
snake_case__ : Optional[Any] = output[output != -float("inf" )]
snake_case__ : Optional[Any] = tf.cast(
tf.where(tf.not_equal(__A , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(__A , __A , rtol=1e-1_2 )
tf.debugging.assert_equal(__A , __A )
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , UpperCamelCase_ ):
"""simple docstring"""
if is_tf_available():
a_ = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def _lowercase ( self : Tuple ):
# TF-only test: tf.saved_model export
snake_case__ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
snake_case__ : Any = 2
snake_case__ : List[Any] = 2
class SCREAMING_SNAKE_CASE__ ( tf.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __A : List[str] ):
super(__A , self ).__init__()
snake_case__ : Union[str, Any] = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ),
) , jit_compile=__A , )
def _lowercase ( self : Optional[Any] , __A : List[str] , __A : str ):
snake_case__ : List[str] = self.model.generate(
input_ids=__A , attention_mask=__A , max_new_tokens=__A , return_dict_in_generate=__A , )
return {"sequences": outputs["sequences"]}
snake_case__ : int = [[2, 0], [1_0_2, 1_0_3]]
snake_case__ : Tuple = [[1, 0], [1, 1]]
snake_case__ : Optional[Any] = DummyModel(model=__A )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__A , __A , signatures={"serving_default": dummy_model.serving} )
snake_case__ : Tuple = tf.saved_model.load(__A ).signatures["serving_default"]
for batch_size in range(1 , len(__A ) + 1 ):
snake_case__ : Any = {
"input_ids": tf.constant(dummy_input_ids[:batch_size] ),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size] ),
}
snake_case__ : Optional[Any] = serving_func(**__A )["sequences"]
snake_case__ : Optional[int] = test_model.generate(**__A , max_new_tokens=__A )
tf.debugging.assert_equal(__A , __A )
@slow
def _lowercase ( self : Dict ):
# TF-only test: tf.saved_model export
snake_case__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
snake_case__ : Any = 1
snake_case__ : Optional[int] = 2
class SCREAMING_SNAKE_CASE__ ( tf.Module ):
"""simple docstring"""
def __init__( self : Any , __A : str ):
super(__A , self ).__init__()
snake_case__ : Any = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ),
) , jit_compile=__A , )
def _lowercase ( self : int , __A : Tuple , __A : str ):
snake_case__ : int = self.model.generate(
input_ids=__A , attention_mask=__A , max_new_tokens=__A , return_dict_in_generate=__A , )
return {"sequences": outputs["sequences"]}
snake_case__ : Tuple = [[2], [1_0_2, 1_0_3]]
snake_case__ : Optional[Any] = [[1], [1, 1]]
snake_case__ : Tuple = DummyModel(model=__A )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(__A , __A , signatures={"serving_default": dummy_model.serving} )
snake_case__ : Union[str, Any] = tf.saved_model.load(__A ).signatures["serving_default"]
for input_row in range(len(__A ) ):
snake_case__ : Dict = {
"input_ids": tf.constant([dummy_input_ids[input_row]] ),
"attention_mask": tf.constant([dummy_attention_masks[input_row]] ),
}
snake_case__ : int = serving_func(**__A )["sequences"]
snake_case__ : Union[str, Any] = test_model.generate(**__A , max_new_tokens=__A )
tf.debugging.assert_equal(__A , __A )
@slow
@require_tensorflow_text
def _lowercase ( self : int ):
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=__A )
class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : int ):
super().__init__()
snake_case__ : Any = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(__A , "spiece.model" ) , "rb" ).read() )
snake_case__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" )
def _lowercase ( self : Union[str, Any] , __A : Any , *__A : Dict , **__A : str ):
snake_case__ : Dict = self.tokenizer.tokenize(__A )
snake_case__, snake_case__ : List[Any] = text.pad_model_inputs(
__A , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id )
snake_case__ : str = self.model.generate(input_ids=__A , attention_mask=__A )
return self.tokenizer.detokenize(__A )
snake_case__ : Any = CompleteSentenceTransformer()
snake_case__ : str = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" )
snake_case__ : str = complete_model(__A )
snake_case__ : Optional[int] = tf.keras.Model(__A , __A )
keras_model.save(__A )
def _lowercase ( self : Tuple ):
# Has PT equivalent: this test relies on random sampling
snake_case__ : Any = {
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 1_0,
"temperature": 0.7,
}
snake_case__ : Union[str, Any] = 1_4
snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
snake_case__ : Tuple = "Hello, my dog is cute and"
snake_case__ : str = tokenizer(__A , return_tensors="tf" )
snake_case__ : str = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
snake_case__ : Any = 6_3_8
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
snake_case__ : int = model.generate(**__A , eos_token_id=__A , **__A )
self.assertTrue(expectation == len(generated_tokens[0] ) )
snake_case__ : Optional[int] = [6_3_8, 1_9_8]
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
snake_case__ : Union[str, Any] = model.generate(**__A , eos_token_id=__A , **__A )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def _lowercase ( self : str ):
# Has PT equivalent: ample use of framework-specific code
snake_case__ : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" )
snake_case__ : Optional[int] = "Hugging Face is a technology company based in New York and Paris."
snake_case__ : List[str] = bart_tokenizer(__A , return_tensors="tf" ).input_ids
snake_case__ : Any = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" )
snake_case__ : str = bart_model.generate(__A ).numpy()
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def _lowercase ( self : Tuple , __A : str , __A : Optional[Any]=None , **__A : Optional[int] ):
return super().call(__A , **__A )
snake_case__ : Union[str, Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" )
snake_case__ : Optional[Any] = bart_model.generate(__A , foo="bar" ).numpy()
self.assertTrue(np.array_equal(__A , __A ) )
class SCREAMING_SNAKE_CASE__ ( bart_model.model.encoder.__class__ ):
"""simple docstring"""
def _lowercase ( self : int , __A : Union[str, Any] , **__A : Optional[int] ):
return super().call(__A , **__A )
snake_case__ : str = FakeEncoder(bart_model.config , bart_model.model.shared )
snake_case__ : List[Any] = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
snake_case__ : str = bart_model.generate(__A ).numpy()
with self.assertRaises(__A ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(__A , foo="bar" )
| 25 |
from __future__ import annotations
import time
__lowerCamelCase : str = list[tuple[int, int]]
__lowerCamelCase : Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ):
snake_case__ : Optional[int] = pos_x
snake_case__ : Dict = pos_y
snake_case__ : int = (pos_y, pos_x)
snake_case__ : Optional[int] = goal_x
snake_case__ : Tuple = goal_y
snake_case__ : str = parent
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ):
snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A )
snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A )
snake_case__ : int = [self.start]
snake_case__ : Union[str, Any] = False
def _lowercase ( self : Dict ):
while self.node_queue:
snake_case__ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
snake_case__ : Optional[Any] = True
return self.retrace_path(__A )
snake_case__ : int = self.get_successors(__A )
for node in successors:
self.node_queue.append(__A )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Union[str, Any] , __A : Node ):
snake_case__ : str = []
for action in delta:
snake_case__ : str = parent.pos_x + action[1]
snake_case__ : Union[str, Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) )
return successors
def _lowercase ( self : Optional[Any] , __A : Node | None ):
snake_case__ : Tuple = node
snake_case__ : Any = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
snake_case__ : Tuple = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : str , __A : int ):
snake_case__ : str = BreadthFirstSearch(__A , __A )
snake_case__ : int = BreadthFirstSearch(__A , __A )
snake_case__ : Tuple = False
def _lowercase ( self : Optional[Any] ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 )
snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
snake_case__ : List[str] = True
return self.retrace_bidirectional_path(
__A , __A )
snake_case__ : Union[str, Any] = current_bwd_node
snake_case__ : Dict = current_fwd_node
snake_case__ : List[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(__A ),
self.bwd_bfs: self.bwd_bfs.get_successors(__A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(__A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Any , __A : Node , __A : Node ):
snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A )
snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A )
bwd_path.pop()
bwd_path.reverse()
snake_case__ : List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowerCamelCase : str = (0, 0)
__lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowerCamelCase : Any = time.time()
__lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal)
__lowerCamelCase : str = bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
__lowerCamelCase : Optional[Any] = time.time()
__lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal)
__lowerCamelCase : str = bd_bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 25 | 1 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : str , __A : Collection[float] | None = None ):
if components is None:
snake_case__ : Dict = []
snake_case__ : Dict = list(__A )
def __len__( self : Any ):
return len(self.__components )
def __str__( self : List[str] ):
return "(" + ",".join(map(__A , self.__components ) ) + ")"
def __add__( self : List[Any] , __A : Vector ):
snake_case__ : Any = len(self )
if size == len(__A ):
snake_case__ : Dict = [self.__components[i] + other.component(__A ) for i in range(__A )]
return Vector(__A )
else:
raise Exception("must have the same size" )
def __sub__( self : List[str] , __A : Vector ):
snake_case__ : Union[str, Any] = len(self )
if size == len(__A ):
snake_case__ : Optional[int] = [self.__components[i] - other.component(__A ) for i in range(__A )]
return Vector(__A )
else: # error case
raise Exception("must have the same size" )
@overload
def __mul__( self : List[str] , __A : float ):
...
@overload
def __mul__( self : Dict , __A : Vector ):
...
def __mul__( self : int , __A : float | Vector ):
if isinstance(__A , (float, int) ):
snake_case__ : List[Any] = [c * other for c in self.__components]
return Vector(__A )
elif isinstance(__A , __A ) and len(self ) == len(__A ):
snake_case__ : int = len(self )
snake_case__ : Tuple = [self.__components[i] * other.component(__A ) for i in range(__A )]
return sum(__A )
else: # error case
raise Exception("invalid operand!" )
def _lowercase ( self : str ):
return Vector(self.__components )
def _lowercase ( self : str , __A : int ):
if isinstance(__A , __A ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("index out of range" )
def _lowercase ( self : Union[str, Any] , __A : int , __A : float ):
assert -len(self.__components ) <= pos < len(self.__components )
snake_case__ : Optional[Any] = value
def _lowercase ( self : int ):
if len(self.__components ) == 0:
raise Exception("Vector is empty" )
snake_case__ : List[Any] = [c**2 for c in self.__components]
return math.sqrt(sum(__A ) )
def _lowercase ( self : int , __A : Vector , __A : bool = False ):
snake_case__ : Union[str, Any] = self * other
snake_case__ : Union[str, Any] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
assert isinstance(snake_case_ , snake_case_ )
return Vector([0] * dimension )
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ):
assert isinstance(snake_case_ , snake_case_ ) and (isinstance(snake_case_ , snake_case_ ))
snake_case__ : List[Any] = [0] * dimension
snake_case__ : List[Any] = 1
return Vector(snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : Vector , snake_case_ : Vector ):
assert (
isinstance(snake_case_ , snake_case_ )
and isinstance(snake_case_ , snake_case_ )
and (isinstance(snake_case_ , (int, float) ))
)
return x * scalar + y
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ):
random.seed(snake_case_ )
snake_case__ : Union[str, Any] = [random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )]
return Vector(snake_case_ )
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Optional[Any] , __A : list[list[float]] , __A : int , __A : int ):
snake_case__ : List[Any] = matrix
snake_case__ : Any = w
snake_case__ : Any = h
def __str__( self : Union[str, Any] ):
snake_case__ : int = ""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self : Tuple , __A : Matrix ):
if self.__width == other.width() and self.__height == other.height():
snake_case__ : Dict = []
for i in range(self.__height ):
snake_case__ : Union[str, Any] = [
self.__matrix[i][j] + other.component(__A , __A )
for j in range(self.__width )
]
matrix.append(__A )
return Matrix(__A , self.__width , self.__height )
else:
raise Exception("matrix must have the same dimension!" )
def __sub__( self : Optional[Any] , __A : Matrix ):
if self.__width == other.width() and self.__height == other.height():
snake_case__ : List[str] = []
for i in range(self.__height ):
snake_case__ : int = [
self.__matrix[i][j] - other.component(__A , __A )
for j in range(self.__width )
]
matrix.append(__A )
return Matrix(__A , self.__width , self.__height )
else:
raise Exception("matrices must have the same dimension!" )
@overload
def __mul__( self : List[str] , __A : float ):
...
@overload
def __mul__( self : Tuple , __A : Vector ):
...
def __mul__( self : List[str] , __A : float | Vector ):
if isinstance(__A , __A ): # matrix-vector
if len(__A ) == self.__width:
snake_case__ : Tuple = zero_vector(self.__height )
for i in range(self.__height ):
snake_case__ : List[str] = [
self.__matrix[i][j] * other.component(__A )
for j in range(self.__width )
]
ans.change_component(__A , sum(__A ) )
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!" )
elif isinstance(__A , (int, float) ): # matrix-scalar
snake_case__ : Tuple = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(__A , self.__width , self.__height )
return None
def _lowercase ( self : str ):
return self.__height
def _lowercase ( self : Union[str, Any] ):
return self.__width
def _lowercase ( self : Optional[Any] , __A : int , __A : int ):
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds" )
def _lowercase ( self : str , __A : int , __A : int , __A : float ):
if 0 <= x < self.__height and 0 <= y < self.__width:
snake_case__ : Optional[int] = value
else:
raise Exception("change_component: indices out of bounds" )
def _lowercase ( self : str , __A : int , __A : int ):
if self.__height != self.__width:
raise Exception("Matrix is not square" )
snake_case__ : Tuple = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(__A ) ):
snake_case__ : Dict = minor[i][:y] + minor[i][y + 1 :]
return Matrix(__A , self.__width - 1 , self.__height - 1 ).determinant()
def _lowercase ( self : Union[str, Any] , __A : int , __A : int ):
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(__A , __A )
else:
raise Exception("Indices out of bounds" )
def _lowercase ( self : List[str] ):
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if self.__height < 1:
raise Exception("Matrix has no element" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
snake_case__ : Dict = [
self.__matrix[0][y] * self.cofactor(0 , __A ) for y in range(self.__width )
]
return sum(__A )
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
snake_case__ : list[list[float]] = [[0] * n for _ in range(snake_case_ )]
return Matrix(snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int ):
random.seed(snake_case_ )
snake_case__ : list[list[float]] = [
[random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )] for _ in range(snake_case_ )
]
return Matrix(snake_case_ , snake_case_ , snake_case_ )
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Dict = parent
snake_case__ : Optional[int] = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : str = min_resolution
snake_case__ : Tuple = max_resolution
snake_case__ : List[Any] = do_resize
snake_case__ : Dict = size
snake_case__ : List[str] = do_normalize
snake_case__ : Optional[int] = image_mean
snake_case__ : Optional[int] = image_std
snake_case__ : Any = do_rescale
snake_case__ : Optional[int] = rescale_factor
snake_case__ : int = do_pad
def _lowercase ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ):
if not batched:
snake_case__ : List[str] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : Tuple = image.size
else:
snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Dict = int(self.size["shortest_edge"] * h / w )
snake_case__ : Optional[int] = self.size["shortest_edge"]
elif w > h:
snake_case__ : List[Any] = self.size["shortest_edge"]
snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Dict = self.size["shortest_edge"]
snake_case__ : Dict = self.size["shortest_edge"]
else:
snake_case__ : str = []
for image in image_inputs:
snake_case__, snake_case__ : str = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = ConditionalDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : int ):
snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self )
@property
def _lowercase ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Any ):
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : List[str] ):
snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Any = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : Union[str, Any] ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : List[Any] ):
# prepare image and target
snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Union[str, Any] = json.loads(f.read() )
snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : str ):
# prepare image, target and masks_path
snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : int = json.loads(f.read() )
snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" )
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : str = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "align_text_model"
def __init__( self : Dict , __A : Optional[Any]=3_0_5_2_2 , __A : Optional[int]=7_6_8 , __A : Dict=1_2 , __A : Any=1_2 , __A : List[str]=3_0_7_2 , __A : Tuple="gelu" , __A : List[Any]=0.1 , __A : List[str]=0.1 , __A : Optional[Any]=5_1_2 , __A : Optional[int]=2 , __A : int=0.0_2 , __A : Dict=1e-1_2 , __A : Optional[int]=0 , __A : List[Any]="absolute" , __A : str=True , **__A : Optional[Any] , ):
super().__init__(**__A )
snake_case__ : Any = vocab_size
snake_case__ : str = hidden_size
snake_case__ : str = num_hidden_layers
snake_case__ : List[str] = num_attention_heads
snake_case__ : Optional[int] = hidden_act
snake_case__ : Tuple = intermediate_size
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : Dict = attention_probs_dropout_prob
snake_case__ : Optional[Any] = max_position_embeddings
snake_case__ : List[str] = type_vocab_size
snake_case__ : Union[str, Any] = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : Optional[int] = position_embedding_type
snake_case__ : Tuple = use_cache
snake_case__ : List[str] = pad_token_id
@classmethod
def _lowercase ( cls : Tuple , __A : Union[str, os.PathLike] , **__A : Optional[int] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Dict = cls.get_config_dict(__A , **__A )
# get the text config dict if we are loading from AlignConfig
if config_dict.get("model_type" ) == "align":
snake_case__ : Any = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "align_vision_model"
def __init__( self : Union[str, Any] , __A : int = 3 , __A : int = 6_0_0 , __A : float = 2.0 , __A : float = 3.1 , __A : int = 8 , __A : List[int] = [3, 3, 5, 3, 5, 5, 3] , __A : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __A : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __A : List[int] = [] , __A : List[int] = [1, 2, 2, 2, 1, 2, 1] , __A : List[int] = [1, 2, 2, 3, 3, 4, 1] , __A : List[int] = [1, 6, 6, 6, 6, 6, 6] , __A : float = 0.2_5 , __A : str = "swish" , __A : int = 2_5_6_0 , __A : str = "mean" , __A : float = 0.0_2 , __A : float = 0.0_0_1 , __A : float = 0.9_9 , __A : float = 0.2 , **__A : Optional[int] , ):
super().__init__(**__A )
snake_case__ : Optional[Any] = num_channels
snake_case__ : str = image_size
snake_case__ : Optional[Any] = width_coefficient
snake_case__ : int = depth_coefficient
snake_case__ : List[str] = depth_divisor
snake_case__ : int = kernel_sizes
snake_case__ : str = in_channels
snake_case__ : Optional[Any] = out_channels
snake_case__ : Union[str, Any] = depthwise_padding
snake_case__ : Dict = strides
snake_case__ : Optional[int] = num_block_repeats
snake_case__ : Any = expand_ratios
snake_case__ : List[Any] = squeeze_expansion_ratio
snake_case__ : List[Any] = hidden_act
snake_case__ : Dict = hidden_dim
snake_case__ : str = pooling_type
snake_case__ : Any = initializer_range
snake_case__ : List[str] = batch_norm_eps
snake_case__ : Optional[Any] = batch_norm_momentum
snake_case__ : Any = drop_connect_rate
snake_case__ : Optional[int] = sum(__A ) * 4
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Dict ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Any = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get("model_type" ) == "align":
snake_case__ : str = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "align"
a_ = True
def __init__( self : int , __A : List[str]=None , __A : Any=None , __A : Tuple=6_4_0 , __A : int=1.0 , __A : Tuple=0.0_2 , **__A : Tuple , ):
super().__init__(**__A )
if text_config is None:
snake_case__ : List[Any] = {}
logger.info("text_config is None. Initializing the AlignTextConfig with default values." )
if vision_config is None:
snake_case__ : Union[str, Any] = {}
logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." )
snake_case__ : Any = AlignTextConfig(**__A )
snake_case__ : List[str] = AlignVisionConfig(**__A )
snake_case__ : List[str] = projection_dim
snake_case__ : Union[str, Any] = temperature_init_value
snake_case__ : int = initializer_range
@classmethod
def _lowercase ( cls : Optional[Any] , __A : AlignTextConfig , __A : AlignVisionConfig , **__A : Optional[int] ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A )
def _lowercase ( self : Tuple ):
snake_case__ : Dict = copy.deepcopy(self.__dict__ )
snake_case__ : List[Any] = self.text_config.to_dict()
snake_case__ : Dict = self.vision_config.to_dict()
snake_case__ : Dict = self.__class__.model_type
return output
| 25 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Optional[int] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCamelCase : str = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCamelCase : str = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ):
snake_case__ : List[Any] = compute_mauve(
p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , )
return out
| 25 | 1 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Any = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "mask2former"
a_ = ["swin"]
a_ = {"hidden_size": "hidden_dim"}
def __init__( self : Any , __A : Optional[Dict] = None , __A : int = 2_5_6 , __A : int = 2_5_6 , __A : int = 2_5_6 , __A : int = 1_0_2_4 , __A : str = "relu" , __A : int = 6 , __A : int = 1_0 , __A : int = 8 , __A : float = 0.0 , __A : int = 2_0_4_8 , __A : bool = False , __A : bool = False , __A : int = 4 , __A : int = 2_5_5 , __A : int = 1_0_0 , __A : float = 0.1 , __A : float = 2.0 , __A : float = 5.0 , __A : float = 5.0 , __A : int = 1_2_5_4_4 , __A : float = 3.0 , __A : float = 0.7_5 , __A : float = 0.0_2 , __A : float = 1.0 , __A : bool = True , __A : List[int] = [4, 8, 1_6, 3_2] , __A : bool = None , **__A : Tuple , ):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." )
snake_case__ : List[Any] = CONFIG_MAPPING["swin"](
image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__A , out_features=["stage1", "stage2", "stage3", "stage4"] , )
if isinstance(__A , __A ):
snake_case__ : Tuple = backbone_config.pop("model_type" )
snake_case__ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
snake_case__ : Optional[int] = config_class.from_dict(__A )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
snake_case__ : Any = backbone_config
snake_case__ : Dict = feature_size
snake_case__ : List[str] = mask_feature_size
snake_case__ : Any = hidden_dim
snake_case__ : Tuple = encoder_feedforward_dim
snake_case__ : Tuple = activation_function
snake_case__ : int = encoder_layers
snake_case__ : Any = decoder_layers
snake_case__ : Tuple = num_attention_heads
snake_case__ : Optional[int] = dropout
snake_case__ : Tuple = dim_feedforward
snake_case__ : List[Any] = pre_norm
snake_case__ : List[str] = enforce_input_projection
snake_case__ : List[str] = common_stride
snake_case__ : Union[str, Any] = ignore_value
snake_case__ : Union[str, Any] = num_queries
snake_case__ : int = no_object_weight
snake_case__ : Dict = class_weight
snake_case__ : List[Any] = mask_weight
snake_case__ : str = dice_weight
snake_case__ : Optional[int] = train_num_points
snake_case__ : List[str] = oversample_ratio
snake_case__ : Dict = importance_sample_ratio
snake_case__ : int = init_std
snake_case__ : Dict = init_xavier_std
snake_case__ : Tuple = use_auxiliary_loss
snake_case__ : Optional[Any] = feature_strides
snake_case__ : Tuple = output_auxiliary_logits
snake_case__ : str = decoder_layers
super().__init__(**__A )
@classmethod
def _lowercase ( cls : Any , __A : PretrainedConfig , **__A : Dict ):
return cls(
backbone_config=__A , **__A , )
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Dict = copy.deepcopy(self.__dict__ )
snake_case__ : int = self.backbone_config.to_dict()
snake_case__ : Any = self.__class__.model_type
return output
| 25 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__lowerCamelCase : Union[str, Any] = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__lowerCamelCase : List[Any] = concatenate_datasets
__lowerCamelCase : List[str] = DownloadConfig
__lowerCamelCase : Union[str, Any] = DownloadManager
__lowerCamelCase : str = DownloadMode
__lowerCamelCase : Union[str, Any] = DownloadConfig
__lowerCamelCase : List[str] = DownloadMode
__lowerCamelCase : Dict = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 25 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""",
"""google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""",
"""google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""",
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "big_bird"
def __init__( self : Union[str, Any] , __A : int=5_0_3_5_8 , __A : List[Any]=7_6_8 , __A : List[str]=1_2 , __A : int=1_2 , __A : int=3_0_7_2 , __A : Dict="gelu_new" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=4_0_9_6 , __A : Union[str, Any]=2 , __A : Tuple=0.0_2 , __A : Union[str, Any]=1e-1_2 , __A : Tuple=True , __A : Union[str, Any]=0 , __A : List[str]=1 , __A : Any=2 , __A : Dict=6_6 , __A : Union[str, Any]="block_sparse" , __A : int=True , __A : str=False , __A : str=6_4 , __A : List[str]=3 , __A : int=None , **__A : Optional[Any] , ):
super().__init__(
pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , sep_token_id=__A , **__A , )
snake_case__ : Optional[Any] = vocab_size
snake_case__ : Optional[int] = max_position_embeddings
snake_case__ : Union[str, Any] = hidden_size
snake_case__ : int = num_hidden_layers
snake_case__ : List[str] = num_attention_heads
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Dict = hidden_act
snake_case__ : List[str] = hidden_dropout_prob
snake_case__ : Any = attention_probs_dropout_prob
snake_case__ : Union[str, Any] = initializer_range
snake_case__ : int = type_vocab_size
snake_case__ : List[Any] = layer_norm_eps
snake_case__ : int = use_cache
snake_case__ : Any = rescale_embeddings
snake_case__ : Union[str, Any] = attention_type
snake_case__ : Any = use_bias
snake_case__ : Union[str, Any] = block_size
snake_case__ : Optional[Any] = num_random_blocks
snake_case__ : int = classifier_dropout
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
@property
def _lowercase ( self : Union[str, Any] ):
if self.task == "multiple-choice":
snake_case__ : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
snake_case__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 25 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
snake_case__ : str = [True] * limit
snake_case__ : str = False
snake_case__ : str = False
snake_case__ : str = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
snake_case__ : Optional[Any] = i * 2
while index < limit:
snake_case__ : Union[str, Any] = False
snake_case__ : Any = index + i
snake_case__ : Optional[Any] = [2]
for i in range(3 , snake_case_ , 2 ):
if is_prime[i]:
primes.append(snake_case_ )
return primes
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ):
snake_case__ : Optional[int] = prime_sieve(snake_case_ )
snake_case__ : List[Any] = 0
snake_case__ : List[str] = 0
for i in range(len(snake_case_ ) ):
for j in range(i + length , len(snake_case_ ) ):
snake_case__ : Dict = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
snake_case__ : Tuple = j - i
snake_case__ : str = sol
return largest
if __name__ == "__main__":
print(f"{solution() = }")
| 25 | 1 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = DDIMPipeline
a_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
a_ = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
a_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
a_ = False
def _lowercase ( self : Union[str, Any] ):
torch.manual_seed(0 )
snake_case__ : Optional[Any] = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , )
snake_case__ : Dict = DDIMScheduler()
snake_case__ : Dict = {"unet": unet, "scheduler": scheduler}
return components
def _lowercase ( self : Optional[int] , __A : Any , __A : Optional[int]=0 ):
if str(__A ).startswith("mps" ):
snake_case__ : Union[str, Any] = torch.manual_seed(__A )
else:
snake_case__ : Union[str, Any] = torch.Generator(device=__A ).manual_seed(__A )
snake_case__ : Optional[int] = {
"batch_size": 1,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Dict ):
snake_case__ : str = "cpu"
snake_case__ : List[str] = self.get_dummy_components()
snake_case__ : List[Any] = self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : int = self.get_dummy_inputs(__A )
snake_case__ : Any = pipe(**__A ).images
snake_case__ : Any = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 3_2, 3_2, 3) )
snake_case__ : int = np.array(
[1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] )
snake_case__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__A , 1e-3 )
def _lowercase ( self : List[str] ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def _lowercase ( self : Union[str, Any] ):
super().test_save_load_local(expected_max_difference=3e-3 )
def _lowercase ( self : int ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def _lowercase ( self : Dict ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : int ):
snake_case__ : Any = "google/ddpm-cifar10-32"
snake_case__ : Optional[Any] = UNetaDModel.from_pretrained(__A )
snake_case__ : int = DDIMScheduler()
snake_case__ : Union[str, Any] = DDIMPipeline(unet=__A , scheduler=__A )
ddim.to(__A )
ddim.set_progress_bar_config(disable=__A )
snake_case__ : Tuple = torch.manual_seed(0 )
snake_case__ : List[Any] = ddim(generator=__A , eta=0.0 , output_type="numpy" ).images
snake_case__ : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
snake_case__ : Tuple = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self : List[str] ):
snake_case__ : Optional[int] = "google/ddpm-ema-bedroom-256"
snake_case__ : List[Any] = UNetaDModel.from_pretrained(__A )
snake_case__ : Union[str, Any] = DDIMScheduler.from_pretrained(__A )
snake_case__ : Tuple = DDIMPipeline(unet=__A , scheduler=__A )
ddpm.to(__A )
ddpm.set_progress_bar_config(disable=__A )
snake_case__ : Any = torch.manual_seed(0 )
snake_case__ : Any = ddpm(generator=__A , output_type="numpy" ).images
snake_case__ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
snake_case__ : str = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Optional[Any] = parent
snake_case__ : str = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : Optional[Any] = min_resolution
snake_case__ : List[str] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : str = size
snake_case__ : str = do_normalize
snake_case__ : Optional[Any] = image_mean
snake_case__ : List[str] = image_std
snake_case__ : List[str] = do_rescale
snake_case__ : Tuple = rescale_factor
snake_case__ : Tuple = do_pad
def _lowercase ( self : str ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ):
if not batched:
snake_case__ : List[Any] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : str = image.size
else:
snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Any = int(self.size["shortest_edge"] * h / w )
snake_case__ : Any = self.size["shortest_edge"]
elif w > h:
snake_case__ : Optional[int] = self.size["shortest_edge"]
snake_case__ : Any = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Tuple = self.size["shortest_edge"]
snake_case__ : int = self.size["shortest_edge"]
else:
snake_case__ : Any = []
for image in image_inputs:
snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : int = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = DeformableDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : str ):
snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self )
@property
def _lowercase ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Tuple ):
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "do_rescale" ) )
self.assertTrue(hasattr(__A , "do_pad" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : Any ):
snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Tuple = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : str ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : int ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Union[str, Any] ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : Optional[Any] ):
# prepare image and target
snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Tuple = json.loads(f.read() )
snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : str = DeformableDetrImageProcessor()
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Union[str, Any] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : Any = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : Optional[int] ):
# prepare image, target and masks_path
snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : Any = json.loads(f.read() )
snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" )
snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Any = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : List[str] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : Union[str, Any] = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def SCREAMING_SNAKE_CASE ( snake_case_ : Features ):
snake_case__ : str = np.inf
def set_batch_size(snake_case_ : FeatureType ) -> None:
nonlocal batch_size
if isinstance(snake_case_ , snake_case_ ):
snake_case__ : List[Any] = min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(snake_case_ , snake_case_ ):
snake_case__ : Tuple = min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(snake_case_ , snake_case_ ) and feature.dtype == "binary":
snake_case__ : Tuple = min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(snake_case_ , snake_case_ )
return None if batch_size is np.inf else batch_size
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : NestedDataStructureLike[PathLike] , __A : Optional[NamedSplit] = None , __A : Optional[Features] = None , __A : str = None , __A : bool = False , __A : bool = False , __A : Optional[int] = None , **__A : int , ):
super().__init__(
__A , split=__A , features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , )
snake_case__ : Tuple = path_or_paths if isinstance(__A , __A ) else {self.split: path_or_paths}
snake_case__ : Union[str, Any] = _PACKAGED_DATASETS_MODULES["parquet"][1]
snake_case__ : List[Any] = Parquet(
cache_dir=__A , data_files=__A , features=__A , hash=__A , **__A , )
def _lowercase ( self : str ):
# Build iterable dataset
if self.streaming:
snake_case__ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
snake_case__ : int = None
snake_case__ : int = None
snake_case__ : int = None
snake_case__ : Tuple = None
self.builder.download_and_prepare(
download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , )
snake_case__ : Union[str, Any] = self.builder.as_dataset(
split=self.split , verification_mode=__A , in_memory=self.keep_in_memory )
return dataset
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : Dataset , __A : Union[PathLike, BinaryIO] , __A : Optional[int] = None , **__A : Any , ):
snake_case__ : Union[str, Any] = dataset
snake_case__ : str = path_or_buf
snake_case__ : Union[str, Any] = batch_size or get_writer_batch_size(dataset.features )
snake_case__ : Union[str, Any] = parquet_writer_kwargs
def _lowercase ( self : int ):
snake_case__ : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
snake_case__ : List[str] = self._write(file_obj=__A , batch_size=__A , **self.parquet_writer_kwargs )
else:
snake_case__ : List[str] = self._write(file_obj=self.path_or_buf , batch_size=__A , **self.parquet_writer_kwargs )
return written
def _lowercase ( self : Optional[int] , __A : BinaryIO , __A : int , **__A : str ):
snake_case__ : int = 0
snake_case__ : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" , __A )
snake_case__ : List[str] = self.dataset.features.arrow_schema
snake_case__ : List[str] = pq.ParquetWriter(__A , schema=__A , **__A )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , __A ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
snake_case__ : Optional[Any] = query_table(
table=self.dataset._data , key=slice(__A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(__A )
written += batch.nbytes
writer.close()
return written
| 25 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
__lowerCamelCase : Tuple = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
__lowerCamelCase : Dict = {
"""allenai/led-base-16384""": 1_6384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
snake_case__ : Optional[int] = bs[:]
snake_case__ : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
snake_case__ : Dict = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_ , snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
snake_case__ : Dict = set()
snake_case__ : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case__ : List[Any] = char
return pairs
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["input_ids", "attention_mask"]
def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ):
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , )
with open(__A , encoding="utf-8" ) as vocab_handle:
snake_case__ : Any = json.load(__A )
snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
snake_case__ : Union[str, Any] = errors # how to handle errors in decoding
snake_case__ : Any = bytes_to_unicode()
snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__A , encoding="utf-8" ) as merges_handle:
snake_case__ : str = merges_handle.read().split("\n" )[1:-1]
snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges]
snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) )
snake_case__ : Optional[int] = {}
snake_case__ : Any = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _lowercase ( self : List[Any] ):
return len(self.encoder )
def _lowercase ( self : Any ):
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self : Optional[Any] , __A : Optional[int] ):
if token in self.cache:
return self.cache[token]
snake_case__ : Union[str, Any] = tuple(__A )
snake_case__ : List[Any] = get_pairs(__A )
if not pairs:
return token
while True:
snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
snake_case__, snake_case__ : Dict = bigram
snake_case__ : str = []
snake_case__ : Union[str, Any] = 0
while i < len(__A ):
try:
snake_case__ : Dict = word.index(__A , __A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case__ : str = j
if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case__ : str = tuple(__A )
snake_case__ : int = new_word
if len(__A ) == 1:
break
else:
snake_case__ : List[str] = get_pairs(__A )
snake_case__ : List[Any] = " ".join(__A )
snake_case__ : Optional[int] = word
return word
def _lowercase ( self : Optional[Any] , __A : Optional[Any] ):
snake_case__ : List[str] = []
for token in re.findall(self.pat , __A ):
snake_case__ : Dict = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) )
return bpe_tokens
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
return self.encoder.get(__A , self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , __A : Optional[Any] ):
return self.decoder.get(__A )
def _lowercase ( self : Union[str, Any] , __A : Dict ):
snake_case__ : Optional[Any] = "".join(__A )
snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : List[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
snake_case__ : str = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" )
snake_case__ : str = 0
with open(__A , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
snake_case__ : int = token_index
writer.write(" ".join(__A ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ : Tuple = [self.cls_token_id]
snake_case__ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Any = [self.sep_token_id]
snake_case__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ):
snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()):
snake_case__ : Optional[int] = " " + text
return (text, kwargs)
def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ):
snake_case__ : Optional[Any] = super()._pad(
encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , )
# Load from model defaults
if return_attention_mask is None:
snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A )
if needs_to_be_padded:
snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case__ : int = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
snake_case__ : Tuple = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 25 | 1 |
from ...processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "SpeechT5FeatureExtractor"
a_ = "SpeechT5Tokenizer"
def __init__( self : Optional[int] , __A : Any , __A : Any ):
super().__init__(__A , __A )
def __call__( self : Any , *__A : Tuple , **__A : List[Any] ):
snake_case__ : int = kwargs.pop("audio" , __A )
snake_case__ : Optional[int] = kwargs.pop("text" , __A )
snake_case__ : str = kwargs.pop("text_target" , __A )
snake_case__ : List[Any] = kwargs.pop("audio_target" , __A )
snake_case__ : Any = kwargs.pop("sampling_rate" , __A )
if audio is not None and text is not None:
raise ValueError(
"Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" )
if audio_target is not None and text_target is not None:
raise ValueError(
"Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." )
if audio is not None:
snake_case__ : Union[str, Any] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A )
elif text is not None:
snake_case__ : Dict = self.tokenizer(__A , **__A )
else:
snake_case__ : Optional[int] = None
if audio_target is not None:
snake_case__ : List[str] = self.feature_extractor(audio_target=__A , *__A , sampling_rate=__A , **__A )
snake_case__ : str = targets["input_values"]
elif text_target is not None:
snake_case__ : List[str] = self.tokenizer(__A , **__A )
snake_case__ : List[Any] = targets["input_ids"]
else:
snake_case__ : int = None
if inputs is None:
return targets
if targets is not None:
snake_case__ : Optional[int] = labels
snake_case__ : Any = targets.get("attention_mask" )
if decoder_attention_mask is not None:
snake_case__ : Any = decoder_attention_mask
return inputs
def _lowercase ( self : Optional[int] , *__A : Any , **__A : List[Any] ):
snake_case__ : Optional[Any] = kwargs.pop("input_values" , __A )
snake_case__ : List[Any] = kwargs.pop("input_ids" , __A )
snake_case__ : Optional[Any] = kwargs.pop("labels" , __A )
if input_values is not None and input_ids is not None:
raise ValueError("Cannot process both `input_values` and `input_ids` inputs." )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." )
if input_values is not None:
snake_case__ : Tuple = self.feature_extractor.pad(__A , *__A , **__A )
elif input_ids is not None:
snake_case__ : List[Any] = self.tokenizer.pad(__A , **__A )
else:
snake_case__ : Dict = None
if labels is not None:
if "input_ids" in labels or (isinstance(__A , __A ) and "input_ids" in labels[0]):
snake_case__ : Any = self.tokenizer.pad(__A , **__A )
snake_case__ : Optional[Any] = targets["input_ids"]
else:
snake_case__ : List[str] = self.feature_extractor.feature_size
snake_case__ : Optional[int] = self.feature_extractor.num_mel_bins
snake_case__ : Dict = self.feature_extractor.pad(__A , *__A , **__A )
snake_case__ : Any = feature_size_hack
snake_case__ : int = targets["input_values"]
else:
snake_case__ : Any = None
if inputs is None:
return targets
if targets is not None:
snake_case__ : int = labels
snake_case__ : str = targets.get("attention_mask" )
if decoder_attention_mask is not None:
snake_case__ : Optional[int] = decoder_attention_mask
return inputs
def _lowercase ( self : int , *__A : Optional[Any] , **__A : Tuple ):
return self.tokenizer.batch_decode(*__A , **__A )
def _lowercase ( self : str , *__A : Dict , **__A : List[Any] ):
return self.tokenizer.decode(*__A , **__A )
| 25 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
| 25 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "char"
a_ = "bpe"
a_ = "wp"
__lowerCamelCase : Any = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = ["image_processor", "char_tokenizer"]
a_ = "ViTImageProcessor"
a_ = "MgpstrTokenizer"
def __init__( self : Union[str, Any] , __A : Any=None , __A : Dict=None , **__A : Any ):
snake_case__ : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __A , )
snake_case__ : List[str] = kwargs.pop("feature_extractor" )
snake_case__ : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
snake_case__ : List[Any] = tokenizer
snake_case__ : List[str] = AutoTokenizer.from_pretrained("gpt2" )
snake_case__ : Dict = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__A , __A )
def __call__( self : List[str] , __A : str=None , __A : Optional[Any]=None , __A : Dict=None , **__A : Optional[Any] ):
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
snake_case__ : Union[str, Any] = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None:
snake_case__ : List[str] = self.char_tokenizer(__A , return_tensors=__A , **__A )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case__ : Any = encodings["input_ids"]
return inputs
def _lowercase ( self : Optional[Any] , __A : Optional[int] ):
snake_case__, snake_case__, snake_case__ : List[str] = sequences
snake_case__ : Optional[Any] = char_preds.size(0 )
snake_case__, snake_case__ : List[Any] = self._decode_helper(__A , "char" )
snake_case__, snake_case__ : Tuple = self._decode_helper(__A , "bpe" )
snake_case__, snake_case__ : int = self._decode_helper(__A , "wp" )
snake_case__ : Dict = []
snake_case__ : Dict = []
for i in range(__A ):
snake_case__ : List[str] = [char_scores[i], bpe_scores[i], wp_scores[i]]
snake_case__ : str = [char_strs[i], bpe_strs[i], wp_strs[i]]
snake_case__ : str = scores.index(max(__A ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
snake_case__ : Any = {}
snake_case__ : Union[str, Any] = final_strs
snake_case__ : Tuple = final_scores
snake_case__ : Optional[Any] = char_strs
snake_case__ : Tuple = bpe_strs
snake_case__ : Dict = wp_strs
return out
def _lowercase ( self : str , __A : List[Any] , __A : Union[str, Any] ):
if format == DecodeType.CHARACTER:
snake_case__ : int = self.char_decode
snake_case__ : List[str] = 1
snake_case__ : Optional[int] = "[s]"
elif format == DecodeType.BPE:
snake_case__ : Optional[int] = self.bpe_decode
snake_case__ : List[str] = 2
snake_case__ : Dict = "#"
elif format == DecodeType.WORDPIECE:
snake_case__ : Union[str, Any] = self.wp_decode
snake_case__ : Tuple = 1_0_2
snake_case__ : Optional[Any] = "[SEP]"
else:
raise ValueError(f'''Format {format} is not supported.''' )
snake_case__, snake_case__ : Union[str, Any] = [], []
snake_case__ : Tuple = pred_logits.size(0 )
snake_case__ : int = pred_logits.size(1 )
snake_case__, snake_case__ : Any = pred_logits.topk(1 , dim=-1 , largest=__A , sorted=__A )
snake_case__ : Tuple = preds_index.view(-1 , __A )[:, 1:]
snake_case__ : List[Any] = decoder(__A )
snake_case__, snake_case__ : Optional[Any] = torch.nn.functional.softmax(__A , dim=2 ).max(dim=2 )
snake_case__ : str = preds_max_prob[:, 1:]
for index in range(__A ):
snake_case__ : int = preds_str[index].find(__A )
snake_case__ : Union[str, Any] = preds_str[index][:pred_eos]
snake_case__ : Any = preds_index[index].cpu().tolist()
snake_case__ : Union[str, Any] = pred_index.index(__A ) if eos_token in pred_index else -1
snake_case__ : Union[str, Any] = preds_max_prob[index][: pred_eos_index + 1]
snake_case__ : List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__A )
conf_scores.append(__A )
return dec_strs, conf_scores
def _lowercase ( self : Union[str, Any] , __A : Tuple ):
snake_case__ : Tuple = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__A )]
return decode_strs
def _lowercase ( self : List[Any] , __A : Any ):
return self.bpe_tokenizer.batch_decode(__A )
def _lowercase ( self : Optional[int] , __A : List[str] ):
snake_case__ : Optional[Any] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__A )]
return decode_strs
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Any = [0] * len(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
# use last results for better performance - dynamic programming
snake_case__ : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
snake_case__ : str = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
snake_case__ : int = j
return prefix_result
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return max(prefix_function(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
from __future__ import annotations
from statistics import mean
def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int ):
snake_case__ : Optional[Any] = [0] * no_of_processes
snake_case__ : str = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(snake_case_ ):
snake_case__ : Optional[int] = burst_time[i]
snake_case__ : list[int] = []
snake_case__ : Dict = 0
snake_case__ : Dict = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
snake_case__ : Union[str, Any] = []
snake_case__ : str = -1
for i in range(snake_case_ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(snake_case_ )
if len(snake_case_ ) > 0:
snake_case__ : List[Any] = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
snake_case__ : List[Any] = i
total_time += burst_time[target_process]
completed += 1
snake_case__ : List[str] = 0
snake_case__ : Tuple = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : list[int] ):
snake_case__ : Union[str, Any] = [0] * no_of_processes
for i in range(snake_case_ ):
snake_case__ : Optional[int] = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
__lowerCamelCase : Any = 4
__lowerCamelCase : int = [2, 5, 3, 7]
__lowerCamelCase : Optional[int] = [0, 0, 0, 0]
__lowerCamelCase : List[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__lowerCamelCase : Tuple = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"
f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"
)
print(f"\nAverage waiting time = {mean(waiting_time):.5f}")
print(f"Average turnaround time = {mean(turn_around_time):.5f}")
| 25 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
__lowerCamelCase : Optional[int] = get_logger()
__lowerCamelCase : Optional[dict] = None
class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
"""simple docstring"""
def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ):
super().__init__(features=__A )
import jax
from jaxlib.xla_client import Device
if isinstance(__A , __A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` '''
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`." )
snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
snake_case__ : str = str(jax.devices()[0] )
snake_case__ : str = jnp_array_kwargs
@staticmethod
def _lowercase ( ):
import jax
return {str(__A ): device for device in jax.devices()}
def _lowercase ( self : Optional[Any] , __A : str ):
import jax
import jax.numpy as jnp
if isinstance(__A , __A ) and column:
if all(
isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__A , axis=0 )
return column
def _lowercase ( self : int , __A : Tuple ):
import jax
import jax.numpy as jnp
if isinstance(__A , (str, bytes, type(__A )) ):
return value
elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
snake_case__ : Optional[int] = {}
if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
snake_case__ : Any = {"dtype": jnp.intaa}
else:
snake_case__ : Tuple = {"dtype": jnp.intaa}
elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
snake_case__ : str = {"dtype": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__A , PIL.Image.Image ):
snake_case__ : Optional[Any] = np.asarray(__A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : int = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ):
snake_case__ : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
elif isinstance(__A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
return self._tensorize(__A )
def _lowercase ( self : Tuple , __A : dict ):
return map_nested(self._recursive_tensorize , __A , map_list=__A )
def _lowercase ( self : Optional[int] , __A : pa.Table ):
snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A )
snake_case__ : Tuple = self.python_features_decoder.decode_row(__A )
return self.recursive_tensorize(__A )
def _lowercase ( self : Optional[Any] , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A )
snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
snake_case__ : Dict = self._consolidate(__A )
return column
def _lowercase ( self : str , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A )
snake_case__ : int = self.python_features_decoder.decode_batch(__A )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
for column_name in batch:
snake_case__ : Any = self._consolidate(batch[column_name] )
return batch
| 25 | 1 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__A : List[Any] , **__A : str ):
warnings.warn(
"The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use LayoutLMv2ImageProcessor instead." , __A , )
super().__init__(*__A , **__A )
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCamelCase : Tuple = {
"""configuration_roberta_prelayernorm""": [
"""ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""RobertaPreLayerNormConfig""",
"""RobertaPreLayerNormOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Tuple = [
"""ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaPreLayerNormForCausalLM""",
"""RobertaPreLayerNormForMaskedLM""",
"""RobertaPreLayerNormForMultipleChoice""",
"""RobertaPreLayerNormForQuestionAnswering""",
"""RobertaPreLayerNormForSequenceClassification""",
"""RobertaPreLayerNormForTokenClassification""",
"""RobertaPreLayerNormModel""",
"""RobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Union[str, Any] = [
"""TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaPreLayerNormForCausalLM""",
"""TFRobertaPreLayerNormForMaskedLM""",
"""TFRobertaPreLayerNormForMultipleChoice""",
"""TFRobertaPreLayerNormForQuestionAnswering""",
"""TFRobertaPreLayerNormForSequenceClassification""",
"""TFRobertaPreLayerNormForTokenClassification""",
"""TFRobertaPreLayerNormMainLayer""",
"""TFRobertaPreLayerNormModel""",
"""TFRobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = [
"""FlaxRobertaPreLayerNormForCausalLM""",
"""FlaxRobertaPreLayerNormForMaskedLM""",
"""FlaxRobertaPreLayerNormForMultipleChoice""",
"""FlaxRobertaPreLayerNormForQuestionAnswering""",
"""FlaxRobertaPreLayerNormForSequenceClassification""",
"""FlaxRobertaPreLayerNormForTokenClassification""",
"""FlaxRobertaPreLayerNormModel""",
"""FlaxRobertaPreLayerNormPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self : Tuple , __A : Callable , __A : Optional[Features] = None , __A : str = None , __A : bool = False , __A : bool = False , __A : Optional[dict] = None , __A : Optional[int] = None , **__A : int , ):
super().__init__(
features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , )
snake_case__ : Tuple = Generator(
cache_dir=__A , features=__A , generator=__A , gen_kwargs=__A , **__A , )
def _lowercase ( self : Any ):
# Build iterable dataset
if self.streaming:
snake_case__ : Optional[int] = self.builder.as_streaming_dataset(split="train" )
# Build regular (map-style) dataset
else:
snake_case__ : Any = None
snake_case__ : Union[str, Any] = None
snake_case__ : Optional[Any] = None
snake_case__ : str = None
self.builder.download_and_prepare(
download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , )
snake_case__ : Optional[Any] = self.builder.as_dataset(
split="train" , verification_mode=__A , in_memory=self.keep_in_memory )
return dataset
| 25 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ):
snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Tuple = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) )
self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) )
def _lowercase ( self : Dict ):
snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Union[str, Any] = get_activation("gelu" )
snake_case__ : int = get_activation("gelu_10" )
snake_case__ : Optional[int] = torch_builtin(__A )
snake_case__ : Dict = geluaa(__A )
snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 )
self.assertTrue(torch.max(__A ).item() == 1_0.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _lowercase ( self : str ):
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(__A ):
get_activation("bogus" )
with self.assertRaises(__A ):
get_activation(__A )
def _lowercase ( self : List[str] ):
snake_case__ : List[str] = get_activation("gelu" )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__A ):
snake_case__ : int = acta.a
| 25 | 1 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
__lowerCamelCase : int = random.Random()
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str=1.0 , snake_case_ : Dict=None , snake_case_ : Tuple=None ):
if rng is None:
snake_case__ : Optional[int] = global_rng
snake_case__ : List[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , __A : Any , __A : int=7 , __A : Any=4_0_0 , __A : Tuple=2_0_0_0 , __A : Tuple=2_0_4_8 , __A : List[str]=1_2_8 , __A : Dict=1 , __A : int=5_1_2 , __A : List[str]=3_0 , __A : List[Any]=4_4_1_0_0 , ):
snake_case__ : str = parent
snake_case__ : Optional[Any] = batch_size
snake_case__ : Optional[Any] = min_seq_length
snake_case__ : Optional[int] = max_seq_length
snake_case__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
snake_case__ : List[str] = spectrogram_length
snake_case__ : Union[str, Any] = feature_size
snake_case__ : int = num_audio_channels
snake_case__ : Tuple = hop_length
snake_case__ : str = chunk_length
snake_case__ : Optional[int] = sampling_rate
def _lowercase ( self : str ):
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def _lowercase ( self : int , __A : Tuple=False , __A : int=False ):
def _flatten(__A : Union[str, Any] ):
return list(itertools.chain(*__A ) )
if equal_length:
snake_case__ : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
snake_case__ : Optional[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
snake_case__ : List[str] = [np.asarray(__A ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = TvltFeatureExtractor
def _lowercase ( self : Any ):
snake_case__ : Dict = TvltFeatureExtractionTester(self )
def _lowercase ( self : Tuple ):
snake_case__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(__A , "spectrogram_length" ) )
self.assertTrue(hasattr(__A , "feature_size" ) )
self.assertTrue(hasattr(__A , "num_audio_channels" ) )
self.assertTrue(hasattr(__A , "hop_length" ) )
self.assertTrue(hasattr(__A , "chunk_length" ) )
self.assertTrue(hasattr(__A , "sampling_rate" ) )
def _lowercase ( self : Dict ):
snake_case__ : int = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Optional[Any] = feat_extract_first.save_pretrained(__A )[0]
check_json_file_has_correct_format(__A )
snake_case__ : List[Any] = self.feature_extraction_class.from_pretrained(__A )
snake_case__ : List[str] = feat_extract_first.to_dict()
snake_case__ : str = feat_extract_second.to_dict()
snake_case__ : List[Any] = dict_first.pop("mel_filters" )
snake_case__ : Any = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(__A , __A ) )
self.assertEqual(__A , __A )
def _lowercase ( self : int ):
snake_case__ : Dict = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : List[str] = os.path.join(__A , "feat_extract.json" )
feat_extract_first.to_json_file(__A )
snake_case__ : Any = self.feature_extraction_class.from_json_file(__A )
snake_case__ : Dict = feat_extract_first.to_dict()
snake_case__ : Any = feat_extract_second.to_dict()
snake_case__ : List[str] = dict_first.pop("mel_filters" )
snake_case__ : int = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(__A , __A ) )
self.assertEqual(__A , __A )
def _lowercase ( self : List[str] ):
# Initialize feature_extractor
snake_case__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
snake_case__ : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )]
snake_case__ : Union[str, Any] = [np.asarray(__A ) for speech_input in speech_inputs]
# Test not batched input
snake_case__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
snake_case__ : Dict = feature_extractor(__A , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
snake_case__ : Union[str, Any] = feature_extractor(
__A , return_tensors="np" , sampling_rate=4_4_1_0_0 , mask_audio=__A ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
snake_case__ : Any = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)]
snake_case__ : str = np.asarray(__A )
snake_case__ : Tuple = feature_extractor(__A , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def _lowercase ( self : Optional[int] , __A : Dict ):
snake_case__ : List[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" )
# automatic decoding with librispeech
snake_case__ : Tuple = ds.sort("id" ).select(range(__A ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Dict = self._load_datasamples(1 )
snake_case__ : Any = TvltFeatureExtractor()
snake_case__ : List[str] = feature_extractor(__A , return_tensors="pt" ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) )
snake_case__ : Optional[int] = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __A , atol=1e-4 ) )
| 25 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
__lowerCamelCase : Tuple = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ):
for attribute in key.split("." ):
snake_case__ : int = getattr(snake_case_ , snake_case_ )
if weight_type is not None:
snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape
else:
snake_case__ : List[str] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
snake_case__ : str = value
elif weight_type == "weight_g":
snake_case__ : Union[str, Any] = value
elif weight_type == "weight_v":
snake_case__ : Optional[Any] = value
elif weight_type == "bias":
snake_case__ : str = value
else:
snake_case__ : Union[str, Any] = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ):
snake_case__ : str = []
snake_case__ : Optional[int] = fairseq_model.state_dict()
snake_case__ : int = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
snake_case__ : Dict = False
if "conv_layers" in name:
load_conv_layer(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , )
snake_case__ : str = True
else:
for key, mapped_key in MAPPING.items():
snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key):
# special case since naming is very similar
continue
snake_case__ : int = True
if "*" in mapped_key:
snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2]
snake_case__ : Any = mapped_key.replace("*" , snake_case_ )
if "weight_g" in name:
snake_case__ : List[Any] = "weight_g"
elif "weight_v" in name:
snake_case__ : Optional[Any] = "weight_v"
elif "bias" in name:
snake_case__ : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
snake_case__ : Optional[Any] = "weight"
else:
snake_case__ : Optional[Any] = None
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ):
snake_case__ : Tuple = full_name.split("conv_layers." )[-1]
snake_case__ : Union[str, Any] = name.split("." )
snake_case__ : str = int(items[0] )
snake_case__ : str = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' )
snake_case__ : Optional[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' )
snake_case__ : int = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ):
if config_path is not None:
snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
snake_case__ : Tuple = UniSpeechSatConfig()
snake_case__ : str = ""
if is_finetuned:
snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ )
else:
snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ )
snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
snake_case__ : Tuple = model[0].eval()
recursively_load_weights(snake_case_ , snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
__lowerCamelCase : List[Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 25 | 1 |
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
random.seed(snake_case_ )
np.random.seed(snake_case_ )
torch.manual_seed(snake_case_ )
torch.cuda.manual_seed_all(snake_case_ )
# ^^ safe to call this function even if cuda is not available
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : Iterable[torch.nn.Parameter] , __A : float = 0.9_9_9_9 , __A : float = 0.0 , __A : int = 0 , __A : bool = False , __A : Union[float, int] = 1.0 , __A : Union[float, int] = 2 / 3 , __A : Optional[Any] = None , __A : Dict[str, Any] = None , **__A : List[str] , ):
if isinstance(__A , torch.nn.Module ):
snake_case__ : Tuple = (
"Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. "
"Please pass the parameters of the module instead."
)
deprecate(
"passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , __A , standard_warn=__A , )
snake_case__ : Union[str, Any] = parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
snake_case__ : List[str] = True
if kwargs.get("max_value" , __A ) is not None:
snake_case__ : Any = "The `max_value` argument is deprecated. Please use `decay` instead."
deprecate("max_value" , "1.0.0" , __A , standard_warn=__A )
snake_case__ : str = kwargs["max_value"]
if kwargs.get("min_value" , __A ) is not None:
snake_case__ : Dict = "The `min_value` argument is deprecated. Please use `min_decay` instead."
deprecate("min_value" , "1.0.0" , __A , standard_warn=__A )
snake_case__ : Any = kwargs["min_value"]
snake_case__ : Tuple = list(__A )
snake_case__ : str = [p.clone().detach() for p in parameters]
if kwargs.get("device" , __A ) is not None:
snake_case__ : Dict = "The `device` argument is deprecated. Please use `to` instead."
deprecate("device" , "1.0.0" , __A , standard_warn=__A )
self.to(device=kwargs["device"] )
snake_case__ : List[str] = None
snake_case__ : Tuple = decay
snake_case__ : Dict = min_decay
snake_case__ : int = update_after_step
snake_case__ : Any = use_ema_warmup
snake_case__ : Union[str, Any] = inv_gamma
snake_case__ : Optional[int] = power
snake_case__ : List[Any] = 0
snake_case__ : Optional[Any] = None # set in `step()`
snake_case__ : List[Any] = model_cls
snake_case__ : int = model_config
@classmethod
def _lowercase ( cls : Dict , __A : Optional[int] , __A : int ):
snake_case__, snake_case__ : Any = model_cls.load_config(__A , return_unused_kwargs=__A )
snake_case__ : Tuple = model_cls.from_pretrained(__A )
snake_case__ : List[Any] = cls(model.parameters() , model_cls=__A , model_config=model.config )
ema_model.load_state_dict(__A )
return ema_model
def _lowercase ( self : int , __A : int ):
if self.model_cls is None:
raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." )
if self.model_config is None:
raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." )
snake_case__ : Any = self.model_cls.from_config(self.model_config )
snake_case__ : Union[str, Any] = self.state_dict()
state_dict.pop("shadow_params" , __A )
model.register_to_config(**__A )
self.copy_to(model.parameters() )
model.save_pretrained(__A )
def _lowercase ( self : Tuple , __A : int ):
snake_case__ : str = max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
snake_case__ : int = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
snake_case__ : Union[str, Any] = (1 + step) / (1_0 + step)
snake_case__ : List[Any] = min(__A , self.decay )
# make sure decay is not smaller than min_decay
snake_case__ : Union[str, Any] = max(__A , self.min_decay )
return cur_decay_value
@torch.no_grad()
def _lowercase ( self : Any , __A : Iterable[torch.nn.Parameter] ):
if isinstance(__A , torch.nn.Module ):
snake_case__ : int = (
"Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
"Please pass the parameters of the module instead."
)
deprecate(
"passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , __A , standard_warn=__A , )
snake_case__ : str = parameters.parameters()
snake_case__ : List[Any] = list(__A )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
snake_case__ : str = self.get_decay(self.optimization_step )
snake_case__ : Optional[Any] = decay
snake_case__ : str = 1 - decay
snake_case__ : Tuple = contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , __A ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
snake_case__ : Any = deepspeed.zero.GatheredParameters(__A , modifier_rank=__A )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(__A )
def _lowercase ( self : str , __A : Iterable[torch.nn.Parameter] ):
snake_case__ : Union[str, Any] = list(__A )
for s_param, param in zip(self.shadow_params , __A ):
param.data.copy_(s_param.to(param.device ).data )
def _lowercase ( self : Optional[int] , __A : Tuple=None , __A : Tuple=None ):
snake_case__ : Union[str, Any] = [
p.to(device=__A , dtype=__A ) if p.is_floating_point() else p.to(device=__A )
for p in self.shadow_params
]
def _lowercase ( self : Dict ):
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def _lowercase ( self : Tuple , __A : Iterable[torch.nn.Parameter] ):
snake_case__ : Any = [param.detach().cpu().clone() for param in parameters]
def _lowercase ( self : str , __A : Iterable[torch.nn.Parameter] ):
if self.temp_stored_params is None:
raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" )
for c_param, param in zip(self.temp_stored_params , __A ):
param.data.copy_(c_param.data )
# Better memory-wise.
snake_case__ : Dict = None
def _lowercase ( self : List[str] , __A : dict ):
snake_case__ : Tuple = copy.deepcopy(__A )
snake_case__ : List[Any] = state_dict.get("decay" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("Decay must be between 0 and 1" )
snake_case__ : Optional[Any] = state_dict.get("min_decay" , self.min_decay )
if not isinstance(self.min_decay , __A ):
raise ValueError("Invalid min_decay" )
snake_case__ : int = state_dict.get("optimization_step" , self.optimization_step )
if not isinstance(self.optimization_step , __A ):
raise ValueError("Invalid optimization_step" )
snake_case__ : List[str] = state_dict.get("update_after_step" , self.update_after_step )
if not isinstance(self.update_after_step , __A ):
raise ValueError("Invalid update_after_step" )
snake_case__ : Dict = state_dict.get("use_ema_warmup" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , __A ):
raise ValueError("Invalid use_ema_warmup" )
snake_case__ : Any = state_dict.get("inv_gamma" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("Invalid inv_gamma" )
snake_case__ : Union[str, Any] = state_dict.get("power" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("Invalid power" )
snake_case__ : List[str] = state_dict.get("shadow_params" , __A )
if shadow_params is not None:
snake_case__ : Dict = shadow_params
if not isinstance(self.shadow_params , __A ):
raise ValueError("shadow_params must be a list" )
if not all(isinstance(__A , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("shadow_params must all be Tensors" )
| 25 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ):
if attention_mask is None:
snake_case__ : Any = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ )
if decoder_head_mask is None:
snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
if cross_attn_head_mask is None:
snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ):
snake_case__ : Optional[Any] = parent
snake_case__ : List[str] = batch_size
snake_case__ : Union[str, Any] = seq_length
snake_case__ : Optional[Any] = is_training
snake_case__ : List[str] = use_labels
snake_case__ : Tuple = vocab_size
snake_case__ : Optional[Any] = hidden_size
snake_case__ : Union[str, Any] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Tuple = intermediate_size
snake_case__ : str = hidden_act
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : int = encoder_layerdrop
snake_case__ : Tuple = decoder_layerdrop
snake_case__ : List[str] = max_position_embeddings
snake_case__ : Tuple = eos_token_id
snake_case__ : Dict = pad_token_id
snake_case__ : str = bos_token_id
def _lowercase ( self : Tuple ):
snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token
snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Union[str, Any] = self.get_config()
snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A )
return config, inputs_dict
def _lowercase ( self : Dict ):
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def _lowercase ( self : List[str] ):
snake_case__, snake_case__ : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval()
snake_case__ : List[Any] = inputs_dict["input_ids"]
snake_case__ : Optional[Any] = inputs_dict["attention_mask"]
snake_case__ : Union[str, Any] = inputs_dict["head_mask"]
# first forward pass
snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A )
snake_case__, snake_case__ : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"]
snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[
"last_hidden_state"
]
# select random slice
snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) )
def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval()
snake_case__ : Union[str, Any] = model(**__A )
snake_case__ : Tuple = outputs.encoder_last_hidden_state
snake_case__ : Union[str, Any] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_encoder()
encoder.save_pretrained(__A )
snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_decoder()
decoder.save_pretrained(__A )
snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = decoder(
input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
a_ = (
{
"conversational": MaMaaaForConditionalGeneration,
"feature-extraction": MaMaaaModel,
"summarization": MaMaaaForConditionalGeneration,
"text2text-generation": MaMaaaForConditionalGeneration,
"translation": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
a_ = True
a_ = True
a_ = False
a_ = False
def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ):
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def _lowercase ( self : Tuple ):
snake_case__ : Any = MaMaaaModelTester(self )
snake_case__ : Dict = ConfigTester(self , config_class=__A )
def _lowercase ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
snake_case__ : int = model_class(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A )
snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A )
self.assertEqual(info["missing_keys"] , [] )
def _lowercase ( self : Dict ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A )
def _lowercase ( self : Any ):
snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__A )
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
snake_case__ : str = model_class(__A )
model.to(__A )
model.eval()
snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) )
if not self.is_encoder_decoder:
snake_case__ : Optional[Any] = inputs["input_ids"]
del inputs["input_ids"]
else:
snake_case__ : Union[str, Any] = inputs["input_ids"]
snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A )
del inputs["input_ids"]
inputs.pop("decoder_input_ids" , __A )
snake_case__ : Tuple = model.get_input_embeddings()
if not self.is_encoder_decoder:
snake_case__ : List[Any] = wte(__A )
else:
snake_case__ : Any = wte(__A )
snake_case__ : Optional[int] = wte(__A )
with torch.no_grad():
model(**__A )[0]
def _lowercase ( self : Optional[Any] ):
snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
snake_case__ : Any = input_dict["input_ids"]
snake_case__ : int = input_ids.ne(1 ).to(__A )
snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A )
if torch_device == "cuda":
model.half()
model.generate(__A , attention_mask=__A )
model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 )
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ )
__lowerCamelCase : Optional[Any] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : str ):
return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" )
def _lowercase ( self : Optional[int] ):
snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : str = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : Optional[Any] = torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
# change to intended input
snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : Union[str, Any] = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : List[str] = torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Optional[Any] ):
snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" )
snake_case__ : List[Any] = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" )
snake_case__ : Tuple = model.generate(
input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , )
snake_case__ : List[str] = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
snake_case__ : Dict = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A )
assert generated == expected_en
| 25 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCamelCase : Dict = logging.get_logger(__name__)
__lowerCamelCase : Optional[int] = {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"""
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "roformer"
def __init__( self : Optional[int] , __A : Tuple=5_0_0_0_0 , __A : Optional[Any]=None , __A : Any=7_6_8 , __A : Optional[Any]=1_2 , __A : Tuple=1_2 , __A : Dict=3_0_7_2 , __A : Dict="gelu" , __A : Any=0.1 , __A : Union[str, Any]=0.1 , __A : str=1_5_3_6 , __A : Optional[Any]=2 , __A : List[Any]=0.0_2 , __A : List[Any]=1e-1_2 , __A : Tuple=0 , __A : Optional[Any]=False , __A : str=True , **__A : Any , ):
super().__init__(pad_token_id=__A , **__A )
snake_case__ : Dict = vocab_size
snake_case__ : int = hidden_size if embedding_size is None else embedding_size
snake_case__ : str = hidden_size
snake_case__ : List[Any] = num_hidden_layers
snake_case__ : Union[str, Any] = num_attention_heads
snake_case__ : List[Any] = hidden_act
snake_case__ : Union[str, Any] = intermediate_size
snake_case__ : Any = hidden_dropout_prob
snake_case__ : Any = attention_probs_dropout_prob
snake_case__ : List[str] = max_position_embeddings
snake_case__ : int = type_vocab_size
snake_case__ : Any = initializer_range
snake_case__ : int = layer_norm_eps
snake_case__ : List[str] = rotary_value
snake_case__ : List[str] = use_cache
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
@property
def _lowercase ( self : List[Any] ):
if self.task == "multiple-choice":
snake_case__ : List[Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
snake_case__ : Optional[int] = {0: "batch", 1: "sequence"}
snake_case__ : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 25 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ):
snake_case__ : Optional[int] = []
for part_id in partition_order:
snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(snake_case_ ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 )
snake_case__ : Any = Spark(snake_case_ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 )
snake_case__ : Optional[Any] = [1, 0]
snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions.
snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[int] = spark.range(10 ).repartition(1 )
snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(snake_case_ ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : str = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("numpy.random.Generator" ) as generator_mock:
snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse()
snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] )
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(100 ).repartition(1 )
snake_case__ : Union[str, Any] = Spark(snake_case_ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 25 | 1 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
__lowerCamelCase : str = logging.get_logger(__name__)
__lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
__lowerCamelCase : Dict = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
__lowerCamelCase : Optional[int] = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
__lowerCamelCase : List[Any] = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
__lowerCamelCase : int = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
__lowerCamelCase : Tuple = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
__lowerCamelCase : Optional[int] = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
__lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
__lowerCamelCase : List[Any] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
__lowerCamelCase : Any = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
a_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
a_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
__lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
__lowerCamelCase : List[Any] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
__lowerCamelCase : int = R"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __call__( self : Dict , __A : int , __A : Optional[str] = None , __A : Optional[str] = None , __A : Union[bool, str] = False , __A : Union[bool, str] = False , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[bool] = None , **__A : Any , ):
if titles is None and texts is None:
return super().__call__(
__A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , )
elif titles is None or texts is None:
snake_case__ : Tuple = titles if texts is None else texts
return super().__call__(
__A , __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , )
snake_case__ : Optional[int] = titles if not isinstance(__A , __A ) else [titles]
snake_case__ : Optional[Any] = texts if not isinstance(__A , __A ) else [texts]
snake_case__ : Union[str, Any] = len(__A )
snake_case__ : List[Any] = questions if not isinstance(__A , __A ) else [questions] * n_passages
if len(__A ) != len(__A ):
raise ValueError(
f'''There should be as many titles than texts but got {len(__A )} titles and {len(__A )} texts.''' )
snake_case__ : Tuple = super().__call__(__A , __A , padding=__A , truncation=__A )["input_ids"]
snake_case__ : str = super().__call__(__A , add_special_tokens=__A , padding=__A , truncation=__A )["input_ids"]
snake_case__ : Tuple = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(__A , __A )
]
}
if return_attention_mask is not False:
snake_case__ : Dict = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
snake_case__ : List[str] = attention_mask
return self.pad(__A , padding=__A , max_length=__A , return_tensors=__A )
def _lowercase ( self : Optional[int] , __A : BatchEncoding , __A : DPRReaderOutput , __A : int = 1_6 , __A : int = 6_4 , __A : int = 4 , ):
snake_case__ : Optional[int] = reader_input["input_ids"]
snake_case__, snake_case__, snake_case__ : Union[str, Any] = reader_output[:3]
snake_case__ : Tuple = len(__A )
snake_case__ : Union[str, Any] = sorted(range(__A ) , reverse=__A , key=relevance_logits.__getitem__ )
snake_case__ : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
snake_case__ : List[str] = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
snake_case__ : List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
snake_case__ : Tuple = sequence_ids.index(self.pad_token_id )
else:
snake_case__ : int = len(__A )
snake_case__ : Dict = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__A , top_spans=__A , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__A , start_index=__A , end_index=__A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(__A ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _lowercase ( self : Any , __A : List[int] , __A : List[int] , __A : int , __A : int , ):
snake_case__ : Tuple = []
for start_index, start_score in enumerate(__A ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
snake_case__ : str = sorted(__A , key=lambda __A : x[1] , reverse=__A )
snake_case__ : Dict = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' )
snake_case__ : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(__A ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = READER_PRETRAINED_VOCAB_FILES_MAP
a_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = READER_PRETRAINED_INIT_CONFIGURATION
a_ = ["input_ids", "attention_mask"]
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = ["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = ["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = [
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = [
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
__lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
import math
import sys
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
if number != int(snake_case_ ):
raise ValueError("the value of input must be a natural number" )
if number < 0:
raise ValueError("the value of input must not be a negative number" )
if number == 0:
return 1
snake_case__ : Optional[int] = [-1] * (number + 1)
snake_case__ : Optional[Any] = 0
for i in range(1 , number + 1 ):
snake_case__ : List[Any] = sys.maxsize
snake_case__ : int = int(math.sqrt(snake_case_ ) )
for j in range(1 , root + 1 ):
snake_case__ : str = 1 + answers[i - (j**2)]
snake_case__ : Dict = min(snake_case_ , snake_case_ )
snake_case__ : Dict = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 25 | 1 |
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def _lowercase ( self : Optional[Any] ):
snake_case__ : List[str] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__A , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__A , "neck_hidden_sizes" ) )
self.parent.assertTrue(hasattr(__A , "num_attention_heads" ) )
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Optional[int] , __A : Dict , __A : Any=1_3 , __A : Optional[int]=3_2 , __A : List[Any]=2 , __A : Dict=3 , __A : Optional[Any]=6_4_0 , __A : Any=4 , __A : Dict="silu" , __A : Union[str, Any]=3 , __A : Tuple=3_2 , __A : Tuple=0.1 , __A : Any=0.1 , __A : Dict=0.1 , __A : Dict=0.0_2 , __A : Any=True , __A : Optional[int]=True , __A : str=1_0 , __A : List[str]=None , ):
snake_case__ : Optional[int] = parent
snake_case__ : List[str] = batch_size
snake_case__ : Dict = image_size
snake_case__ : Dict = patch_size
snake_case__ : Optional[Any] = num_channels
snake_case__ : Dict = last_hidden_size
snake_case__ : Any = num_attention_heads
snake_case__ : Union[str, Any] = hidden_act
snake_case__ : Any = conv_kernel_size
snake_case__ : int = output_stride
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : List[str] = attention_probs_dropout_prob
snake_case__ : Any = classifier_dropout_prob
snake_case__ : Any = use_labels
snake_case__ : List[Any] = is_training
snake_case__ : str = num_labels
snake_case__ : List[str] = initializer_range
snake_case__ : Tuple = scope
def _lowercase ( self : List[str] ):
snake_case__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : Optional[Any] = None
snake_case__ : Union[str, Any] = None
if self.use_labels:
snake_case__ : Tuple = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case__ : str = self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowercase ( self : Optional[Any] ):
return MobileViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def _lowercase ( self : Any , __A : List[Any] , __A : Any , __A : List[Any] , __A : Union[str, Any] ):
snake_case__ : List[str] = MobileViTModel(config=__A )
model.to(__A )
model.eval()
snake_case__ : Any = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _lowercase ( self : Optional[Any] , __A : int , __A : str , __A : Optional[Any] , __A : Any ):
snake_case__ : Union[str, Any] = self.num_labels
snake_case__ : Any = MobileViTForImageClassification(__A )
model.to(__A )
model.eval()
snake_case__ : List[Any] = model(__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase ( self : List[Any] , __A : Optional[int] , __A : Union[str, Any] , __A : Dict , __A : Optional[Any] ):
snake_case__ : Optional[int] = self.num_labels
snake_case__ : str = MobileViTForSemanticSegmentation(__A )
model.to(__A )
model.eval()
snake_case__ : List[str] = model(__A )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
snake_case__ : List[str] = model(__A , labels=__A )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _lowercase ( self : Optional[int] ):
snake_case__ : str = self.prepare_config_and_inputs()
snake_case__, snake_case__, snake_case__, snake_case__ : Optional[int] = config_and_inputs
snake_case__ : List[str] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation)
if is_torch_available()
else ()
)
a_ = (
{
"feature-extraction": MobileViTModel,
"image-classification": MobileViTForImageClassification,
"image-segmentation": MobileViTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
def _lowercase ( self : Any ):
snake_case__ : List[str] = MobileViTModelTester(self )
snake_case__ : Tuple = MobileViTConfigTester(self , config_class=__A , has_text_modality=__A )
def _lowercase ( self : Optional[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViT does not use inputs_embeds" )
def _lowercase ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileViT does not support input and output embeddings" )
def _lowercase ( self : List[str] ):
pass
@unittest.skip(reason="MobileViT does not output attentions" )
def _lowercase ( self : int ):
pass
def _lowercase ( self : Any ):
snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : List[Any] = model_class(__A )
snake_case__ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Optional[Any] = [*signature.parameters.keys()]
snake_case__ : List[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __A )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _lowercase ( self : Tuple ):
pass
def _lowercase ( self : List[Any] ):
snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def _lowercase ( self : List[str] ):
def check_hidden_states_output(__A : Any , __A : Any , __A : Optional[Any] ):
snake_case__ : List[Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
snake_case__ : Any = model(**self._prepare_for_class(__A , __A ) )
snake_case__ : int = outputs.hidden_states
snake_case__ : Any = 5
self.assertEqual(len(__A ) , __A )
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
snake_case__ : Dict = 2
for i in range(len(__A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
snake_case__, snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Optional[int] = True
check_hidden_states_output(__A , __A , __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ : List[Any] = True
check_hidden_states_output(__A , __A , __A )
def _lowercase ( self : Any ):
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def _lowercase ( self : List[Any] ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__A )
@slow
def _lowercase ( self : Union[str, Any] ):
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ : Optional[int] = MobileViTModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : Any ):
return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None
@slow
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Dict = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(__A )
snake_case__ : Dict = self.default_image_processor
snake_case__ : Union[str, Any] = prepare_img()
snake_case__ : int = image_processor(images=__A , return_tensors="pt" ).to(__A )
# forward pass
with torch.no_grad():
snake_case__ : List[str] = model(**__A )
# verify the logits
snake_case__ : Any = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __A )
snake_case__ : Dict = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
@slow
def _lowercase ( self : str ):
snake_case__ : Tuple = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" )
snake_case__ : Dict = model.to(__A )
snake_case__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" )
snake_case__ : Optional[Any] = prepare_img()
snake_case__ : Dict = image_processor(images=__A , return_tensors="pt" ).to(__A )
# forward pass
with torch.no_grad():
snake_case__ : Optional[int] = model(**__A )
snake_case__ : int = outputs.logits
# verify the logits
snake_case__ : Tuple = torch.Size((1, 2_1, 3_2, 3_2) )
self.assertEqual(logits.shape , __A )
snake_case__ : int = torch.tensor(
[
[[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]],
[[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]],
[[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]],
] , device=__A , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4 ) )
@slow
def _lowercase ( self : Any ):
snake_case__ : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" )
snake_case__ : Optional[Any] = model.to(__A )
snake_case__ : int = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" )
snake_case__ : Tuple = prepare_img()
snake_case__ : int = image_processor(images=__A , return_tensors="pt" ).to(__A )
# forward pass
with torch.no_grad():
snake_case__ : Any = model(**__A )
snake_case__ : str = outputs.logits.detach().cpu()
snake_case__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=__A , target_sizes=[(5_0, 6_0)] )
snake_case__ : Optional[int] = torch.Size((5_0, 6_0) )
self.assertEqual(segmentation[0].shape , __A )
snake_case__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=__A )
snake_case__ : int = torch.Size((3_2, 3_2) )
self.assertEqual(segmentation[0].shape , __A )
| 25 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def SCREAMING_SNAKE_CASE ( snake_case_ : dict ):
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ):
snake_case__ : Optional[int] = XGBClassifier()
classifier.fit(snake_case_ , snake_case_ )
return classifier
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = load_iris()
snake_case__, snake_case__ : str = data_handling(snake_case_ )
snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split(
snake_case_ , snake_case_ , test_size=0.25 )
snake_case__ : Dict = iris["target_names"]
# Create an XGBoost Classifier from the training data
snake_case__ : Dict = xgboost(snake_case_ , snake_case_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 25 | 1 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all BART models at https://huggingface.co/models?filter=bart
__lowerCamelCase : Optional[Any] = {
"""vocab_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""",
},
"""merges_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""",
},
}
__lowerCamelCase : List[Any] = {
"""facebook/bart-base""": 1024,
"""facebook/bart-large""": 1024,
"""facebook/bart-large-mnli""": 1024,
"""facebook/bart-large-cnn""": 1024,
"""facebook/bart-large-xsum""": 1024,
"""yjernite/bart_eli5""": 1024,
}
@lru_cache()
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
snake_case__ : Dict = bs[:]
snake_case__ : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
snake_case__ : Tuple = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_ , snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
snake_case__ : Optional[int] = set()
snake_case__ : List[str] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case__ : Union[str, Any] = char
return pairs
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["input_ids", "attention_mask"]
def __init__( self : int , __A : Tuple , __A : Tuple , __A : Optional[int]="replace" , __A : Union[str, Any]="<s>" , __A : str="</s>" , __A : List[Any]="</s>" , __A : Union[str, Any]="<s>" , __A : Optional[int]="<unk>" , __A : Optional[int]="<pad>" , __A : Optional[Any]="<mask>" , __A : Optional[Any]=False , **__A : List[Any] , ):
snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
snake_case__ : Dict = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , )
with open(__A , encoding="utf-8" ) as vocab_handle:
snake_case__ : int = json.load(__A )
snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
snake_case__ : Any = errors # how to handle errors in decoding
snake_case__ : List[Any] = bytes_to_unicode()
snake_case__ : Optional[int] = {v: k for k, v in self.byte_encoder.items()}
with open(__A , encoding="utf-8" ) as merges_handle:
snake_case__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges]
snake_case__ : int = dict(zip(__A , range(len(__A ) ) ) )
snake_case__ : str = {}
snake_case__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case__ : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _lowercase ( self : List[Any] ):
return len(self.encoder )
def _lowercase ( self : Optional[Any] ):
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self : Dict , __A : List[Any] ):
if token in self.cache:
return self.cache[token]
snake_case__ : int = tuple(__A )
snake_case__ : Union[str, Any] = get_pairs(__A )
if not pairs:
return token
while True:
snake_case__ : Any = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
snake_case__, snake_case__ : int = bigram
snake_case__ : List[Any] = []
snake_case__ : Dict = 0
while i < len(__A ):
try:
snake_case__ : int = word.index(__A , __A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case__ : List[Any] = j
if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case__ : Optional[Any] = tuple(__A )
snake_case__ : int = new_word
if len(__A ) == 1:
break
else:
snake_case__ : Tuple = get_pairs(__A )
snake_case__ : Tuple = " ".join(__A )
snake_case__ : Optional[Any] = word
return word
def _lowercase ( self : Union[str, Any] , __A : Tuple ):
snake_case__ : int = []
for token in re.findall(self.pat , __A ):
snake_case__ : int = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) )
return bpe_tokens
def _lowercase ( self : Union[str, Any] , __A : Tuple ):
return self.encoder.get(__A , self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , __A : int ):
return self.decoder.get(__A )
def _lowercase ( self : Optional[Any] , __A : int ):
snake_case__ : Tuple = "".join(__A )
snake_case__ : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowercase ( self : int , __A : str , __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : Optional[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
snake_case__ : List[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" )
snake_case__ : Any = 0
with open(__A , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
snake_case__ : List[Any] = token_index
writer.write(" ".join(__A ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowercase ( self : List[str] , __A : List[int] , __A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ : int = [self.cls_token_id]
snake_case__ : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Optional[Any] = [self.sep_token_id]
snake_case__ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Tuple , __A : Dict , __A : Any=False , **__A : Union[str, Any] ):
snake_case__ : Any = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()):
snake_case__ : List[Any] = " " + text
return (text, kwargs)
| 25 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ):
snake_case__ : Tuple = args.log_outputs
snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
snake_case__ : List[str] = load_metric("wer" )
snake_case__ : List[str] = load_metric("cer" )
# compute metrics
snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] )
snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}'''
print(snake_case_ )
with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt'''
snake_case__ : int = F'''log_{dataset_id}_targets.txt'''
with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ):
p.write(F'''{i}''' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(F'''{i}''' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case_ , with_indices=snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) )
return text
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
# load dataset
snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id )
snake_case__ : List[Any] = feature_extractor.sampling_rate
# resample audio
snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
snake_case__ : int = 0 if torch.cuda.is_available() else -1
snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Any ):
snake_case__ : Union[str, Any] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
snake_case__ : Optional[int] = prediction["text"]
snake_case__ : Optional[Any] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ , snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
__lowerCamelCase : str = parser.parse_args()
main(args)
| 25 | 1 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Optional[int] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCamelCase : str = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCamelCase : str = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ):
snake_case__ : List[Any] = compute_mauve(
p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , )
return out
| 25 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
a_ = Features({"text": Value("string" )} )
a_ = Features({"labels": ClassLabel} )
a_ = "text"
a_ = "labels"
def _lowercase ( self : Tuple , __A : List[Any] ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
snake_case__ : Any = copy.deepcopy(self )
snake_case__ : Optional[Any] = self.label_schema.copy()
snake_case__ : List[str] = features[self.label_column]
snake_case__ : Dict = label_schema
return task_template
@property
def _lowercase ( self : Tuple ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 25 | 1 |
from math import factorial, pi
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : int = 30 ):
if not isinstance(snake_case_ , (int, float) ):
raise ValueError("maclaurin_sin() requires either an int or float for theta" )
if not isinstance(snake_case_ , snake_case_ ) or accuracy <= 0:
raise ValueError("maclaurin_sin() requires a positive int for accuracy" )
snake_case__ : int = float(snake_case_ )
snake_case__ : int = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : int = 30 ):
if not isinstance(snake_case_ , (int, float) ):
raise ValueError("maclaurin_cos() requires either an int or float for theta" )
if not isinstance(snake_case_ , snake_case_ ) or accuracy <= 0:
raise ValueError("maclaurin_cos() requires a positive int for accuracy" )
snake_case__ : int = float(snake_case_ )
snake_case__ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 25 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_vision_model"
def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ):
super().__init__(**__A )
snake_case__ : List[str] = hidden_size
snake_case__ : Optional[int] = intermediate_size
snake_case__ : List[str] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : str = patch_size
snake_case__ : int = image_size
snake_case__ : int = initializer_range
snake_case__ : Optional[int] = attention_dropout
snake_case__ : str = layer_norm_eps
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Tuple = qkv_bias
@classmethod
def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : Union[str, Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_qformer"
def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ):
super().__init__(pad_token_id=__A , **__A )
snake_case__ : Dict = vocab_size
snake_case__ : Optional[int] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : str = num_attention_heads
snake_case__ : int = hidden_act
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : List[Any] = max_position_embeddings
snake_case__ : int = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : str = position_embedding_type
snake_case__ : Dict = cross_attention_frequency
snake_case__ : List[str] = encoder_hidden_size
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : List[Any] = config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip"
a_ = True
def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ):
super().__init__(**__A )
if vision_config is None:
snake_case__ : Any = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." )
if qformer_config is None:
snake_case__ : Optional[Any] = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." )
if text_config is None:
snake_case__ : Optional[int] = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." )
snake_case__ : List[Any] = InstructBlipVisionConfig(**__A )
snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A )
snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt"
snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A )
snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings
snake_case__ : Tuple = self.text_config.is_encoder_decoder
snake_case__ : str = num_query_tokens
snake_case__ : Dict = self.vision_config.hidden_size
snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
snake_case__ : int = 1.0
snake_case__ : Optional[int] = 0.0_2
@classmethod
def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , )
def _lowercase ( self : Optional[int] ):
snake_case__ : Any = copy.deepcopy(self.__dict__ )
snake_case__ : Optional[Any] = self.vision_config.to_dict()
snake_case__ : List[str] = self.qformer_config.to_dict()
snake_case__ : List[Any] = self.text_config.to_dict()
snake_case__ : List[Any] = self.__class__.model_type
return output
| 25 | 1 |
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
__lowerCamelCase : List[Any] = parse(importlib.metadata.version("""torch"""))
def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Version] , snake_case_ : str , snake_case_ : str ):
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' )
snake_case__ : List[str] = STR_OPERATION_TO_FUNC[operation]
if isinstance(snake_case_ , snake_case_ ):
snake_case__ : int = parse(importlib.metadata.version(snake_case_ ) )
return operation(snake_case_ , parse(snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ):
return compare_versions(snake_case_ , snake_case_ , snake_case_ )
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : list ):
if len(snake_case_ ) <= 1:
return lst
snake_case__ : List[Any] = 1
while i < len(snake_case_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case__ : Union[str, Any] = 1
return lst
if __name__ == "__main__":
__lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip()
__lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")]
print(gnome_sort(unsorted))
| 25 | 1 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""):
raise Exception("""requires fairseq >= 1.0.0a""")
logging.set_verbosity_info()
__lowerCamelCase : Tuple = logging.get_logger(__name__)
__lowerCamelCase : List[str] = """Hello world! cécé herlolip"""
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ):
snake_case__ : str = FairseqRobertaModel.from_pretrained(snake_case_ )
roberta.eval() # disable dropout
snake_case__ : Tuple = roberta.model.encoder.sentence_encoder
snake_case__ : str = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , )
if classification_head:
snake_case__ : Optional[int] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our RoBERTa config:" , snake_case_ )
snake_case__ : List[str] = XLMRobertaXLForSequenceClassification(snake_case_ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case_ )
model.eval()
# Now let's copy all the weights.
# Embeddings
snake_case__ : Any = roberta_sent_encoder.embed_tokens.weight
snake_case__ : Optional[int] = roberta_sent_encoder.embed_positions.weight
snake_case__ : List[str] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
snake_case__ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight
snake_case__ : str = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
snake_case__ : BertLayer = model.roberta.encoder.layer[i]
snake_case__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
snake_case__ : RobertaAttention = layer.attention
snake_case__ : Union[str, Any] = roberta_layer.self_attn_layer_norm.weight
snake_case__ : int = roberta_layer.self_attn_layer_norm.bias
# self attention
snake_case__ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
snake_case__ : Optional[Any] = roberta_layer.self_attn.q_proj.weight
snake_case__ : Optional[Any] = roberta_layer.self_attn.q_proj.bias
snake_case__ : List[str] = roberta_layer.self_attn.k_proj.weight
snake_case__ : str = roberta_layer.self_attn.k_proj.bias
snake_case__ : int = roberta_layer.self_attn.v_proj.weight
snake_case__ : Union[str, Any] = roberta_layer.self_attn.v_proj.bias
# self-attention output
snake_case__ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
snake_case__ : Union[str, Any] = roberta_layer.self_attn.out_proj.weight
snake_case__ : Any = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
snake_case__ : Any = roberta_layer.final_layer_norm.weight
snake_case__ : List[Any] = roberta_layer.final_layer_norm.bias
# intermediate
snake_case__ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case__ : Dict = roberta_layer.fca.weight
snake_case__ : Any = roberta_layer.fca.bias
# output
snake_case__ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
snake_case__ : Dict = roberta_layer.fca.weight
snake_case__ : Union[str, Any] = roberta_layer.fca.bias
# end of layer
if classification_head:
snake_case__ : Any = roberta.model.classification_heads["mnli"].dense.weight
snake_case__ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias
snake_case__ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight
snake_case__ : Union[str, Any] = roberta.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
snake_case__ : Tuple = roberta.model.encoder.lm_head.dense.weight
snake_case__ : Any = roberta.model.encoder.lm_head.dense.bias
snake_case__ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight
snake_case__ : List[Any] = roberta.model.encoder.lm_head.layer_norm.bias
snake_case__ : int = roberta.model.encoder.lm_head.weight
snake_case__ : Any = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
snake_case__ : torch.Tensor = roberta.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1
snake_case__ : Any = model(snake_case_ )[0]
if classification_head:
snake_case__ : Tuple = roberta.model.classification_heads["mnli"](roberta.extract_features(snake_case_ ) )
else:
snake_case__ : Optional[Any] = roberta.model(snake_case_ )[0]
print(our_output.shape , their_output.shape )
snake_case__ : Dict = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
snake_case__ : Optional[Any] = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
print("Do both models output the same tensors?" , "🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
pathlib.Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
__lowerCamelCase : List[Any] = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 25 |
from __future__ import annotations
import time
__lowerCamelCase : str = list[tuple[int, int]]
__lowerCamelCase : Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ):
snake_case__ : Optional[int] = pos_x
snake_case__ : Dict = pos_y
snake_case__ : int = (pos_y, pos_x)
snake_case__ : Optional[int] = goal_x
snake_case__ : Tuple = goal_y
snake_case__ : str = parent
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ):
snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A )
snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A )
snake_case__ : int = [self.start]
snake_case__ : Union[str, Any] = False
def _lowercase ( self : Dict ):
while self.node_queue:
snake_case__ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
snake_case__ : Optional[Any] = True
return self.retrace_path(__A )
snake_case__ : int = self.get_successors(__A )
for node in successors:
self.node_queue.append(__A )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Union[str, Any] , __A : Node ):
snake_case__ : str = []
for action in delta:
snake_case__ : str = parent.pos_x + action[1]
snake_case__ : Union[str, Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) )
return successors
def _lowercase ( self : Optional[Any] , __A : Node | None ):
snake_case__ : Tuple = node
snake_case__ : Any = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
snake_case__ : Tuple = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : str , __A : int ):
snake_case__ : str = BreadthFirstSearch(__A , __A )
snake_case__ : int = BreadthFirstSearch(__A , __A )
snake_case__ : Tuple = False
def _lowercase ( self : Optional[Any] ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 )
snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
snake_case__ : List[str] = True
return self.retrace_bidirectional_path(
__A , __A )
snake_case__ : Union[str, Any] = current_bwd_node
snake_case__ : Dict = current_fwd_node
snake_case__ : List[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(__A ),
self.bwd_bfs: self.bwd_bfs.get_successors(__A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(__A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Any , __A : Node , __A : Node ):
snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A )
snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A )
bwd_path.pop()
bwd_path.reverse()
snake_case__ : List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowerCamelCase : str = (0, 0)
__lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowerCamelCase : Any = time.time()
__lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal)
__lowerCamelCase : str = bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
__lowerCamelCase : Optional[Any] = time.time()
__lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal)
__lowerCamelCase : str = bd_bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 25 | 1 |
from math import sqrt
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(snake_case_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 10001 ):
snake_case__ : List[str] = 0
snake_case__ : Optional[Any] = 1
while count != nth and number < 3:
number += 1
if is_prime(snake_case_ ):
count += 1
while count != nth:
number += 2
if is_prime(snake_case_ ):
count += 1
return number
if __name__ == "__main__":
print(f"{solution() = }")
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Dict = parent
snake_case__ : Optional[int] = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : str = min_resolution
snake_case__ : Tuple = max_resolution
snake_case__ : List[Any] = do_resize
snake_case__ : Dict = size
snake_case__ : List[str] = do_normalize
snake_case__ : Optional[int] = image_mean
snake_case__ : Optional[int] = image_std
snake_case__ : Any = do_rescale
snake_case__ : Optional[int] = rescale_factor
snake_case__ : int = do_pad
def _lowercase ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ):
if not batched:
snake_case__ : List[str] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : Tuple = image.size
else:
snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Dict = int(self.size["shortest_edge"] * h / w )
snake_case__ : Optional[int] = self.size["shortest_edge"]
elif w > h:
snake_case__ : List[Any] = self.size["shortest_edge"]
snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Dict = self.size["shortest_edge"]
snake_case__ : Dict = self.size["shortest_edge"]
else:
snake_case__ : str = []
for image in image_inputs:
snake_case__, snake_case__ : str = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = ConditionalDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : int ):
snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self )
@property
def _lowercase ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Any ):
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : List[str] ):
snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Any = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : Union[str, Any] ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : List[Any] ):
# prepare image and target
snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Union[str, Any] = json.loads(f.read() )
snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : str ):
# prepare image, target and masks_path
snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : int = json.loads(f.read() )
snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" )
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : str = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
from __future__ import annotations
import math
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : int ):
snake_case__ : Union[str, Any] = size
# approximate the overall size of segment tree with given value
snake_case__ : Dict = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
snake_case__ : str = [0 for i in range(0 , 4 * size )]
snake_case__ : Optional[int] = [0 for i in range(0 , 4 * size )] # flag for lazy update
def _lowercase ( self : int , __A : int ):
return idx * 2
def _lowercase ( self : str , __A : int ):
return idx * 2 + 1
def _lowercase ( self : Any , __A : int , __A : int , __A : int , __A : list[int] ):
if left_element == right_element:
snake_case__ : List[str] = a[left_element - 1]
else:
snake_case__ : Optional[Any] = (left_element + right_element) // 2
self.build(self.left(__A ) , __A , __A , __A )
self.build(self.right(__A ) , mid + 1 , __A , __A )
snake_case__ : List[str] = max(
self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] )
def _lowercase ( self : Tuple , __A : int , __A : int , __A : int , __A : int , __A : int , __A : int ):
if self.flag[idx] is True:
snake_case__ : Optional[int] = self.lazy[idx]
snake_case__ : int = False
if left_element != right_element:
snake_case__ : Optional[int] = self.lazy[idx]
snake_case__ : List[Any] = self.lazy[idx]
snake_case__ : Optional[Any] = True
snake_case__ : Any = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
snake_case__ : Tuple = val
if left_element != right_element:
snake_case__ : Dict = val
snake_case__ : List[str] = val
snake_case__ : List[Any] = True
snake_case__ : str = True
return True
snake_case__ : Union[str, Any] = (left_element + right_element) // 2
self.update(self.left(__A ) , __A , __A , __A , __A , __A )
self.update(self.right(__A ) , mid + 1 , __A , __A , __A , __A )
snake_case__ : Optional[Any] = max(
self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] )
return True
def _lowercase ( self : Dict , __A : int , __A : int , __A : int , __A : int , __A : int ):
if self.flag[idx] is True:
snake_case__ : Optional[int] = self.lazy[idx]
snake_case__ : int = False
if left_element != right_element:
snake_case__ : List[str] = self.lazy[idx]
snake_case__ : Any = self.lazy[idx]
snake_case__ : Optional[Any] = True
snake_case__ : Union[str, Any] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
snake_case__ : List[Any] = (left_element + right_element) // 2
snake_case__ : int = self.query(self.left(__A ) , __A , __A , __A , __A )
snake_case__ : str = self.query(self.right(__A ) , mid + 1 , __A , __A , __A )
return max(__A , __A )
def __str__( self : List[str] ):
return str([self.query(1 , 1 , self.size , __A , __A ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
__lowerCamelCase : List[Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
__lowerCamelCase : List[str] = 15
__lowerCamelCase : str = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 25 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Optional[int] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCamelCase : str = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCamelCase : str = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ):
snake_case__ : List[Any] = compute_mauve(
p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , )
return out
| 25 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 25 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__lowerCamelCase : Union[str, Any] = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__lowerCamelCase : List[Any] = concatenate_datasets
__lowerCamelCase : List[str] = DownloadConfig
__lowerCamelCase : Union[str, Any] = DownloadManager
__lowerCamelCase : str = DownloadMode
__lowerCamelCase : Union[str, Any] = DownloadConfig
__lowerCamelCase : List[str] = DownloadMode
__lowerCamelCase : Dict = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Tuple = 0
for ch in input_str:
snake_case__ : Optional[int] = ord(snake_case_ )
snake_case__ : List[Any] = pow(2 , snake_case_ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
snake_case__ : str = [True] * limit
snake_case__ : str = False
snake_case__ : str = False
snake_case__ : str = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
snake_case__ : Optional[Any] = i * 2
while index < limit:
snake_case__ : Union[str, Any] = False
snake_case__ : Any = index + i
snake_case__ : Optional[Any] = [2]
for i in range(3 , snake_case_ , 2 ):
if is_prime[i]:
primes.append(snake_case_ )
return primes
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ):
snake_case__ : Optional[int] = prime_sieve(snake_case_ )
snake_case__ : List[Any] = 0
snake_case__ : List[str] = 0
for i in range(len(snake_case_ ) ):
for j in range(i + length , len(snake_case_ ) ):
snake_case__ : Dict = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
snake_case__ : Tuple = j - i
snake_case__ : str = sol
return largest
if __name__ == "__main__":
print(f"{solution() = }")
| 25 | 1 |
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
__lowerCamelCase : int = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ):
"""simple docstring"""
a_ = None
def SCREAMING_SNAKE_CASE ( snake_case_ : "pyspark.sql.DataFrame" , snake_case_ : List[int] , ):
import pyspark
def generate_fn():
snake_case__ : str = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) )
for partition_id in partition_order:
snake_case__ : Tuple = df_with_partition_id.select("*" ).where(F'''part_id = {partition_id}''' ).drop("part_id" )
snake_case__ : Any = partition_df.collect()
snake_case__ : List[str] = 0
for row in rows:
yield F'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class SCREAMING_SNAKE_CASE__ ( _BaseExamplesIterable ):
"""simple docstring"""
def __init__( self : Optional[Any] , __A : "pyspark.sql.DataFrame" , __A : List[str]=None , ):
snake_case__ : Any = df
snake_case__ : Union[str, Any] = partition_order or range(self.df.rdd.getNumPartitions() )
snake_case__ : Dict = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self : Optional[int] ):
yield from self.generate_examples_fn()
def _lowercase ( self : Tuple , __A : np.random.Generator ):
snake_case__ : Dict = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(__A )
return SparkExamplesIterable(self.df , partition_order=__A )
def _lowercase ( self : Tuple , __A : int , __A : int ):
snake_case__ : Union[str, Any] = self.split_shard_indices_by_worker(__A , __A )
return SparkExamplesIterable(self.df , partition_order=__A )
@property
def _lowercase ( self : Union[str, Any] ):
return len(self.partition_order )
class SCREAMING_SNAKE_CASE__ ( datasets.DatasetBuilder ):
"""simple docstring"""
a_ = SparkConfig
def __init__( self : Union[str, Any] , __A : "pyspark.sql.DataFrame" , __A : str = None , __A : str = None , **__A : Any , ):
import pyspark
snake_case__ : List[str] = pyspark.sql.SparkSession.builder.getOrCreate()
snake_case__ : int = df
snake_case__ : Dict = working_dir
super().__init__(
cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , )
def _lowercase ( self : List[Any] ):
# Returns the path of the created file.
def create_cache_and_write_probe(__A : Optional[int] ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=__A )
snake_case__ : List[str] = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(__A , "a" )
return [probe_file]
if self._spark.conf.get("spark.master" , "" ).startswith("local" ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
snake_case__ : int = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
"When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" )
def _lowercase ( self : Tuple ):
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self : Tuple , __A : datasets.download.download_manager.DownloadManager ):
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def _lowercase ( self : Tuple , __A : List[str] ):
import pyspark
def get_arrow_batch_size(__A : List[str] ):
for batch in it:
yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} )
snake_case__ : List[str] = self.df.count()
snake_case__ : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
snake_case__ : int = (
self.df.limit(__A )
.repartition(1 )
.mapInArrow(__A , "batch_bytes: long" )
.agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
snake_case__ : List[str] = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
snake_case__ : int = min(__A , int(approx_total_size / max_shard_size ) )
snake_case__ : Any = self.df.repartition(__A )
def _lowercase ( self : Optional[int] , __A : str , __A : str , __A : int , ):
import pyspark
snake_case__ : str = ParquetWriter if file_format == "parquet" else ArrowWriter
snake_case__ : List[str] = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath
snake_case__ : Tuple = file_format == "parquet"
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
snake_case__ : str = self.config.features
snake_case__ : Tuple = self._writer_batch_size
snake_case__ : str = self._fs.storage_options
def write_arrow(__A : Optional[int] ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
snake_case__ : Tuple = pyspark.TaskContext().taskAttemptId()
snake_case__ : int = next(__A , __A )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , )
snake_case__ : int = 0
snake_case__ : Dict = writer_class(
features=__A , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , )
snake_case__ : Union[str, Any] = pa.Table.from_batches([first_batch] )
writer.write_table(__A )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
snake_case__, snake_case__ : Any = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , )
shard_id += 1
snake_case__ : Dict = writer_class(
features=writer._features , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , )
snake_case__ : int = pa.Table.from_batches([batch] )
writer.write_table(__A )
if writer._num_bytes > 0:
snake_case__, snake_case__ : List[Any] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(__A ) ):
snake_case__ : Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) )
shutil.move(__A , __A )
snake_case__ : Dict = (
self.df.mapInArrow(__A , "task_id: long, num_examples: long, num_bytes: long" )
.groupBy("task_id" )
.agg(
pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def _lowercase ( self : Union[str, Any] , __A : "datasets.SplitGenerator" , __A : str = "arrow" , __A : Optional[Union[str, int]] = None , __A : Optional[int] = None , **__A : str , ):
self._validate_cache_dir()
snake_case__ : str = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(__A )
snake_case__ : int = not is_remote_filesystem(self._fs )
snake_case__ : List[Any] = os.path.join if is_local else posixpath.join
snake_case__ : List[Any] = "-TTTTT-SSSSS-of-NNNNN"
snake_case__ : Optional[int] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
snake_case__ : Union[str, Any] = path_join(self._output_dir , __A )
snake_case__ : Tuple = 0
snake_case__ : Tuple = 0
snake_case__ : Optional[int] = 0
snake_case__ : Union[str, Any] = []
snake_case__ : Dict = []
for task_id, content in self._prepare_split_single(__A , __A , __A ):
(
(
snake_case__
), (
snake_case__
), (
snake_case__
), (
snake_case__
),
) : Optional[Any] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(__A )
snake_case__ : Dict = total_num_examples
snake_case__ : Tuple = total_num_bytes
# should rename everything at the end
logger.debug(f'''Renaming {total_shards} shards.''' )
if total_shards > 1:
snake_case__ : Union[str, Any] = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
snake_case__ : Union[str, Any] = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
__A : int , __A : int , __A : int , ):
rename(
__A , fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace("TTTTT-SSSSS" , f'''{global_shard_id:05d}''' ).replace("NNNNN" , f'''{total_shards:05d}''' ) , )
snake_case__ : Optional[Any] = []
snake_case__ : List[str] = 0
for i in range(len(__A ) ):
snake_case__, snake_case__ : Optional[int] = task_id_and_num_shards[i]
for shard_id in range(__A ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda __A : _rename_shard(*__A ) ).collect()
else:
# don't use any pattern
snake_case__ : Dict = 0
snake_case__ : Optional[int] = task_id_and_num_shards[0][0]
self._rename(
fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace(__A , "" ) , )
def _lowercase ( self : Tuple , __A : "datasets.SplitGenerator" , ):
return SparkExamplesIterable(self.df )
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Optional[Any] = parent
snake_case__ : str = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : Optional[Any] = min_resolution
snake_case__ : List[str] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : str = size
snake_case__ : str = do_normalize
snake_case__ : Optional[Any] = image_mean
snake_case__ : List[str] = image_std
snake_case__ : List[str] = do_rescale
snake_case__ : Tuple = rescale_factor
snake_case__ : Tuple = do_pad
def _lowercase ( self : str ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ):
if not batched:
snake_case__ : List[Any] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : str = image.size
else:
snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Any = int(self.size["shortest_edge"] * h / w )
snake_case__ : Any = self.size["shortest_edge"]
elif w > h:
snake_case__ : Optional[int] = self.size["shortest_edge"]
snake_case__ : Any = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Tuple = self.size["shortest_edge"]
snake_case__ : int = self.size["shortest_edge"]
else:
snake_case__ : Any = []
for image in image_inputs:
snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : int = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = DeformableDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : str ):
snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self )
@property
def _lowercase ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Tuple ):
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "do_rescale" ) )
self.assertTrue(hasattr(__A , "do_pad" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : Any ):
snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Tuple = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : str ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : int ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Union[str, Any] ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : Optional[Any] ):
# prepare image and target
snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Tuple = json.loads(f.read() )
snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : str = DeformableDetrImageProcessor()
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Union[str, Any] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : Any = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : Optional[int] ):
# prepare image, target and masks_path
snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : Any = json.loads(f.read() )
snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" )
snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Any = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : List[str] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : Union[str, Any] = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
import datasets
from .evaluate import evaluate
__lowerCamelCase : Optional[int] = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
__lowerCamelCase : int = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
__lowerCamelCase : str = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : List[str] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {
"id": datasets.Value("string" ),
"prediction_text": datasets.features.Sequence(datasets.Value("string" ) ),
},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , )
def _lowercase ( self : Union[str, Any] , __A : Any , __A : List[Any] ):
snake_case__ : int = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
snake_case__ : Union[str, Any] = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
snake_case__ : Optional[int] = evaluate(dataset=__A , predictions=__A )
return score
| 25 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
__lowerCamelCase : Tuple = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
__lowerCamelCase : Dict = {
"""allenai/led-base-16384""": 1_6384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
snake_case__ : Optional[int] = bs[:]
snake_case__ : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
snake_case__ : Dict = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_ , snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
snake_case__ : Dict = set()
snake_case__ : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case__ : List[Any] = char
return pairs
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["input_ids", "attention_mask"]
def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ):
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , )
with open(__A , encoding="utf-8" ) as vocab_handle:
snake_case__ : Any = json.load(__A )
snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
snake_case__ : Union[str, Any] = errors # how to handle errors in decoding
snake_case__ : Any = bytes_to_unicode()
snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__A , encoding="utf-8" ) as merges_handle:
snake_case__ : str = merges_handle.read().split("\n" )[1:-1]
snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges]
snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) )
snake_case__ : Optional[int] = {}
snake_case__ : Any = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _lowercase ( self : List[Any] ):
return len(self.encoder )
def _lowercase ( self : Any ):
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self : Optional[Any] , __A : Optional[int] ):
if token in self.cache:
return self.cache[token]
snake_case__ : Union[str, Any] = tuple(__A )
snake_case__ : List[Any] = get_pairs(__A )
if not pairs:
return token
while True:
snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
snake_case__, snake_case__ : Dict = bigram
snake_case__ : str = []
snake_case__ : Union[str, Any] = 0
while i < len(__A ):
try:
snake_case__ : Dict = word.index(__A , __A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case__ : str = j
if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case__ : str = tuple(__A )
snake_case__ : int = new_word
if len(__A ) == 1:
break
else:
snake_case__ : List[str] = get_pairs(__A )
snake_case__ : List[Any] = " ".join(__A )
snake_case__ : Optional[int] = word
return word
def _lowercase ( self : Optional[Any] , __A : Optional[Any] ):
snake_case__ : List[str] = []
for token in re.findall(self.pat , __A ):
snake_case__ : Dict = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) )
return bpe_tokens
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
return self.encoder.get(__A , self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , __A : Optional[Any] ):
return self.decoder.get(__A )
def _lowercase ( self : Union[str, Any] , __A : Dict ):
snake_case__ : Optional[Any] = "".join(__A )
snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : List[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
snake_case__ : str = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" )
snake_case__ : str = 0
with open(__A , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
snake_case__ : int = token_index
writer.write(" ".join(__A ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ : Tuple = [self.cls_token_id]
snake_case__ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Any = [self.sep_token_id]
snake_case__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ):
snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()):
snake_case__ : Optional[int] = " " + text
return (text, kwargs)
def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ):
snake_case__ : Optional[Any] = super()._pad(
encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , )
# Load from model defaults
if return_attention_mask is None:
snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A )
if needs_to_be_padded:
snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case__ : int = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
snake_case__ : Tuple = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 25 | 1 |
import os
from datetime import datetime as dt
from github import Github
__lowerCamelCase : Optional[Any] = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Tuple = Github(os.environ["GITHUB_TOKEN"] )
snake_case__ : Tuple = g.get_repo("huggingface/diffusers" )
snake_case__ : int = repo.get_issues(state="open" )
for issue in open_issues:
snake_case__ : Any = sorted(issue.get_comments() , key=lambda snake_case_ : i.created_at , reverse=snake_case_ )
snake_case__ : Optional[int] = comments[0] if len(snake_case_ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 25 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
| 25 | 1 |
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__, snake_case__ : Any = analyze_text(snake_case_ )
snake_case__ : List[Any] = list(" " + ascii_lowercase )
# what is our total sum of probabilities.
snake_case__ : int = sum(single_char_strings.values() )
# one length string
snake_case__ : Union[str, Any] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
snake_case__ : Optional[int] = single_char_strings[ch]
snake_case__ : List[Any] = my_str / all_sum
my_fir_sum += prob * math.loga(snake_case_ ) # entropy formula.
# print entropy
print(F'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
snake_case__ : List[Any] = sum(two_char_strings.values() )
snake_case__ : List[Any] = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
snake_case__ : List[str] = cha + cha
if sequence in two_char_strings:
snake_case__ : Dict = two_char_strings[sequence]
snake_case__ : Dict = int(snake_case_ ) / all_sum
my_sec_sum += prob * math.loga(snake_case_ )
# print second entropy
print(F'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : int = Counter() # type: ignore
snake_case__ : int = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(snake_case_ ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def SCREAMING_SNAKE_CASE ( ):
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Any = [0] * len(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
# use last results for better performance - dynamic programming
snake_case__ : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
snake_case__ : str = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
snake_case__ : int = j
return prefix_result
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return max(prefix_function(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__lowerCamelCase : Optional[int] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[str] = [
"""VAN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""VanForImageClassification""",
"""VanModel""",
"""VanPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
__lowerCamelCase : Optional[int] = get_logger()
__lowerCamelCase : Optional[dict] = None
class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
"""simple docstring"""
def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ):
super().__init__(features=__A )
import jax
from jaxlib.xla_client import Device
if isinstance(__A , __A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` '''
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`." )
snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
snake_case__ : str = str(jax.devices()[0] )
snake_case__ : str = jnp_array_kwargs
@staticmethod
def _lowercase ( ):
import jax
return {str(__A ): device for device in jax.devices()}
def _lowercase ( self : Optional[Any] , __A : str ):
import jax
import jax.numpy as jnp
if isinstance(__A , __A ) and column:
if all(
isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__A , axis=0 )
return column
def _lowercase ( self : int , __A : Tuple ):
import jax
import jax.numpy as jnp
if isinstance(__A , (str, bytes, type(__A )) ):
return value
elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
snake_case__ : Optional[int] = {}
if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
snake_case__ : Any = {"dtype": jnp.intaa}
else:
snake_case__ : Tuple = {"dtype": jnp.intaa}
elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
snake_case__ : str = {"dtype": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__A , PIL.Image.Image ):
snake_case__ : Optional[Any] = np.asarray(__A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : int = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ):
snake_case__ : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
elif isinstance(__A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
return self._tensorize(__A )
def _lowercase ( self : Tuple , __A : dict ):
return map_nested(self._recursive_tensorize , __A , map_list=__A )
def _lowercase ( self : Optional[int] , __A : pa.Table ):
snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A )
snake_case__ : Tuple = self.python_features_decoder.decode_row(__A )
return self.recursive_tensorize(__A )
def _lowercase ( self : Optional[Any] , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A )
snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
snake_case__ : Dict = self._consolidate(__A )
return column
def _lowercase ( self : str , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A )
snake_case__ : int = self.python_features_decoder.decode_batch(__A )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
for column_name in batch:
snake_case__ : Any = self._consolidate(batch[column_name] )
return batch
| 25 | 1 |
import sys
__lowerCamelCase : List[str] = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ):
snake_case__ : Tuple = -sys.maxsize - 1
for i in range(len(snake_case_ ) - 12 ):
snake_case__ : Optional[int] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
snake_case__ : Tuple = product
return largest_product
if __name__ == "__main__":
print(f"{solution() = }")
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCamelCase : Tuple = {
"""configuration_roberta_prelayernorm""": [
"""ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""RobertaPreLayerNormConfig""",
"""RobertaPreLayerNormOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Tuple = [
"""ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaPreLayerNormForCausalLM""",
"""RobertaPreLayerNormForMaskedLM""",
"""RobertaPreLayerNormForMultipleChoice""",
"""RobertaPreLayerNormForQuestionAnswering""",
"""RobertaPreLayerNormForSequenceClassification""",
"""RobertaPreLayerNormForTokenClassification""",
"""RobertaPreLayerNormModel""",
"""RobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Union[str, Any] = [
"""TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaPreLayerNormForCausalLM""",
"""TFRobertaPreLayerNormForMaskedLM""",
"""TFRobertaPreLayerNormForMultipleChoice""",
"""TFRobertaPreLayerNormForQuestionAnswering""",
"""TFRobertaPreLayerNormForSequenceClassification""",
"""TFRobertaPreLayerNormForTokenClassification""",
"""TFRobertaPreLayerNormMainLayer""",
"""TFRobertaPreLayerNormModel""",
"""TFRobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = [
"""FlaxRobertaPreLayerNormForCausalLM""",
"""FlaxRobertaPreLayerNormForMaskedLM""",
"""FlaxRobertaPreLayerNormForMultipleChoice""",
"""FlaxRobertaPreLayerNormForQuestionAnswering""",
"""FlaxRobertaPreLayerNormForSequenceClassification""",
"""FlaxRobertaPreLayerNormForTokenClassification""",
"""FlaxRobertaPreLayerNormModel""",
"""FlaxRobertaPreLayerNormPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = 42
a_ = 42
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ):
"""simple docstring"""
a_ = 1
@register_to_config
def __init__( self : Any , __A : int = 2_0_0_0 , __A : float = 0.1_5 , __A : float = 0.0_1 , __A : float = 1_3_4_8.0 , __A : float = 1e-5 , __A : int = 1 , ):
# standard deviation of the initial noise distribution
snake_case__ : Tuple = sigma_max
# setable values
snake_case__ : Union[str, Any] = None
self.set_sigmas(__A , __A , __A , __A )
def _lowercase ( self : Any , __A : torch.FloatTensor , __A : Optional[int] = None ):
return sample
def _lowercase ( self : str , __A : int , __A : float = None , __A : Union[str, torch.device] = None ):
snake_case__ : List[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps
snake_case__ : Union[str, Any] = torch.linspace(1 , __A , __A , device=__A )
def _lowercase ( self : str , __A : int , __A : float = None , __A : float = None , __A : float = None ):
snake_case__ : List[Any] = sigma_min if sigma_min is not None else self.config.sigma_min
snake_case__ : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max
snake_case__ : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(__A , __A )
snake_case__ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
snake_case__ : List[str] = torch.exp(torch.linspace(math.log(__A ) , math.log(__A ) , __A ) )
snake_case__ : Union[str, Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def _lowercase ( self : Tuple , __A : int , __A : str ):
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def _lowercase ( self : Union[str, Any] , __A : torch.FloatTensor , __A : int , __A : torch.FloatTensor , __A : Optional[torch.Generator] = None , __A : bool = True , ):
if self.timesteps is None:
raise ValueError(
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" )
snake_case__ : Dict = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
snake_case__ : str = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
snake_case__ : Optional[int] = timesteps.to(self.discrete_sigmas.device )
snake_case__ : Dict = self.discrete_sigmas[timesteps].to(sample.device )
snake_case__ : List[Any] = self.get_adjacent_sigma(__A , __A ).to(sample.device )
snake_case__ : Any = torch.zeros_like(__A )
snake_case__ : int = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
snake_case__ : Any = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
snake_case__ : Optional[int] = diffusion.unsqueeze(-1 )
snake_case__ : List[Any] = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
snake_case__ : List[str] = randn_tensor(
sample.shape , layout=sample.layout , generator=__A , device=sample.device , dtype=sample.dtype )
snake_case__ : Tuple = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
snake_case__ : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=__A , prev_sample_mean=__A )
def _lowercase ( self : Optional[int] , __A : torch.FloatTensor , __A : torch.FloatTensor , __A : Optional[torch.Generator] = None , __A : bool = True , ):
if self.timesteps is None:
raise ValueError(
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
snake_case__ : Optional[int] = randn_tensor(sample.shape , layout=sample.layout , generator=__A ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
snake_case__ : Dict = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
snake_case__ : Any = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
snake_case__ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
snake_case__ : Optional[int] = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
snake_case__ : Optional[int] = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
snake_case__ : List[Any] = step_size.unsqueeze(-1 )
snake_case__ : List[str] = sample + step_size * model_output
snake_case__ : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__A )
def _lowercase ( self : Any , __A : torch.FloatTensor , __A : torch.FloatTensor , __A : torch.FloatTensor , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
snake_case__ : Tuple = timesteps.to(original_samples.device )
snake_case__ : Union[str, Any] = self.discrete_sigmas.to(original_samples.device )[timesteps]
snake_case__ : List[Any] = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(__A ) * sigmas[:, None, None, None]
)
snake_case__ : str = noise + original_samples
return noisy_samples
def __len__( self : Union[str, Any] ):
return self.config.num_train_timesteps
| 25 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ):
snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Tuple = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) )
self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) )
def _lowercase ( self : Dict ):
snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Union[str, Any] = get_activation("gelu" )
snake_case__ : int = get_activation("gelu_10" )
snake_case__ : Optional[int] = torch_builtin(__A )
snake_case__ : Dict = geluaa(__A )
snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 )
self.assertTrue(torch.max(__A ).item() == 1_0.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _lowercase ( self : str ):
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(__A ):
get_activation("bogus" )
with self.assertRaises(__A ):
get_activation(__A )
def _lowercase ( self : List[str] ):
snake_case__ : List[str] = get_activation("gelu" )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__A ):
snake_case__ : int = acta.a
| 25 | 1 |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( snake_case_ : nn.ModuleList , snake_case_ : nn.ModuleList , snake_case_ : List[int] ):
snake_case__ : str = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(snake_case_ ) == len(snake_case_ ), F'''{len(snake_case_ )} != {len(snake_case_ )}'''
dest_layers.load_state_dict(layers_to_copy.state_dict() )
__lowerCamelCase : Dict = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
__lowerCamelCase : Dict = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Optional[Any] ):
try:
snake_case__ : Optional[Any] = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'''
F''' {n_student}''' )
return list(range(snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : str ):
if n_student > n_teacher:
raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' )
elif n_teacher == n_student:
return list(range(snake_case_ ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, PreTrainedModel] , snake_case_ : Union[str, Path] = "student" , snake_case_ : Union[int, None] = None , snake_case_ : Union[int, None] = None , snake_case_ : Optional[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ):
snake_case__ : str = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."
assert (e is not None) or (d is not None), _msg
if isinstance(snake_case_ , snake_case_ ):
AutoTokenizer.from_pretrained(snake_case_ ).save_pretrained(snake_case_ ) # purely for convenience
snake_case__ : str = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).eval()
else:
assert isinstance(snake_case_ , snake_case_ ), F'''teacher must be a model or string got type {type(snake_case_ )}'''
snake_case__ : Dict = teacher.config.to_diff_dict()
try:
snake_case__, snake_case__ : Union[str, Any] = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
snake_case__ : str = teacher_e
if d is None:
snake_case__ : Optional[Any] = teacher_d
init_kwargs.update({"encoder_layers": e, "decoder_layers": d} )
except AttributeError: # T5
if hasattr(teacher.config , "num_encoder_layers" ):
snake_case__, snake_case__ : Tuple = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
snake_case__, snake_case__ : List[Any] = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
snake_case__ : Any = teacher_e
if d is None:
snake_case__ : str = teacher_d
if hasattr(teacher.config , "num_encoder_layers" ):
init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} )
else:
init_kwargs.update({"num_layers": e, "num_decoder_layers": d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(snake_case_ )
# Copy weights
snake_case__ : Any = teacher.config_class(**snake_case_ )
snake_case__ : Optional[int] = AutoModelForSeqaSeqLM.from_config(snake_case_ )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
snake_case__ : Tuple = student.load_state_dict(teacher.state_dict() , strict=snake_case_ )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
snake_case__, snake_case__ : List[Any] = list(range(snake_case_ ) ), list(range(snake_case_ ) )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'''
F''' {save_path}''' )
student.save_pretrained(snake_case_ )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
snake_case__ : List[int] = pick_layers_to_copy(snake_case_ , snake_case_ )
if d_layers_to_copy is None:
snake_case__ : List[int] = pick_layers_to_copy(snake_case_ , snake_case_ )
try:
if hasattr(
snake_case_ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , snake_case_ )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , snake_case_ )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , snake_case_ )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , snake_case_ )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , snake_case_ )
copy_layers(teacher.decoder.block , student.decoder.block , snake_case_ )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' )
snake_case__ : str = {
"teacher_type": teacher.config.model_type,
"copied_encoder_layers": e_layers_to_copy,
"copied_decoder_layers": d_layers_to_copy,
}
student.save_pretrained(snake_case_ )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 25 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
__lowerCamelCase : Tuple = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ):
for attribute in key.split("." ):
snake_case__ : int = getattr(snake_case_ , snake_case_ )
if weight_type is not None:
snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape
else:
snake_case__ : List[str] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
snake_case__ : str = value
elif weight_type == "weight_g":
snake_case__ : Union[str, Any] = value
elif weight_type == "weight_v":
snake_case__ : Optional[Any] = value
elif weight_type == "bias":
snake_case__ : str = value
else:
snake_case__ : Union[str, Any] = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ):
snake_case__ : str = []
snake_case__ : Optional[int] = fairseq_model.state_dict()
snake_case__ : int = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
snake_case__ : Dict = False
if "conv_layers" in name:
load_conv_layer(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , )
snake_case__ : str = True
else:
for key, mapped_key in MAPPING.items():
snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key):
# special case since naming is very similar
continue
snake_case__ : int = True
if "*" in mapped_key:
snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2]
snake_case__ : Any = mapped_key.replace("*" , snake_case_ )
if "weight_g" in name:
snake_case__ : List[Any] = "weight_g"
elif "weight_v" in name:
snake_case__ : Optional[Any] = "weight_v"
elif "bias" in name:
snake_case__ : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
snake_case__ : Optional[Any] = "weight"
else:
snake_case__ : Optional[Any] = None
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ):
snake_case__ : Tuple = full_name.split("conv_layers." )[-1]
snake_case__ : Union[str, Any] = name.split("." )
snake_case__ : str = int(items[0] )
snake_case__ : str = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' )
snake_case__ : Optional[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' )
snake_case__ : int = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ):
if config_path is not None:
snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
snake_case__ : Tuple = UniSpeechSatConfig()
snake_case__ : str = ""
if is_finetuned:
snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ )
else:
snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ )
snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
snake_case__ : Tuple = model[0].eval()
recursively_load_weights(snake_case_ , snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
__lowerCamelCase : List[Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 25 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = StableDiffusionInpaintPipeline
a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
a_ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a_ = frozenset([] )
def _lowercase ( self : str ):
torch.manual_seed(0 )
snake_case__ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=__A , )
snake_case__ : int = PNDMScheduler(skip_prk_steps=__A )
torch.manual_seed(0 )
snake_case__ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , )
torch.manual_seed(0 )
snake_case__ : List[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , )
snake_case__ : Tuple = CLIPTextModel(__A )
snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
snake_case__ : Dict = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _lowercase ( self : Tuple , __A : Optional[int] , __A : str=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
snake_case__ : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A )
snake_case__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
snake_case__ : int = Image.fromarray(np.uinta(__A ) ).convert("RGB" ).resize((6_4, 6_4) )
snake_case__ : Optional[int] = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((6_4, 6_4) )
if str(__A ).startswith("mps" ):
snake_case__ : str = torch.manual_seed(__A )
else:
snake_case__ : Any = torch.Generator(device=__A ).manual_seed(__A )
snake_case__ : List[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : List[Any] ):
snake_case__ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
snake_case__ : Tuple = self.get_dummy_components()
snake_case__ : str = StableDiffusionInpaintPipeline(**__A )
snake_case__ : int = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
snake_case__ : str = self.get_dummy_inputs(__A )
snake_case__ : int = sd_pipe(**__A ).images
snake_case__ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case__ : Dict = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowercase ( self : int ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Union[str, Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : List[Any] ):
snake_case__ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
snake_case__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
snake_case__ : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench.npy" )
snake_case__ : str = "stabilityai/stable-diffusion-2-inpainting"
snake_case__ : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained(__A , safety_checker=__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
pipe.enable_attention_slicing()
snake_case__ : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench"
snake_case__ : Tuple = torch.manual_seed(0 )
snake_case__ : int = pipe(
prompt=__A , image=__A , mask_image=__A , generator=__A , output_type="np" , )
snake_case__ : Dict = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _lowercase ( self : Dict ):
snake_case__ : Any = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
snake_case__ : List[str] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
snake_case__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy" )
snake_case__ : int = "stabilityai/stable-diffusion-2-inpainting"
snake_case__ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained(
__A , torch_dtype=torch.floataa , safety_checker=__A , )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
pipe.enable_attention_slicing()
snake_case__ : List[str] = "Face of a yellow cat, high resolution, sitting on a park bench"
snake_case__ : Optional[Any] = torch.manual_seed(0 )
snake_case__ : Union[str, Any] = pipe(
prompt=__A , image=__A , mask_image=__A , generator=__A , output_type="np" , )
snake_case__ : Any = output.images[0]
assert image.shape == (5_1_2, 5_1_2, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _lowercase ( self : List[Any] ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case__ : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
snake_case__ : Any = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
snake_case__ : Union[str, Any] = "stabilityai/stable-diffusion-2-inpainting"
snake_case__ : List[str] = PNDMScheduler.from_pretrained(__A , subfolder="scheduler" )
snake_case__ : Tuple = StableDiffusionInpaintPipeline.from_pretrained(
__A , safety_checker=__A , scheduler=__A , torch_dtype=torch.floataa , )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
snake_case__ : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench"
snake_case__ : Tuple = torch.manual_seed(0 )
snake_case__ : List[Any] = pipe(
prompt=__A , image=__A , mask_image=__A , generator=__A , num_inference_steps=2 , output_type="np" , )
snake_case__ : Tuple = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.6_5 * 1_0**9
| 25 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ):
if attention_mask is None:
snake_case__ : Any = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ )
if decoder_head_mask is None:
snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
if cross_attn_head_mask is None:
snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ):
snake_case__ : Optional[Any] = parent
snake_case__ : List[str] = batch_size
snake_case__ : Union[str, Any] = seq_length
snake_case__ : Optional[Any] = is_training
snake_case__ : List[str] = use_labels
snake_case__ : Tuple = vocab_size
snake_case__ : Optional[Any] = hidden_size
snake_case__ : Union[str, Any] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Tuple = intermediate_size
snake_case__ : str = hidden_act
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : int = encoder_layerdrop
snake_case__ : Tuple = decoder_layerdrop
snake_case__ : List[str] = max_position_embeddings
snake_case__ : Tuple = eos_token_id
snake_case__ : Dict = pad_token_id
snake_case__ : str = bos_token_id
def _lowercase ( self : Tuple ):
snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token
snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Union[str, Any] = self.get_config()
snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A )
return config, inputs_dict
def _lowercase ( self : Dict ):
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def _lowercase ( self : List[str] ):
snake_case__, snake_case__ : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval()
snake_case__ : List[Any] = inputs_dict["input_ids"]
snake_case__ : Optional[Any] = inputs_dict["attention_mask"]
snake_case__ : Union[str, Any] = inputs_dict["head_mask"]
# first forward pass
snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A )
snake_case__, snake_case__ : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"]
snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[
"last_hidden_state"
]
# select random slice
snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) )
def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval()
snake_case__ : Union[str, Any] = model(**__A )
snake_case__ : Tuple = outputs.encoder_last_hidden_state
snake_case__ : Union[str, Any] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_encoder()
encoder.save_pretrained(__A )
snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_decoder()
decoder.save_pretrained(__A )
snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = decoder(
input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
a_ = (
{
"conversational": MaMaaaForConditionalGeneration,
"feature-extraction": MaMaaaModel,
"summarization": MaMaaaForConditionalGeneration,
"text2text-generation": MaMaaaForConditionalGeneration,
"translation": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
a_ = True
a_ = True
a_ = False
a_ = False
def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ):
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def _lowercase ( self : Tuple ):
snake_case__ : Any = MaMaaaModelTester(self )
snake_case__ : Dict = ConfigTester(self , config_class=__A )
def _lowercase ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
snake_case__ : int = model_class(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A )
snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A )
self.assertEqual(info["missing_keys"] , [] )
def _lowercase ( self : Dict ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A )
def _lowercase ( self : Any ):
snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__A )
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
snake_case__ : str = model_class(__A )
model.to(__A )
model.eval()
snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) )
if not self.is_encoder_decoder:
snake_case__ : Optional[Any] = inputs["input_ids"]
del inputs["input_ids"]
else:
snake_case__ : Union[str, Any] = inputs["input_ids"]
snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A )
del inputs["input_ids"]
inputs.pop("decoder_input_ids" , __A )
snake_case__ : Tuple = model.get_input_embeddings()
if not self.is_encoder_decoder:
snake_case__ : List[Any] = wte(__A )
else:
snake_case__ : Any = wte(__A )
snake_case__ : Optional[int] = wte(__A )
with torch.no_grad():
model(**__A )[0]
def _lowercase ( self : Optional[Any] ):
snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
snake_case__ : Any = input_dict["input_ids"]
snake_case__ : int = input_ids.ne(1 ).to(__A )
snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A )
if torch_device == "cuda":
model.half()
model.generate(__A , attention_mask=__A )
model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 )
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ )
__lowerCamelCase : Optional[Any] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : str ):
return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" )
def _lowercase ( self : Optional[int] ):
snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : str = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : Optional[Any] = torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
# change to intended input
snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : Union[str, Any] = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : List[str] = torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Optional[Any] ):
snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" )
snake_case__ : List[Any] = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" )
snake_case__ : Tuple = model.generate(
input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , )
snake_case__ : List[str] = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
snake_case__ : Dict = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A )
assert generated == expected_en
| 25 | 1 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def SCREAMING_SNAKE_CASE ( snake_case_ : dict ):
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ):
snake_case__ : Optional[int] = XGBClassifier()
classifier.fit(snake_case_ , snake_case_ )
return classifier
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = load_iris()
snake_case__, snake_case__ : str = data_handling(snake_case_ )
snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split(
snake_case_ , snake_case_ , test_size=0.25 )
snake_case__ : Dict = iris["target_names"]
# Create an XGBoost Classifier from the training data
snake_case__ : Dict = xgboost(snake_case_ , snake_case_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 25 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ):
snake_case__ : Optional[int] = []
for part_id in partition_order:
snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(snake_case_ ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 )
snake_case__ : Any = Spark(snake_case_ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 )
snake_case__ : Optional[Any] = [1, 0]
snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions.
snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[int] = spark.range(10 ).repartition(1 )
snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(snake_case_ ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : str = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("numpy.random.Generator" ) as generator_mock:
snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse()
snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] )
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(100 ).repartition(1 )
snake_case__ : Union[str, Any] = Spark(snake_case_ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 25 | 1 |
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
__lowerCamelCase : List[str] = """base_with_context"""
def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Any ):
snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) )
snake_case__ : List[str] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case_ )
for lyr_num, lyr in enumerate(model.encoders ):
snake_case__ : str = weights[F'''layers_{lyr_num}''']
snake_case__ : Union[str, Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
snake_case__ : Union[str, Any] = ly_weight["attention"]
snake_case__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
snake_case__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
snake_case__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
snake_case__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
snake_case__ : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
snake_case__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
snake_case__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str ):
snake_case__ : int = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) )
snake_case__ : Tuple = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case_ )
for lyr_num, lyr in enumerate(model.encoders ):
snake_case__ : int = weights[F'''layers_{lyr_num}''']
snake_case__ : Any = ly_weight["attention"]
snake_case__ : int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
snake_case__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
snake_case__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
snake_case__ : Any = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
snake_case__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
snake_case__ : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
snake_case__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[Any] ):
snake_case__ : Any = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) )
snake_case__ : str = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) )
snake_case__ : Union[str, Any] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case_ )
snake_case__ : List[Any] = nn.Parameter(
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
snake_case__ : Tuple = weights[F'''layers_{lyr_num}''']
snake_case__ : Tuple = nn.Parameter(
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) )
snake_case__ : str = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) )
snake_case__ : Optional[Any] = ly_weight["self_attention"]
snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
snake_case__ : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
snake_case__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
snake_case__ : List[Any] = ly_weight["MultiHeadDotProductAttention_0"]
snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
snake_case__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
snake_case__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
snake_case__ : List[str] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) )
snake_case__ : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
snake_case__ : Any = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) )
snake_case__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
snake_case__ : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
snake_case__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
snake_case__ : Tuple = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) )
snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) )
return model
def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ):
snake_case__ : List[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path )
snake_case__ : Any = jnp.tree_util.tree_map(onp.array , snake_case_ )
snake_case__ : Union[str, Any] = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
snake_case__ : int = os.path.join(args.checkpoint_path , ".." , "config.gin" )
snake_case__ : Optional[int] = inference.parse_training_gin_file(snake_case_ , snake_case_ )
snake_case__ : str = inference.InferenceModel(args.checkpoint_path , snake_case_ )
snake_case__ : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" )
snake_case__ : List[str] = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
snake_case__ : Optional[Any] = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
snake_case__ : Any = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
snake_case__ : Union[str, Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , snake_case_ )
snake_case__ : List[str] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , snake_case_ )
snake_case__ : Union[str, Any] = load_decoder(ta_checkpoint["target"]["decoder"] , snake_case_ )
snake_case__ : Optional[int] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" )
snake_case__ : str = SpectrogramDiffusionPipeline(
notes_encoder=snake_case_ , continuous_encoder=snake_case_ , decoder=snake_case_ , scheduler=snake_case_ , melgan=snake_case_ , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
__lowerCamelCase : List[str] = argparse.ArgumentParser()
parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument(
"""--checkpoint_path""",
default=f"{MODEL}/checkpoint_500000",
type=str,
required=False,
help="""Path to the original jax model checkpoint.""",
)
__lowerCamelCase : List[str] = parser.parse_args()
main(args)
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = ["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = ["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = [
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = [
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
__lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
@staticmethod
def _lowercase ( *__A : Any , **__A : Union[str, Any] ):
pass
def SCREAMING_SNAKE_CASE ( snake_case_ : Image ):
snake_case__ : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
a_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def _lowercase ( self : Dict , __A : str , __A : int , __A : List[Any] ):
snake_case__ : Tuple = DepthEstimationPipeline(model=__A , image_processor=__A )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _lowercase ( self : Any , __A : List[Any] , __A : List[str] ):
snake_case__ : Optional[int] = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" )
self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __A )
import datasets
snake_case__ : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" )
snake_case__ : Optional[int] = depth_estimator(
[
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
] )
self.assertEqual(
[
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
{"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )},
] , __A , )
@require_tf
@unittest.skip("Depth estimation is not implemented in TF" )
def _lowercase ( self : int ):
pass
@slow
@require_torch
def _lowercase ( self : Dict ):
snake_case__ : str = "Intel/dpt-large"
snake_case__ : Dict = pipeline("depth-estimation" , model=__A )
snake_case__ : Optional[int] = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" )
snake_case__ : List[str] = hashimage(outputs["depth"] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 2_9.3_0_4 )
self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_6_2 )
@require_torch
def _lowercase ( self : Optional[int] ):
# This is highly irregular to have no small tests.
self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
| 25 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 25 | 1 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , __A : nn.Module , __A : int ):
super().__init__()
snake_case__ : Optional[int] = module
snake_case__ : int = nn.Sequential(
nn.Linear(module.in_features , __A , bias=__A ) , nn.Linear(__A , module.out_features , bias=__A ) , )
snake_case__ : int = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=__A )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def _lowercase ( self : Optional[Any] , __A : int , *__A : Optional[int] , **__A : Optional[Any] ):
return self.module(__A , *__A , **__A ) + self.adapter(__A )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
a_ = "bigscience/bloom-1b7"
# Constant values
a_ = 2.109_6595_5269_2574
a_ = "Hello my name is"
a_ = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
a_ = 1_0
def _lowercase ( self : Any ):
# Models and tokenizer
snake_case__ : List[str] = AutoTokenizer.from_pretrained(self.model_name )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def _lowercase ( self : Union[str, Any] ):
super().setUp()
# Models and tokenizer
snake_case__ : Optional[int] = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="auto" )
snake_case__ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" )
def _lowercase ( self : Any ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Optional[int] ):
snake_case__ : List[str] = self.model_abit.config
self.assertTrue(hasattr(__A , "quantization_config" ) )
snake_case__ : Optional[int] = config.to_dict()
snake_case__ : List[Any] = config.to_diff_dict()
snake_case__ : Optional[int] = config.to_json_string()
def _lowercase ( self : Optional[Any] ):
from bitsandbytes.nn import Paramsabit
snake_case__ : Tuple = self.model_fpaa.get_memory_footprint()
snake_case__ : Dict = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
snake_case__ : Optional[Any] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def _lowercase ( self : List[str] ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(__A , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" )
snake_case__ : Optional[int] = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS )
def _lowercase ( self : Optional[int] ):
snake_case__ : Tuple = BitsAndBytesConfig()
snake_case__ : str = True
snake_case__ : Any = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__A , device_map="auto" )
snake_case__ : Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" )
snake_case__ : List[str] = model_abit_from_config.generate(
input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS )
def _lowercase ( self : List[Any] ):
with self.assertRaises(__A ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(__A )
def _lowercase ( self : Optional[Any] ):
snake_case__ : Optional[Any] = BitsAndBytesConfig()
with self.assertRaises(__A ):
snake_case__ : Optional[int] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=__A , load_in_abit=__A , device_map="auto" , bnb_abit_quant_type="nf4" , )
def _lowercase ( self : int ):
with self.assertRaises(__A ):
# Tries with `str`
self.model_abit.to("cpu" )
with self.assertRaises(__A ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(__A ):
# Tries with a `device`
self.model_abit.to(torch.device("cuda:0" ) )
with self.assertRaises(__A ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(__A ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
snake_case__ : List[str] = self.tokenizer(self.input_text , return_tensors="pt" )
snake_case__ : Optional[int] = self.model_fpaa.to(torch.floataa )
snake_case__ : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
# Check this does not throw an error
snake_case__ : Union[str, Any] = self.model_fpaa.to("cpu" )
# Check this does not throw an error
snake_case__ : Union[str, Any] = self.model_fpaa.half()
# Check this does not throw an error
snake_case__ : int = self.model_fpaa.float()
def _lowercase ( self : Optional[Any] ):
snake_case__ : Dict = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=__A , device_map="auto" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def _lowercase ( cls : Dict ):
snake_case__ : Optional[int] = "t5-small"
snake_case__ : Tuple = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
snake_case__ : List[Any] = AutoTokenizer.from_pretrained(cls.model_name )
snake_case__ : Optional[Any] = "Translate in German: Hello, my dog is cute"
def _lowercase ( self : int ):
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Optional[Any] ):
from transformers import TaForConditionalGeneration
snake_case__ : Tuple = TaForConditionalGeneration._keep_in_fpaa_modules
snake_case__ : Dict = None
# test with `t5-small`
snake_case__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" )
snake_case__ : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
snake_case__ : Any = model.generate(**__A )
# test with `flan-t5-small`
snake_case__ : Union[str, Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__A , device_map="auto" )
snake_case__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
snake_case__ : int = model.generate(**__A )
snake_case__ : Optional[int] = modules
def _lowercase ( self : str ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
snake_case__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
snake_case__ : Tuple = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
snake_case__ : str = model.generate(**__A )
# test with `flan-t5-small`
snake_case__ : Optional[Any] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=__A , device_map="auto" )
snake_case__ : str = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
snake_case__ : List[Any] = model.generate(**__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def _lowercase ( self : Any ):
super().setUp()
# model_name
snake_case__ : Union[str, Any] = "bigscience/bloom-560m"
snake_case__ : int = "t5-small"
# Different types of model
snake_case__ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" )
# Sequence classification model
snake_case__ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=__A , device_map="auto" )
# CausalLM model
snake_case__ : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" )
# Seq2seq model
snake_case__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=__A , device_map="auto" )
def _lowercase ( self : Any ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Any ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def _lowercase ( self : Dict ):
super().setUp()
def _lowercase ( self : Union[str, Any] ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : str ):
snake_case__ : List[Any] = pipeline(
"text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
snake_case__ : List[Any] = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def _lowercase ( self : int ):
super().setUp()
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Dict = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=__A , device_map="balanced" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
snake_case__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" )
# Second real batch
snake_case__ : Optional[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def _lowercase ( self : Optional[int] ):
snake_case__ : Optional[Any] = "facebook/opt-350m"
super().setUp()
def _lowercase ( self : Dict ):
if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ):
return
# Step 1: freeze all parameters
snake_case__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
snake_case__ : Dict = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
snake_case__ : Dict = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(__A ) ):
snake_case__ : List[str] = LoRALayer(module.q_proj , rank=1_6 )
snake_case__ : Optional[int] = LoRALayer(module.k_proj , rank=1_6 )
snake_case__ : int = LoRALayer(module.v_proj , rank=1_6 )
# Step 3: dummy batch
snake_case__ : Any = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
snake_case__ : Optional[int] = model.forward(**__A )
out.logits.norm().backward()
for module in model.modules():
if isinstance(__A , __A ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(__A , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "gpt2-xl"
a_ = 3.3191_8548_5415_2187
| 25 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def SCREAMING_SNAKE_CASE ( snake_case_ : dict ):
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ):
snake_case__ : Optional[int] = XGBClassifier()
classifier.fit(snake_case_ , snake_case_ )
return classifier
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = load_iris()
snake_case__, snake_case__ : str = data_handling(snake_case_ )
snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split(
snake_case_ , snake_case_ , test_size=0.25 )
snake_case__ : Dict = iris["target_names"]
# Create an XGBoost Classifier from the training data
snake_case__ : Dict = xgboost(snake_case_ , snake_case_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 25 | 1 |
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[str] = None ):
if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release:
# old versions of hfh don't url-encode the file path
snake_case__ : Optional[int] = quote(snake_case_ )
return hfh.hf_hub_url(snake_case_ , snake_case_ , repo_type="dataset" , revision=snake_case_ )
| 25 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ):
snake_case__ : Tuple = args.log_outputs
snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
snake_case__ : List[str] = load_metric("wer" )
snake_case__ : List[str] = load_metric("cer" )
# compute metrics
snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] )
snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}'''
print(snake_case_ )
with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt'''
snake_case__ : int = F'''log_{dataset_id}_targets.txt'''
with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ):
p.write(F'''{i}''' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(F'''{i}''' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case_ , with_indices=snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) )
return text
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
# load dataset
snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id )
snake_case__ : List[Any] = feature_extractor.sampling_rate
# resample audio
snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
snake_case__ : int = 0 if torch.cuda.is_available() else -1
snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Any ):
snake_case__ : Union[str, Any] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
snake_case__ : Optional[int] = prediction["text"]
snake_case__ : Optional[Any] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ , snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
__lowerCamelCase : str = parser.parse_args()
main(args)
| 25 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_vision_model"
def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ):
super().__init__(**__A )
snake_case__ : List[str] = hidden_size
snake_case__ : Optional[int] = intermediate_size
snake_case__ : List[str] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : str = patch_size
snake_case__ : int = image_size
snake_case__ : int = initializer_range
snake_case__ : Optional[int] = attention_dropout
snake_case__ : str = layer_norm_eps
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Tuple = qkv_bias
@classmethod
def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : Union[str, Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_qformer"
def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ):
super().__init__(pad_token_id=__A , **__A )
snake_case__ : Dict = vocab_size
snake_case__ : Optional[int] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : str = num_attention_heads
snake_case__ : int = hidden_act
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : List[Any] = max_position_embeddings
snake_case__ : int = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : str = position_embedding_type
snake_case__ : Dict = cross_attention_frequency
snake_case__ : List[str] = encoder_hidden_size
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : List[Any] = config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip"
a_ = True
def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ):
super().__init__(**__A )
if vision_config is None:
snake_case__ : Any = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." )
if qformer_config is None:
snake_case__ : Optional[Any] = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." )
if text_config is None:
snake_case__ : Optional[int] = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." )
snake_case__ : List[Any] = InstructBlipVisionConfig(**__A )
snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A )
snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt"
snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A )
snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings
snake_case__ : Tuple = self.text_config.is_encoder_decoder
snake_case__ : str = num_query_tokens
snake_case__ : Dict = self.vision_config.hidden_size
snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
snake_case__ : int = 1.0
snake_case__ : Optional[int] = 0.0_2
@classmethod
def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , )
def _lowercase ( self : Optional[int] ):
snake_case__ : Any = copy.deepcopy(self.__dict__ )
snake_case__ : Optional[Any] = self.vision_config.to_dict()
snake_case__ : List[str] = self.qformer_config.to_dict()
snake_case__ : List[Any] = self.text_config.to_dict()
snake_case__ : List[Any] = self.__class__.model_type
return output
| 25 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
a_ = Features({"text": Value("string" )} )
a_ = Features({"labels": ClassLabel} )
a_ = "text"
a_ = "labels"
def _lowercase ( self : Tuple , __A : List[Any] ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
snake_case__ : Any = copy.deepcopy(self )
snake_case__ : Optional[Any] = self.label_schema.copy()
snake_case__ : List[str] = features[self.label_column]
snake_case__ : Dict = label_schema
return task_template
@property
def _lowercase ( self : Tuple ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 25 | 1 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ):
monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() )
@pytest.fixture
def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ):
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : Any ):
snake_case__ : Dict = metric_id
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
a_ = [MetricMock(UpperCamelCase_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]]
def _lowercase ( self : Dict ):
return self._metrics
monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() )
@pytest.mark.parametrize(
"func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] )
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Any ):
if "tmp_path" in args:
snake_case__ : Any = tuple(arg if arg != "tmp_path" else tmp_path for arg in args )
with pytest.warns(snake_case_ , match="https://huggingface.co/docs/evaluate" ):
func(*snake_case_ )
| 25 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_vision_model"
def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ):
super().__init__(**__A )
snake_case__ : List[str] = hidden_size
snake_case__ : Optional[int] = intermediate_size
snake_case__ : List[str] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : str = patch_size
snake_case__ : int = image_size
snake_case__ : int = initializer_range
snake_case__ : Optional[int] = attention_dropout
snake_case__ : str = layer_norm_eps
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Tuple = qkv_bias
@classmethod
def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : Union[str, Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_qformer"
def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ):
super().__init__(pad_token_id=__A , **__A )
snake_case__ : Dict = vocab_size
snake_case__ : Optional[int] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : str = num_attention_heads
snake_case__ : int = hidden_act
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : List[Any] = max_position_embeddings
snake_case__ : int = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : str = position_embedding_type
snake_case__ : Dict = cross_attention_frequency
snake_case__ : List[str] = encoder_hidden_size
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : List[Any] = config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip"
a_ = True
def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ):
super().__init__(**__A )
if vision_config is None:
snake_case__ : Any = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." )
if qformer_config is None:
snake_case__ : Optional[Any] = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." )
if text_config is None:
snake_case__ : Optional[int] = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." )
snake_case__ : List[Any] = InstructBlipVisionConfig(**__A )
snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A )
snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt"
snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A )
snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings
snake_case__ : Tuple = self.text_config.is_encoder_decoder
snake_case__ : str = num_query_tokens
snake_case__ : Dict = self.vision_config.hidden_size
snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
snake_case__ : int = 1.0
snake_case__ : Optional[int] = 0.0_2
@classmethod
def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , )
def _lowercase ( self : Optional[int] ):
snake_case__ : Any = copy.deepcopy(self.__dict__ )
snake_case__ : Optional[Any] = self.vision_config.to_dict()
snake_case__ : List[str] = self.qformer_config.to_dict()
snake_case__ : List[Any] = self.text_config.to_dict()
snake_case__ : List[Any] = self.__class__.model_type
return output
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") )
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Tuple = credit_card_number
snake_case__ : int = 0
snake_case__ : Optional[Any] = len(snake_case_ ) - 2
for i in range(snake_case_ , -1 , -2 ):
# double the value of every second digit
snake_case__ : str = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
snake_case__ : Union[str, Any] = cc_number[:i] + str(snake_case_ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(snake_case_ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : List[Any] = F'''{credit_card_number} is an invalid credit card number because'''
if not credit_card_number.isdigit():
print(F'''{error_message} it has nonnumerical characters.''' )
return False
if not 13 <= len(snake_case_ ) <= 16:
print(F'''{error_message} of its length.''' )
return False
if not validate_initial_digits(snake_case_ ):
print(F'''{error_message} of its first two digits.''' )
return False
if not luhn_validation(snake_case_ ):
print(F'''{error_message} it fails the Luhn check.''' )
return False
print(F'''{credit_card_number} is a valid credit card number.''' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : list ):
if len(snake_case_ ) <= 1:
return lst
snake_case__ : List[Any] = 1
while i < len(snake_case_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case__ : Union[str, Any] = 1
return lst
if __name__ == "__main__":
__lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip()
__lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")]
print(gnome_sort(unsorted))
| 25 | 1 |
from math import pi, sqrt, tan
def SCREAMING_SNAKE_CASE ( snake_case_ : float ):
if side_length < 0:
raise ValueError("surface_area_cube() only accepts non-negative values" )
return 6 * side_length**2
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ):
if length < 0 or breadth < 0 or height < 0:
raise ValueError("surface_area_cuboid() only accepts non-negative values" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def SCREAMING_SNAKE_CASE ( snake_case_ : float ):
if radius < 0:
raise ValueError("surface_area_sphere() only accepts non-negative values" )
return 4 * pi * radius**2
def SCREAMING_SNAKE_CASE ( snake_case_ : float ):
if radius < 0:
raise ValueError("surface_area_hemisphere() only accepts non-negative values" )
return 3 * pi * radius**2
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if radius < 0 or height < 0:
raise ValueError("surface_area_cone() only accepts non-negative values" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ):
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"surface_area_conical_frustum() only accepts non-negative values" )
snake_case__ : Dict = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if radius < 0 or height < 0:
raise ValueError("surface_area_cylinder() only accepts non-negative values" )
return 2 * pi * radius * (height + radius)
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if torus_radius < 0 or tube_radius < 0:
raise ValueError("surface_area_torus() only accepts non-negative values" )
if torus_radius < tube_radius:
raise ValueError(
"surface_area_torus() does not support spindle or self intersecting tori" )
return 4 * pow(snake_case_ , 2 ) * torus_radius * tube_radius
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if length < 0 or width < 0:
raise ValueError("area_rectangle() only accepts non-negative values" )
return length * width
def SCREAMING_SNAKE_CASE ( snake_case_ : float ):
if side_length < 0:
raise ValueError("area_square() only accepts non-negative values" )
return side_length**2
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if base < 0 or height < 0:
raise ValueError("area_triangle() only accepts non-negative values" )
return (base * height) / 2
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ):
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("area_triangle_three_sides() only accepts non-negative values" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("Given three sides do not form a triangle" )
snake_case__ : Optional[Any] = (sidea + sidea + sidea) / 2
snake_case__ : List[str] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if base < 0 or height < 0:
raise ValueError("area_parallelogram() only accepts non-negative values" )
return base * height
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ):
if basea < 0 or basea < 0 or height < 0:
raise ValueError("area_trapezium() only accepts non-negative values" )
return 1 / 2 * (basea + basea) * height
def SCREAMING_SNAKE_CASE ( snake_case_ : float ):
if radius < 0:
raise ValueError("area_circle() only accepts non-negative values" )
return pi * radius**2
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if radius_x < 0 or radius_y < 0:
raise ValueError("area_ellipse() only accepts non-negative values" )
return pi * radius_x * radius_y
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ):
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("area_rhombus() only accepts non-negative values" )
return 1 / 2 * diagonal_a * diagonal_a
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float ):
if not isinstance(snake_case_ , snake_case_ ) or sides < 3:
raise ValueError(
"area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides" )
elif length < 0:
raise ValueError(
"area_reg_polygon() only accepts non-negative values as \
length of a side" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("""[DEMO] Areas of various geometric shapes: \n""")
print(f"Rectangle: {area_rectangle(10, 20) = }")
print(f"Square: {area_square(10) = }")
print(f"Triangle: {area_triangle(10, 10) = }")
print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(f"Parallelogram: {area_parallelogram(10, 20) = }")
print(f"Rhombus: {area_rhombus(10, 20) = }")
print(f"Trapezium: {area_trapezium(10, 20, 30) = }")
print(f"Circle: {area_circle(20) = }")
print(f"Ellipse: {area_ellipse(10, 20) = }")
print("""\nSurface Areas of various geometric shapes: \n""")
print(f"Cube: {surface_area_cube(20) = }")
print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(f"Sphere: {surface_area_sphere(20) = }")
print(f"Hemisphere: {surface_area_hemisphere(20) = }")
print(f"Cone: {surface_area_cone(10, 20) = }")
print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(f"Cylinder: {surface_area_cylinder(10, 20) = }")
print(f"Torus: {surface_area_torus(20, 10) = }")
print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(f"Square: {area_reg_polygon(4, 10) = }")
print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 25 |
from __future__ import annotations
import time
__lowerCamelCase : str = list[tuple[int, int]]
__lowerCamelCase : Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ):
snake_case__ : Optional[int] = pos_x
snake_case__ : Dict = pos_y
snake_case__ : int = (pos_y, pos_x)
snake_case__ : Optional[int] = goal_x
snake_case__ : Tuple = goal_y
snake_case__ : str = parent
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ):
snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A )
snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A )
snake_case__ : int = [self.start]
snake_case__ : Union[str, Any] = False
def _lowercase ( self : Dict ):
while self.node_queue:
snake_case__ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
snake_case__ : Optional[Any] = True
return self.retrace_path(__A )
snake_case__ : int = self.get_successors(__A )
for node in successors:
self.node_queue.append(__A )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Union[str, Any] , __A : Node ):
snake_case__ : str = []
for action in delta:
snake_case__ : str = parent.pos_x + action[1]
snake_case__ : Union[str, Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) )
return successors
def _lowercase ( self : Optional[Any] , __A : Node | None ):
snake_case__ : Tuple = node
snake_case__ : Any = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
snake_case__ : Tuple = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : str , __A : int ):
snake_case__ : str = BreadthFirstSearch(__A , __A )
snake_case__ : int = BreadthFirstSearch(__A , __A )
snake_case__ : Tuple = False
def _lowercase ( self : Optional[Any] ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 )
snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
snake_case__ : List[str] = True
return self.retrace_bidirectional_path(
__A , __A )
snake_case__ : Union[str, Any] = current_bwd_node
snake_case__ : Dict = current_fwd_node
snake_case__ : List[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(__A ),
self.bwd_bfs: self.bwd_bfs.get_successors(__A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(__A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Any , __A : Node , __A : Node ):
snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A )
snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A )
bwd_path.pop()
bwd_path.reverse()
snake_case__ : List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowerCamelCase : str = (0, 0)
__lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowerCamelCase : Any = time.time()
__lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal)
__lowerCamelCase : str = bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
__lowerCamelCase : Optional[Any] = time.time()
__lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal)
__lowerCamelCase : str = bd_bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 25 | 1 |
import math
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(snake_case_ )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen" )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
__lowerCamelCase : Tuple = """Enter the base and the power separated by a comma: """
__lowerCamelCase , __lowerCamelCase : List[Any] = map(int, input(prompt).split(""","""))
__lowerCamelCase , __lowerCamelCase : Any = map(int, input(prompt).split(""","""))
# We find the log of each number, using the function res(), which takes two
# arguments.
__lowerCamelCase : Union[str, Any] = res(xa, ya)
__lowerCamelCase : Optional[int] = res(xa, ya)
# We check for the largest number
if resa > resa:
print("""Largest number is""", xa, """^""", ya)
elif resa > resa:
print("""Largest number is""", xa, """^""", ya)
else:
print("""Both are equal""")
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Dict = parent
snake_case__ : Optional[int] = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : str = min_resolution
snake_case__ : Tuple = max_resolution
snake_case__ : List[Any] = do_resize
snake_case__ : Dict = size
snake_case__ : List[str] = do_normalize
snake_case__ : Optional[int] = image_mean
snake_case__ : Optional[int] = image_std
snake_case__ : Any = do_rescale
snake_case__ : Optional[int] = rescale_factor
snake_case__ : int = do_pad
def _lowercase ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ):
if not batched:
snake_case__ : List[str] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : Tuple = image.size
else:
snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Dict = int(self.size["shortest_edge"] * h / w )
snake_case__ : Optional[int] = self.size["shortest_edge"]
elif w > h:
snake_case__ : List[Any] = self.size["shortest_edge"]
snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Dict = self.size["shortest_edge"]
snake_case__ : Dict = self.size["shortest_edge"]
else:
snake_case__ : str = []
for image in image_inputs:
snake_case__, snake_case__ : str = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = ConditionalDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : int ):
snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self )
@property
def _lowercase ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Any ):
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : List[str] ):
snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Any = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : Union[str, Any] ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : List[Any] ):
# prepare image and target
snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Union[str, Any] = json.loads(f.read() )
snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : str ):
# prepare image, target and masks_path
snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : int = json.loads(f.read() )
snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" )
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : str = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : str = {"""vocab_file""": """vocab.json"""}
__lowerCamelCase : int = {
"""vocab_file""": {
"""mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""",
}
}
__lowerCamelCase : Dict = {"""mgp-str""": 27}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , __A : Optional[Any] , __A : int="[GO]" , __A : Union[str, Any]="[GO]" , __A : Optional[int]="[s]" , __A : Union[str, Any]="[GO]" , **__A : Optional[int] ):
super().__init__(
unk_token=__A , bos_token=__A , eos_token=__A , pad_token=__A , **__A , )
with open(__A , encoding="utf-8" ) as vocab_handle:
snake_case__ : str = json.load(__A )
snake_case__ : Optional[Any] = {v: k for k, v in self.vocab.items()}
@property
def _lowercase ( self : str ):
return len(self.vocab )
def _lowercase ( self : List[Any] ):
return dict(self.vocab , **self.added_tokens_encoder )
def _lowercase ( self : int , __A : Union[str, Any] ):
snake_case__ : List[Any] = []
for s in text:
char_tokens.extend(__A )
return char_tokens
def _lowercase ( self : Any , __A : str ):
return self.vocab.get(__A , self.vocab.get(self.unk_token ) )
def _lowercase ( self : Optional[Any] , __A : int ):
return self.decoder.get(__A )
def _lowercase ( self : Tuple , __A : str , __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error("Vocabulary path ({}) should be a directory".format(__A ) )
return
snake_case__ : Optional[int] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" )
return (vocab_file,)
| 25 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Optional[int] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCamelCase : str = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCamelCase : str = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ):
snake_case__ : List[Any] = compute_mauve(
p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , )
return out
| 25 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : int ):
if len(snake_case_ ) == 0:
return False
snake_case__ : Dict = len(snake_case_ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , snake_case_ )
else:
return binary_search(a_list[midpoint + 1 :] , snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : str = input("""Enter numbers separated by comma:\n""").strip()
__lowerCamelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(""",""")]
__lowerCamelCase : List[str] = int(input("""Enter the number to be found in the list:\n""").strip())
__lowerCamelCase : Tuple = """""" if binary_search(sequence, target) else """not """
print(f"{target} was {not_str}found in {sequence}")
| 25 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__lowerCamelCase : Union[str, Any] = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__lowerCamelCase : List[Any] = concatenate_datasets
__lowerCamelCase : List[str] = DownloadConfig
__lowerCamelCase : Union[str, Any] = DownloadManager
__lowerCamelCase : str = DownloadMode
__lowerCamelCase : Union[str, Any] = DownloadConfig
__lowerCamelCase : List[str] = DownloadMode
__lowerCamelCase : Dict = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 25 | 1 |
import numpy as np
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray ):
return 1 / (1 + np.exp(-vector ))
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray ):
return vector * sigmoid(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
snake_case__ : str = [True] * limit
snake_case__ : str = False
snake_case__ : str = False
snake_case__ : str = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
snake_case__ : Optional[Any] = i * 2
while index < limit:
snake_case__ : Union[str, Any] = False
snake_case__ : Any = index + i
snake_case__ : Optional[Any] = [2]
for i in range(3 , snake_case_ , 2 ):
if is_prime[i]:
primes.append(snake_case_ )
return primes
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ):
snake_case__ : Optional[int] = prime_sieve(snake_case_ )
snake_case__ : List[Any] = 0
snake_case__ : List[str] = 0
for i in range(len(snake_case_ ) ):
for j in range(i + length , len(snake_case_ ) ):
snake_case__ : Dict = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
snake_case__ : Tuple = j - i
snake_case__ : str = sol
return largest
if __name__ == "__main__":
print(f"{solution() = }")
| 25 | 1 |
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__lowerCamelCase : str = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
__lowerCamelCase : Tuple = importlib.util.spec_from_file_location(
"""transformers""",
os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
__lowerCamelCase : List[str] = spec.loader.load_module()
__lowerCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__lowerCamelCase : Dict = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""")
__lowerCamelCase : Optional[int] = {
"""CLIPConfigMixin""",
"""DecisionTransformerConfigMixin""",
"""EncoderDecoderConfigMixin""",
"""RagConfigMixin""",
"""SpeechEncoderDecoderConfigMixin""",
"""VisionEncoderDecoderConfigMixin""",
"""VisionTextDualEncoderConfigMixin""",
}
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Union[str, Any] = []
for config_class in list(CONFIG_MAPPING.values() ):
snake_case__ : int = False
# source code of `config_class`
snake_case__ : Union[str, Any] = inspect.getsource(snake_case_ )
snake_case__ : int = _re_checkpoint.findall(snake_case_ )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
snake_case__, snake_case__ : List[Any] = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
snake_case__ : List[str] = F'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
snake_case__ : List[Any] = True
break
snake_case__ : Dict = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(snake_case_ )
if len(snake_case_ ) > 0:
snake_case__ : Tuple = "\n".join(sorted(snake_case_ ) )
raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Optional[Any] = parent
snake_case__ : str = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : Optional[Any] = min_resolution
snake_case__ : List[str] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : str = size
snake_case__ : str = do_normalize
snake_case__ : Optional[Any] = image_mean
snake_case__ : List[str] = image_std
snake_case__ : List[str] = do_rescale
snake_case__ : Tuple = rescale_factor
snake_case__ : Tuple = do_pad
def _lowercase ( self : str ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ):
if not batched:
snake_case__ : List[Any] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : str = image.size
else:
snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Any = int(self.size["shortest_edge"] * h / w )
snake_case__ : Any = self.size["shortest_edge"]
elif w > h:
snake_case__ : Optional[int] = self.size["shortest_edge"]
snake_case__ : Any = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Tuple = self.size["shortest_edge"]
snake_case__ : int = self.size["shortest_edge"]
else:
snake_case__ : Any = []
for image in image_inputs:
snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : int = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = DeformableDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : str ):
snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self )
@property
def _lowercase ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Tuple ):
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "do_rescale" ) )
self.assertTrue(hasattr(__A , "do_pad" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : Any ):
snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Tuple = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : str ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : int ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Union[str, Any] ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : Optional[Any] ):
# prepare image and target
snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Tuple = json.loads(f.read() )
snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : str = DeformableDetrImageProcessor()
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Union[str, Any] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : Any = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : Optional[int] ):
# prepare image, target and masks_path
snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : Any = json.loads(f.read() )
snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" )
snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Any = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : List[str] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : Union[str, Any] = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : List[Any] = {
"""caidas/swin2sr-classicalsr-x2-64""": (
"""https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"""
),
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "swin2sr"
a_ = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : List[str] , __A : Tuple=6_4 , __A : Optional[int]=1 , __A : List[str]=3 , __A : List[Any]=1_8_0 , __A : List[str]=[6, 6, 6, 6, 6, 6] , __A : Optional[int]=[6, 6, 6, 6, 6, 6] , __A : List[str]=8 , __A : str=2.0 , __A : Tuple=True , __A : Union[str, Any]=0.0 , __A : Tuple=0.0 , __A : List[str]=0.1 , __A : Tuple="gelu" , __A : Union[str, Any]=False , __A : Optional[Any]=0.0_2 , __A : Tuple=1e-5 , __A : Optional[Any]=2 , __A : Dict=1.0 , __A : List[Any]="1conv" , __A : Dict="pixelshuffle" , **__A : Optional[Any] , ):
super().__init__(**__A )
snake_case__ : Dict = image_size
snake_case__ : Tuple = patch_size
snake_case__ : Tuple = num_channels
snake_case__ : List[Any] = embed_dim
snake_case__ : str = depths
snake_case__ : str = len(__A )
snake_case__ : str = num_heads
snake_case__ : Tuple = window_size
snake_case__ : Optional[int] = mlp_ratio
snake_case__ : List[Any] = qkv_bias
snake_case__ : Dict = hidden_dropout_prob
snake_case__ : Optional[Any] = attention_probs_dropout_prob
snake_case__ : str = drop_path_rate
snake_case__ : int = hidden_act
snake_case__ : List[str] = use_absolute_embeddings
snake_case__ : str = layer_norm_eps
snake_case__ : Any = initializer_range
snake_case__ : str = upscale
snake_case__ : Tuple = img_range
snake_case__ : List[str] = resi_connection
snake_case__ : List[Any] = upsampler
| 25 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
__lowerCamelCase : Tuple = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
__lowerCamelCase : Dict = {
"""allenai/led-base-16384""": 1_6384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
snake_case__ : Optional[int] = bs[:]
snake_case__ : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
snake_case__ : Dict = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_ , snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
snake_case__ : Dict = set()
snake_case__ : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case__ : List[Any] = char
return pairs
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["input_ids", "attention_mask"]
def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ):
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , )
with open(__A , encoding="utf-8" ) as vocab_handle:
snake_case__ : Any = json.load(__A )
snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
snake_case__ : Union[str, Any] = errors # how to handle errors in decoding
snake_case__ : Any = bytes_to_unicode()
snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__A , encoding="utf-8" ) as merges_handle:
snake_case__ : str = merges_handle.read().split("\n" )[1:-1]
snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges]
snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) )
snake_case__ : Optional[int] = {}
snake_case__ : Any = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _lowercase ( self : List[Any] ):
return len(self.encoder )
def _lowercase ( self : Any ):
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self : Optional[Any] , __A : Optional[int] ):
if token in self.cache:
return self.cache[token]
snake_case__ : Union[str, Any] = tuple(__A )
snake_case__ : List[Any] = get_pairs(__A )
if not pairs:
return token
while True:
snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
snake_case__, snake_case__ : Dict = bigram
snake_case__ : str = []
snake_case__ : Union[str, Any] = 0
while i < len(__A ):
try:
snake_case__ : Dict = word.index(__A , __A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case__ : str = j
if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case__ : str = tuple(__A )
snake_case__ : int = new_word
if len(__A ) == 1:
break
else:
snake_case__ : List[str] = get_pairs(__A )
snake_case__ : List[Any] = " ".join(__A )
snake_case__ : Optional[int] = word
return word
def _lowercase ( self : Optional[Any] , __A : Optional[Any] ):
snake_case__ : List[str] = []
for token in re.findall(self.pat , __A ):
snake_case__ : Dict = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) )
return bpe_tokens
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
return self.encoder.get(__A , self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , __A : Optional[Any] ):
return self.decoder.get(__A )
def _lowercase ( self : Union[str, Any] , __A : Dict ):
snake_case__ : Optional[Any] = "".join(__A )
snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : List[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
snake_case__ : str = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" )
snake_case__ : str = 0
with open(__A , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
snake_case__ : int = token_index
writer.write(" ".join(__A ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ : Tuple = [self.cls_token_id]
snake_case__ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Any = [self.sep_token_id]
snake_case__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ):
snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()):
snake_case__ : Optional[int] = " " + text
return (text, kwargs)
def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ):
snake_case__ : Optional[Any] = super()._pad(
encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , )
# Load from model defaults
if return_attention_mask is None:
snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A )
if needs_to_be_padded:
snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case__ : int = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
snake_case__ : Tuple = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 25 | 1 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Tuple = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _lowercase ( self : Optional[Any] ):
snake_case__ : Union[str, Any] = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _lowercase ( self : Any ):
snake_case__ : Tuple = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _lowercase ( self : int ):
snake_case__ : int = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _lowercase ( self : Optional[Any] ):
snake_case__ : str = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
# Removed: 'text_encoder/model.safetensors',
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _lowercase ( self : str ):
snake_case__ : Dict = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
snake_case__ : str = "fp16"
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _lowercase ( self : str ):
snake_case__ : Tuple = [
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
snake_case__ : Dict = "fp16"
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _lowercase ( self : Optional[Any] ):
# pass variant but use the non-variant filenames
snake_case__ : str = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
snake_case__ : Any = "fp16"
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _lowercase ( self : List[str] ):
snake_case__ : Tuple = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
snake_case__ : Dict = "fp16"
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
def _lowercase ( self : List[Any] ):
snake_case__ : Any = [
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
]
snake_case__ : Union[str, Any] = "fp16"
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _lowercase ( self : Optional[int] ):
# pass variant but use the non-variant filenames
snake_case__ : List[str] = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
snake_case__ : List[Any] = "fp16"
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _lowercase ( self : Any ):
snake_case__ : Optional[int] = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
# 'text_encoder/model.fp16.safetensors',
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
snake_case__ : List[Any] = "fp16"
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
| 25 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
| 25 | 1 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
__lowerCamelCase : int = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
a_ = 42
a_ = None
@staticmethod
def _lowercase ( ):
raise NotImplementedError
def _lowercase ( self : str , __A : Tuple , __A : int , __A : str , **__A : Union[str, Any] ):
raise NotImplementedError
def _lowercase ( self : int , __A : int ):
raise NotImplementedError
def _lowercase ( self : Union[str, Any] ):
if not self.is_available():
raise RuntimeError(
f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' )
@classmethod
def _lowercase ( cls : str ):
return f'''`pip install {cls.pip_package or cls.name}`'''
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "optuna"
@staticmethod
def _lowercase ( ):
return is_optuna_available()
def _lowercase ( self : Union[str, Any] , __A : List[str] , __A : int , __A : str , **__A : List[Any] ):
return run_hp_search_optuna(__A , __A , __A , **__A )
def _lowercase ( self : Any , __A : List[Any] ):
return default_hp_space_optuna(__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "ray"
a_ = "'ray[tune]'"
@staticmethod
def _lowercase ( ):
return is_ray_available()
def _lowercase ( self : Optional[Any] , __A : Dict , __A : int , __A : str , **__A : List[Any] ):
return run_hp_search_ray(__A , __A , __A , **__A )
def _lowercase ( self : List[str] , __A : List[Any] ):
return default_hp_space_ray(__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "sigopt"
@staticmethod
def _lowercase ( ):
return is_sigopt_available()
def _lowercase ( self : Optional[Any] , __A : str , __A : int , __A : str , **__A : List[str] ):
return run_hp_search_sigopt(__A , __A , __A , **__A )
def _lowercase ( self : Optional[Any] , __A : List[str] ):
return default_hp_space_sigopt(__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "wandb"
@staticmethod
def _lowercase ( ):
return is_wandb_available()
def _lowercase ( self : str , __A : Optional[int] , __A : int , __A : str , **__A : Union[str, Any] ):
return run_hp_search_wandb(__A , __A , __A , **__A )
def _lowercase ( self : Optional[Any] , __A : int ):
return default_hp_space_wandb(__A )
__lowerCamelCase : Union[str, Any] = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Tuple = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(snake_case_ ) > 0:
snake_case__ : Any = available_backends[0].name
if len(snake_case_ ) > 1:
logger.info(
F'''{len(snake_case_ )} hyperparameter search backends available. Using {name} as the default.''' )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
F''' - To install {backend.name} run {backend.pip_install()}'''
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Any = [0] * len(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
# use last results for better performance - dynamic programming
snake_case__ : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
snake_case__ : str = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
snake_case__ : int = j
return prefix_result
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return max(prefix_function(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
from __future__ import annotations
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : int , __A : int ):
snake_case__ : Union[str, Any] = order
# a_{0} ... a_{k}
snake_case__ : int = [1.0] + [0.0] * order
# b_{0} ... b_{k}
snake_case__ : Dict = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
snake_case__ : str = [0.0] * self.order
# y[n-1] ... y[n-k]
snake_case__ : List[str] = [0.0] * self.order
def _lowercase ( self : Any , __A : list[float] , __A : list[float] ):
if len(__A ) < self.order:
snake_case__ : int = [1.0, *a_coeffs]
if len(__A ) != self.order + 1:
snake_case__ : Optional[int] = (
f'''Expected a_coeffs to have {self.order + 1} elements '''
f'''for {self.order}-order filter, got {len(__A )}'''
)
raise ValueError(__A )
if len(__A ) != self.order + 1:
snake_case__ : Tuple = (
f'''Expected b_coeffs to have {self.order + 1} elements '''
f'''for {self.order}-order filter, got {len(__A )}'''
)
raise ValueError(__A )
snake_case__ : Tuple = a_coeffs
snake_case__ : Optional[Any] = b_coeffs
def _lowercase ( self : int , __A : float ):
snake_case__ : Union[str, Any] = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
snake_case__ : int = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
snake_case__ : Any = self.input_history[:-1]
snake_case__ : str = self.output_history[:-1]
snake_case__ : Tuple = sample
snake_case__ : int = result
return result
| 25 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
__lowerCamelCase : Optional[int] = get_logger()
__lowerCamelCase : Optional[dict] = None
class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
"""simple docstring"""
def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ):
super().__init__(features=__A )
import jax
from jaxlib.xla_client import Device
if isinstance(__A , __A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` '''
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`." )
snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
snake_case__ : str = str(jax.devices()[0] )
snake_case__ : str = jnp_array_kwargs
@staticmethod
def _lowercase ( ):
import jax
return {str(__A ): device for device in jax.devices()}
def _lowercase ( self : Optional[Any] , __A : str ):
import jax
import jax.numpy as jnp
if isinstance(__A , __A ) and column:
if all(
isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__A , axis=0 )
return column
def _lowercase ( self : int , __A : Tuple ):
import jax
import jax.numpy as jnp
if isinstance(__A , (str, bytes, type(__A )) ):
return value
elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
snake_case__ : Optional[int] = {}
if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
snake_case__ : Any = {"dtype": jnp.intaa}
else:
snake_case__ : Tuple = {"dtype": jnp.intaa}
elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
snake_case__ : str = {"dtype": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__A , PIL.Image.Image ):
snake_case__ : Optional[Any] = np.asarray(__A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : int = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ):
snake_case__ : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
elif isinstance(__A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
return self._tensorize(__A )
def _lowercase ( self : Tuple , __A : dict ):
return map_nested(self._recursive_tensorize , __A , map_list=__A )
def _lowercase ( self : Optional[int] , __A : pa.Table ):
snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A )
snake_case__ : Tuple = self.python_features_decoder.decode_row(__A )
return self.recursive_tensorize(__A )
def _lowercase ( self : Optional[Any] , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A )
snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
snake_case__ : Dict = self._consolidate(__A )
return column
def _lowercase ( self : str , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A )
snake_case__ : int = self.python_features_decoder.decode_batch(__A )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
for column_name in batch:
snake_case__ : Any = self._consolidate(batch[column_name] )
return batch
| 25 | 1 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__lowerCamelCase : int = get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
a_ = "dummy_data"
a_ = "datasets"
a_ = False
def __init__( self : Optional[int] , __A : str , __A : str , __A : Union[Version, str] , __A : Optional[str] = None , __A : bool = False , __A : bool = True , __A : Optional[List[Callable]] = None , ):
snake_case__ : Tuple = 0
snake_case__ : Union[str, Any] = dataset_name
snake_case__ : List[str] = cache_dir
snake_case__ : str = use_local_dummy_data
snake_case__ : Any = config
# download_callbacks take a single url as input
snake_case__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
snake_case__ : Union[str, Any] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
snake_case__ : Union[str, Any] = str(__A )
# to be downloaded
snake_case__ : List[str] = None
snake_case__ : Union[str, Any] = None
@property
def _lowercase ( self : str ):
if self._dummy_file is None:
snake_case__ : Dict = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self : Any ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" , self.version_name )
@property
def _lowercase ( self : Optional[Any] ):
return os.path.join(self.dummy_data_folder , "dummy_data.zip" )
def _lowercase ( self : List[Any] ):
snake_case__ : List[Any] = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
snake_case__ : Dict = cached_path(
__A , cache_dir=self.cache_dir , extract_compressed_file=__A , force_extract=__A )
return os.path.join(__A , self.dummy_file_name )
@property
def _lowercase ( self : str ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def _lowercase ( self : List[str] ):
if self._bucket_url is None:
snake_case__ : List[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) )
return self._bucket_url
@property
def _lowercase ( self : List[str] ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] )
def _lowercase ( self : Union[str, Any] , __A : Optional[Any] , *__A : Optional[int] ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
snake_case__ : List[str] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
snake_case__ : Dict = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__A , __A ):
return self.create_dummy_data_dict(__A , __A )
elif isinstance(__A , (list, tuple) ):
return self.create_dummy_data_list(__A , __A )
else:
return self.create_dummy_data_single(__A , __A )
def _lowercase ( self : Union[str, Any] , __A : List[str] , *__A : List[Any] ):
return self.download_and_extract(__A )
def _lowercase ( self : Any , __A : Union[str, Any] , __A : str ):
return self.download_and_extract(__A )
def _lowercase ( self : Union[str, Any] , __A : int , *__A : List[str] , **__A : str ):
return path
def _lowercase ( self : Optional[Any] ):
return {}
def _lowercase ( self : Dict , __A : int , __A : Tuple ):
snake_case__ : str = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__A , __A ):
for single_url in single_urls:
download_callback(__A )
else:
snake_case__ : Optional[Any] = single_urls
download_callback(__A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__A , __A ):
snake_case__ : List[str] = [os.path.join(__A , urllib.parse.quote_plus(Path(__A ).name ) ) for x in single_urls]
else:
snake_case__ : List[str] = single_urls
snake_case__ : Dict = os.path.join(__A , urllib.parse.quote_plus(Path(__A ).name ) )
snake_case__ : List[str] = value
# make sure that values are unique
if all(isinstance(__A , __A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
snake_case__ : str = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self : List[Any] , __A : Optional[Any] , __A : Union[str, Any] ):
snake_case__ : Tuple = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
snake_case__ : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __A ) ) for url in data_url )
snake_case__ : Optional[int] = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
snake_case__ : Optional[Any] = [data_url[0]] * len(__A )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : List[str] = os.path.join(__A , urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__A )
return dummy_data_list
def _lowercase ( self : Optional[int] , __A : List[Any] , __A : Any ):
for download_callback in self.download_callbacks:
download_callback(__A )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : int = os.path.join(__A , urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__A ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self : List[str] ):
pass
def _lowercase ( self : Dict ):
pass
def _lowercase ( self : Any , __A : Any ):
def _iter_archive_members(__A : Tuple ):
# this preserves the order of the members inside the ZIP archive
snake_case__ : List[str] = Path(self.dummy_file ).parent
snake_case__ : Optional[Any] = path.relative_to(__A )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
snake_case__ : List[Any] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__A )
snake_case__ : int = Path(__A )
snake_case__ : Any = _iter_archive_members(__A ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__A ).as_posix(), file_path.open("rb" )
def _lowercase ( self : int , __A : Any ):
if not isinstance(__A , __A ):
snake_case__ : Union[str, Any] = [paths]
for path in paths:
if os.path.isfile(__A ):
if os.path.basename(__A ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__A ):
if os.path.basename(__A ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__A ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__A , __A )
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCamelCase : Tuple = {
"""configuration_roberta_prelayernorm""": [
"""ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""RobertaPreLayerNormConfig""",
"""RobertaPreLayerNormOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Tuple = [
"""ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaPreLayerNormForCausalLM""",
"""RobertaPreLayerNormForMaskedLM""",
"""RobertaPreLayerNormForMultipleChoice""",
"""RobertaPreLayerNormForQuestionAnswering""",
"""RobertaPreLayerNormForSequenceClassification""",
"""RobertaPreLayerNormForTokenClassification""",
"""RobertaPreLayerNormModel""",
"""RobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Union[str, Any] = [
"""TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaPreLayerNormForCausalLM""",
"""TFRobertaPreLayerNormForMaskedLM""",
"""TFRobertaPreLayerNormForMultipleChoice""",
"""TFRobertaPreLayerNormForQuestionAnswering""",
"""TFRobertaPreLayerNormForSequenceClassification""",
"""TFRobertaPreLayerNormForTokenClassification""",
"""TFRobertaPreLayerNormMainLayer""",
"""TFRobertaPreLayerNormModel""",
"""TFRobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = [
"""FlaxRobertaPreLayerNormForCausalLM""",
"""FlaxRobertaPreLayerNormForMaskedLM""",
"""FlaxRobertaPreLayerNormForMultipleChoice""",
"""FlaxRobertaPreLayerNormForQuestionAnswering""",
"""FlaxRobertaPreLayerNormForSequenceClassification""",
"""FlaxRobertaPreLayerNormForTokenClassification""",
"""FlaxRobertaPreLayerNormModel""",
"""FlaxRobertaPreLayerNormPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__lowerCamelCase : str = logging.get_logger(__name__)
__lowerCamelCase : List[Any] = {
"""facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ):
"""simple docstring"""
a_ = "convnextv2"
def __init__( self : List[Any] , __A : List[Any]=3 , __A : Any=4 , __A : Union[str, Any]=4 , __A : Union[str, Any]=None , __A : int=None , __A : Optional[int]="gelu" , __A : Optional[Any]=0.0_2 , __A : Dict=1e-1_2 , __A : List[Any]=0.0 , __A : List[str]=2_2_4 , __A : Any=None , __A : Union[str, Any]=None , **__A : Any , ):
super().__init__(**__A )
snake_case__ : Optional[Any] = num_channels
snake_case__ : int = patch_size
snake_case__ : str = num_stages
snake_case__ : Optional[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
snake_case__ : Union[str, Any] = [3, 3, 9, 3] if depths is None else depths
snake_case__ : Tuple = hidden_act
snake_case__ : str = initializer_range
snake_case__ : int = layer_norm_eps
snake_case__ : str = drop_path_rate
snake_case__ : int = image_size
snake_case__ : Union[str, Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
snake_case__, snake_case__ : Optional[Any] = get_aligned_output_features_output_indices(
out_features=__A , out_indices=__A , stage_names=self.stage_names )
| 25 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ):
snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Tuple = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) )
self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) )
def _lowercase ( self : Dict ):
snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Union[str, Any] = get_activation("gelu" )
snake_case__ : int = get_activation("gelu_10" )
snake_case__ : Optional[int] = torch_builtin(__A )
snake_case__ : Dict = geluaa(__A )
snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 )
self.assertTrue(torch.max(__A ).item() == 1_0.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _lowercase ( self : str ):
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(__A ):
get_activation("bogus" )
with self.assertRaises(__A ):
get_activation(__A )
def _lowercase ( self : List[str] ):
snake_case__ : List[str] = get_activation("gelu" )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__A ):
snake_case__ : int = acta.a
| 25 | 1 |
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str , __A : int , __A : Any=1_3 , __A : int=3_0 , __A : Optional[int]=2 , __A : Dict=3 , __A : Optional[Any]=True , __A : str=True , __A : List[str]=3_2 , __A : Union[str, Any]=5 , __A : str=4 , __A : Any=3_7 , __A : Optional[Any]="gelu" , __A : Any=0.1 , __A : int=0.1 , __A : Optional[int]=1_0 , __A : List[str]=0.0_2 , ):
snake_case__ : Optional[Any] = parent
snake_case__ : Any = batch_size
snake_case__ : Optional[Any] = image_size
snake_case__ : Tuple = patch_size
snake_case__ : List[str] = num_channels
snake_case__ : Union[str, Any] = is_training
snake_case__ : Dict = use_labels
snake_case__ : List[str] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : int = num_attention_heads
snake_case__ : Tuple = intermediate_size
snake_case__ : str = hidden_act
snake_case__ : List[Any] = hidden_dropout_prob
snake_case__ : Union[str, Any] = attention_probs_dropout_prob
snake_case__ : List[Any] = type_sequence_label_size
snake_case__ : int = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
snake_case__ : Tuple = (image_size // patch_size) ** 2
snake_case__ : Optional[int] = num_patches + 1
def _lowercase ( self : Optional[int] ):
snake_case__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : Optional[Any] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , )
return config, pixel_values
def _lowercase ( self : Dict , __A : Optional[int] , __A : Dict ):
snake_case__ : Dict = FlaxViTModel(config=__A )
snake_case__ : Dict = model(__A )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
snake_case__ : List[Any] = (self.image_size, self.image_size)
snake_case__ : Union[str, Any] = (self.patch_size, self.patch_size)
snake_case__ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def _lowercase ( self : List[Any] , __A : Union[str, Any] , __A : Dict ):
snake_case__ : Optional[Any] = self.type_sequence_label_size
snake_case__ : int = FlaxViTForImageClassification(config=__A )
snake_case__ : Any = model(__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
snake_case__ : Tuple = 1
snake_case__ : Tuple = FlaxViTForImageClassification(__A )
snake_case__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case__ : Union[str, Any] = model(__A )
def _lowercase ( self : Any ):
snake_case__ : List[Any] = self.prepare_config_and_inputs()
(
(
snake_case__
), (
snake_case__
),
) : Optional[Any] = config_and_inputs
snake_case__ : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _lowercase ( self : int ):
snake_case__ : Union[str, Any] = FlaxViTModelTester(self )
snake_case__ : Union[str, Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 )
def _lowercase ( self : List[str] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Optional[Any] ):
snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def _lowercase ( self : int ):
snake_case__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def _lowercase ( self : Any ):
snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Dict = model_class(__A )
snake_case__ : Union[str, Any] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Dict = [*signature.parameters.keys()]
snake_case__ : str = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __A )
def _lowercase ( self : Optional[Any] ):
snake_case__, snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
snake_case__ : str = self._prepare_for_class(__A , __A )
snake_case__ : Optional[int] = model_class(__A )
@jax.jit
def model_jitted(__A : List[Any] , **__A : List[str] ):
return model(pixel_values=__A , **__A )
with self.subTest("JIT Enabled" ):
snake_case__ : Any = model_jitted(**__A ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
snake_case__ : str = model_jitted(**__A ).to_tuple()
self.assertEqual(len(__A ) , len(__A ) )
for jitted_output, output in zip(__A , __A ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowercase ( self : int ):
for model_class_name in self.all_model_classes:
snake_case__ : List[str] = model_class_name.from_pretrained("google/vit-base-patch16-224" )
snake_case__ : Union[str, Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(__A )
| 25 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
__lowerCamelCase : Tuple = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ):
for attribute in key.split("." ):
snake_case__ : int = getattr(snake_case_ , snake_case_ )
if weight_type is not None:
snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape
else:
snake_case__ : List[str] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
snake_case__ : str = value
elif weight_type == "weight_g":
snake_case__ : Union[str, Any] = value
elif weight_type == "weight_v":
snake_case__ : Optional[Any] = value
elif weight_type == "bias":
snake_case__ : str = value
else:
snake_case__ : Union[str, Any] = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ):
snake_case__ : str = []
snake_case__ : Optional[int] = fairseq_model.state_dict()
snake_case__ : int = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
snake_case__ : Dict = False
if "conv_layers" in name:
load_conv_layer(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , )
snake_case__ : str = True
else:
for key, mapped_key in MAPPING.items():
snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key):
# special case since naming is very similar
continue
snake_case__ : int = True
if "*" in mapped_key:
snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2]
snake_case__ : Any = mapped_key.replace("*" , snake_case_ )
if "weight_g" in name:
snake_case__ : List[Any] = "weight_g"
elif "weight_v" in name:
snake_case__ : Optional[Any] = "weight_v"
elif "bias" in name:
snake_case__ : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
snake_case__ : Optional[Any] = "weight"
else:
snake_case__ : Optional[Any] = None
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ):
snake_case__ : Tuple = full_name.split("conv_layers." )[-1]
snake_case__ : Union[str, Any] = name.split("." )
snake_case__ : str = int(items[0] )
snake_case__ : str = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' )
snake_case__ : Optional[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' )
snake_case__ : int = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ):
if config_path is not None:
snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
snake_case__ : Tuple = UniSpeechSatConfig()
snake_case__ : str = ""
if is_finetuned:
snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ )
else:
snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ )
snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
snake_case__ : Tuple = model[0].eval()
recursively_load_weights(snake_case_ , snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
__lowerCamelCase : List[Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ):
def update_area_of_max_square(snake_case_ : int , snake_case_ : int ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
snake_case__ : List[Any] = update_area_of_max_square(snake_case_ , col + 1 )
snake_case__ : Optional[int] = update_area_of_max_square(row + 1 , col + 1 )
snake_case__ : int = update_area_of_max_square(row + 1 , snake_case_ )
if mat[row][col]:
snake_case__ : Optional[int] = 1 + min([right, diagonal, down] )
snake_case__ : Any = max(largest_square_area[0] , snake_case_ )
return sub_problem_sol
else:
return 0
snake_case__ : str = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ):
def update_area_of_max_square_using_dp_array(
snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
snake_case__ : Tuple = update_area_of_max_square_using_dp_array(snake_case_ , col + 1 , snake_case_ )
snake_case__ : List[str] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , snake_case_ )
snake_case__ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , snake_case_ , snake_case_ )
if mat[row][col]:
snake_case__ : str = 1 + min([right, diagonal, down] )
snake_case__ : Union[str, Any] = max(largest_square_area[0] , snake_case_ )
snake_case__ : int = sub_problem_sol
return sub_problem_sol
else:
return 0
snake_case__ : List[Any] = [0]
snake_case__ : Dict = [[-1] * cols for _ in range(snake_case_ )]
update_area_of_max_square_using_dp_array(0 , 0 , snake_case_ )
return largest_square_area[0]
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ):
snake_case__ : Tuple = [[0] * (cols + 1) for _ in range(rows + 1 )]
snake_case__ : List[Any] = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
snake_case__ : int = dp_array[row][col + 1]
snake_case__ : Optional[Any] = dp_array[row + 1][col + 1]
snake_case__ : List[Any] = dp_array[row + 1][col]
if mat[row][col] == 1:
snake_case__ : Dict = 1 + min(snake_case_ , snake_case_ , snake_case_ )
snake_case__ : Any = max(dp_array[row][col] , snake_case_ )
else:
snake_case__ : List[Any] = 0
return largest_square_area
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ):
snake_case__ : List[Any] = [0] * (cols + 1)
snake_case__ : str = [0] * (cols + 1)
snake_case__ : Tuple = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
snake_case__ : Dict = current_row[col + 1]
snake_case__ : Optional[int] = next_row[col + 1]
snake_case__ : List[str] = next_row[col]
if mat[row][col] == 1:
snake_case__ : Dict = 1 + min(snake_case_ , snake_case_ , snake_case_ )
snake_case__ : List[str] = max(current_row[col] , snake_case_ )
else:
snake_case__ : int = 0
snake_case__ : Union[str, Any] = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 25 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ):
if attention_mask is None:
snake_case__ : Any = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ )
if decoder_head_mask is None:
snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
if cross_attn_head_mask is None:
snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ):
snake_case__ : Optional[Any] = parent
snake_case__ : List[str] = batch_size
snake_case__ : Union[str, Any] = seq_length
snake_case__ : Optional[Any] = is_training
snake_case__ : List[str] = use_labels
snake_case__ : Tuple = vocab_size
snake_case__ : Optional[Any] = hidden_size
snake_case__ : Union[str, Any] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Tuple = intermediate_size
snake_case__ : str = hidden_act
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : int = encoder_layerdrop
snake_case__ : Tuple = decoder_layerdrop
snake_case__ : List[str] = max_position_embeddings
snake_case__ : Tuple = eos_token_id
snake_case__ : Dict = pad_token_id
snake_case__ : str = bos_token_id
def _lowercase ( self : Tuple ):
snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token
snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Union[str, Any] = self.get_config()
snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A )
return config, inputs_dict
def _lowercase ( self : Dict ):
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def _lowercase ( self : List[str] ):
snake_case__, snake_case__ : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval()
snake_case__ : List[Any] = inputs_dict["input_ids"]
snake_case__ : Optional[Any] = inputs_dict["attention_mask"]
snake_case__ : Union[str, Any] = inputs_dict["head_mask"]
# first forward pass
snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A )
snake_case__, snake_case__ : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"]
snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[
"last_hidden_state"
]
# select random slice
snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) )
def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval()
snake_case__ : Union[str, Any] = model(**__A )
snake_case__ : Tuple = outputs.encoder_last_hidden_state
snake_case__ : Union[str, Any] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_encoder()
encoder.save_pretrained(__A )
snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_decoder()
decoder.save_pretrained(__A )
snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = decoder(
input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
a_ = (
{
"conversational": MaMaaaForConditionalGeneration,
"feature-extraction": MaMaaaModel,
"summarization": MaMaaaForConditionalGeneration,
"text2text-generation": MaMaaaForConditionalGeneration,
"translation": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
a_ = True
a_ = True
a_ = False
a_ = False
def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ):
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def _lowercase ( self : Tuple ):
snake_case__ : Any = MaMaaaModelTester(self )
snake_case__ : Dict = ConfigTester(self , config_class=__A )
def _lowercase ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
snake_case__ : int = model_class(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A )
snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A )
self.assertEqual(info["missing_keys"] , [] )
def _lowercase ( self : Dict ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A )
def _lowercase ( self : Any ):
snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__A )
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
snake_case__ : str = model_class(__A )
model.to(__A )
model.eval()
snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) )
if not self.is_encoder_decoder:
snake_case__ : Optional[Any] = inputs["input_ids"]
del inputs["input_ids"]
else:
snake_case__ : Union[str, Any] = inputs["input_ids"]
snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A )
del inputs["input_ids"]
inputs.pop("decoder_input_ids" , __A )
snake_case__ : Tuple = model.get_input_embeddings()
if not self.is_encoder_decoder:
snake_case__ : List[Any] = wte(__A )
else:
snake_case__ : Any = wte(__A )
snake_case__ : Optional[int] = wte(__A )
with torch.no_grad():
model(**__A )[0]
def _lowercase ( self : Optional[Any] ):
snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
snake_case__ : Any = input_dict["input_ids"]
snake_case__ : int = input_ids.ne(1 ).to(__A )
snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A )
if torch_device == "cuda":
model.half()
model.generate(__A , attention_mask=__A )
model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 )
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ )
__lowerCamelCase : Optional[Any] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : str ):
return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" )
def _lowercase ( self : Optional[int] ):
snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : str = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : Optional[Any] = torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
# change to intended input
snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : Union[str, Any] = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : List[str] = torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Optional[Any] ):
snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" )
snake_case__ : List[Any] = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" )
snake_case__ : Tuple = model.generate(
input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , )
snake_case__ : List[str] = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
snake_case__ : Dict = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A )
assert generated == expected_en
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Tuple=False ):
if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ):
snake_case__ : int = len(set_a.intersection(snake_case_ ) )
if alternative_union:
snake_case__ : List[Any] = len(snake_case_ ) + len(snake_case_ )
else:
snake_case__ : List[str] = len(set_a.union(snake_case_ ) )
return intersection / union
if isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) ):
snake_case__ : Dict = [element for element in set_a if element in set_b]
if alternative_union:
snake_case__ : int = len(snake_case_ ) + len(snake_case_ )
return len(snake_case_ ) / union
else:
snake_case__ : List[str] = set_a + [element for element in set_b if element not in set_a]
return len(snake_case_ ) / len(snake_case_ )
return len(snake_case_ ) / len(snake_case_ )
return None
if __name__ == "__main__":
__lowerCamelCase : str = {"""a""", """b""", """c""", """d""", """e"""}
__lowerCamelCase : int = {"""c""", """d""", """e""", """f""", """h""", """i"""}
print(jaccard_similarity(set_a, set_b))
| 25 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ):
snake_case__ : Optional[int] = []
for part_id in partition_order:
snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(snake_case_ ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 )
snake_case__ : Any = Spark(snake_case_ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 )
snake_case__ : Optional[Any] = [1, 0]
snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions.
snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[int] = spark.range(10 ).repartition(1 )
snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(snake_case_ ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : str = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("numpy.random.Generator" ) as generator_mock:
snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse()
snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] )
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(100 ).repartition(1 )
snake_case__ : Union[str, Any] = Spark(snake_case_ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 25 | 1 |
from __future__ import annotations
import time
__lowerCamelCase : str = list[tuple[int, int]]
__lowerCamelCase : Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ):
snake_case__ : Optional[int] = pos_x
snake_case__ : Dict = pos_y
snake_case__ : int = (pos_y, pos_x)
snake_case__ : Optional[int] = goal_x
snake_case__ : Tuple = goal_y
snake_case__ : str = parent
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ):
snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A )
snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A )
snake_case__ : int = [self.start]
snake_case__ : Union[str, Any] = False
def _lowercase ( self : Dict ):
while self.node_queue:
snake_case__ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
snake_case__ : Optional[Any] = True
return self.retrace_path(__A )
snake_case__ : int = self.get_successors(__A )
for node in successors:
self.node_queue.append(__A )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Union[str, Any] , __A : Node ):
snake_case__ : str = []
for action in delta:
snake_case__ : str = parent.pos_x + action[1]
snake_case__ : Union[str, Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) )
return successors
def _lowercase ( self : Optional[Any] , __A : Node | None ):
snake_case__ : Tuple = node
snake_case__ : Any = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
snake_case__ : Tuple = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : str , __A : int ):
snake_case__ : str = BreadthFirstSearch(__A , __A )
snake_case__ : int = BreadthFirstSearch(__A , __A )
snake_case__ : Tuple = False
def _lowercase ( self : Optional[Any] ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 )
snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
snake_case__ : List[str] = True
return self.retrace_bidirectional_path(
__A , __A )
snake_case__ : Union[str, Any] = current_bwd_node
snake_case__ : Dict = current_fwd_node
snake_case__ : List[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(__A ),
self.bwd_bfs: self.bwd_bfs.get_successors(__A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(__A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Any , __A : Node , __A : Node ):
snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A )
snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A )
bwd_path.pop()
bwd_path.reverse()
snake_case__ : List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowerCamelCase : str = (0, 0)
__lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowerCamelCase : Any = time.time()
__lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal)
__lowerCamelCase : str = bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
__lowerCamelCase : Optional[Any] = time.time()
__lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal)
__lowerCamelCase : str = bd_bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = ["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = ["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = [
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = [
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
__lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Any = [0] * len(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
# use last results for better performance - dynamic programming
snake_case__ : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
snake_case__ : str = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
snake_case__ : int = j
return prefix_result
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return max(prefix_function(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 25 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Tuple = logging.get_logger(__name__)
__lowerCamelCase : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
__lowerCamelCase : Optional[Any] = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
},
"""tokenizer_file""": {
"""google/bigbird-roberta-base""": (
"""https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"""
),
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"""
),
},
}
__lowerCamelCase : int = {
"""google/bigbird-roberta-base""": 4096,
"""google/bigbird-roberta-large""": 4096,
"""google/bigbird-base-trivia-itc""": 4096,
}
__lowerCamelCase : List[str] = """▁"""
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = BigBirdTokenizer
a_ = ["input_ids", "attention_mask"]
a_ = []
def __init__( self : int , __A : Dict=None , __A : int=None , __A : Dict="<unk>" , __A : Union[str, Any]="<s>" , __A : Tuple="</s>" , __A : List[str]="<pad>" , __A : List[Any]="[SEP]" , __A : List[Any]="[MASK]" , __A : List[str]="[CLS]" , **__A : Union[str, Any] , ):
snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
snake_case__ : Optional[int] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
snake_case__ : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , )
snake_case__ : List[Any] = vocab_file
snake_case__ : Tuple = False if not self.vocab_file else True
def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : str = [self.sep_token_id]
snake_case__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1]
def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Union[str, Any] = [self.sep_token_id]
snake_case__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self : List[Any] , __A : str , __A : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : Any = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ):
copyfile(self.vocab_file , __A )
return (out_vocab_file,)
| 25 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def SCREAMING_SNAKE_CASE ( snake_case_ : dict ):
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ):
snake_case__ : Optional[int] = XGBClassifier()
classifier.fit(snake_case_ , snake_case_ )
return classifier
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = load_iris()
snake_case__, snake_case__ : str = data_handling(snake_case_ )
snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split(
snake_case_ , snake_case_ , test_size=0.25 )
snake_case__ : Dict = iris["target_names"]
# Create an XGBoost Classifier from the training data
snake_case__ : Dict = xgboost(snake_case_ , snake_case_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 25 | 1 |
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : List[Any] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Optional[Any] = ort.SessionOptions()
snake_case__ : Dict = False
return options
def _lowercase ( self : Optional[Any] ):
snake_case__ : List[str] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
snake_case__ : Union[str, Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
snake_case__ : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Dict = "A red cat sitting on a park bench"
snake_case__ : int = np.random.RandomState(0 )
snake_case__ : List[Any] = pipe(
prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__A , output_type="np" , )
snake_case__ : List[Any] = output.images
snake_case__ : Tuple = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
snake_case__ : int = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _lowercase ( self : Optional[Any] ):
snake_case__ : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
snake_case__ : List[str] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
snake_case__ : Dict = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" )
snake_case__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Tuple = "A red cat sitting on a park bench"
snake_case__ : Union[str, Any] = np.random.RandomState(0 )
snake_case__ : Optional[Any] = pipe(
prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__A , output_type="np" , )
snake_case__ : Optional[int] = output.images
snake_case__ : Any = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
snake_case__ : List[str] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 25 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ):
snake_case__ : Tuple = args.log_outputs
snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
snake_case__ : List[str] = load_metric("wer" )
snake_case__ : List[str] = load_metric("cer" )
# compute metrics
snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] )
snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}'''
print(snake_case_ )
with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt'''
snake_case__ : int = F'''log_{dataset_id}_targets.txt'''
with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ):
p.write(F'''{i}''' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(F'''{i}''' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case_ , with_indices=snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) )
return text
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
# load dataset
snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id )
snake_case__ : List[Any] = feature_extractor.sampling_rate
# resample audio
snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
snake_case__ : int = 0 if torch.cuda.is_available() else -1
snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Any ):
snake_case__ : Union[str, Any] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
snake_case__ : Optional[int] = prediction["text"]
snake_case__ : Optional[Any] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ , snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
__lowerCamelCase : str = parser.parse_args()
main(args)
| 25 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : Optional[int] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""",
"""BridgeTower/bridgetower-base-itm-mlm""": (
"""https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json"""
),
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "bridgetower_vision_model"
def __init__( self : Dict , __A : Optional[int]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=3 , __A : Optional[Any]=1_6 , __A : Any=2_8_8 , __A : str=1 , __A : Any=1e-0_5 , __A : Optional[int]=False , __A : Optional[Any]=True , __A : List[str]=False , **__A : Union[str, Any] , ):
super().__init__(**__A )
snake_case__ : Any = hidden_size
snake_case__ : List[Any] = num_hidden_layers
snake_case__ : Any = num_channels
snake_case__ : str = patch_size
snake_case__ : Dict = image_size
snake_case__ : Union[str, Any] = initializer_factor
snake_case__ : Dict = layer_norm_eps
snake_case__ : Tuple = stop_gradient
snake_case__ : Any = share_layernorm
snake_case__ : Tuple = remove_last_layer
@classmethod
def _lowercase ( cls : Dict , __A : Union[str, os.PathLike] , **__A : Tuple ):
snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A )
if config_dict.get("model_type" ) == "bridgetower":
snake_case__ : List[Any] = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "bridgetower_text_model"
def __init__( self : Optional[int] , __A : str=5_0_2_6_5 , __A : List[Any]=7_6_8 , __A : int=1_2 , __A : Optional[Any]=1_2 , __A : str=1 , __A : Dict=3_0_7_2 , __A : Tuple="gelu" , __A : Optional[Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_4 , __A : List[str]=1 , __A : List[Any]=1e-0_5 , __A : int=1 , __A : str=0 , __A : str=2 , __A : Union[str, Any]="absolute" , __A : Optional[Any]=True , **__A : Optional[Any] , ):
super().__init__(**__A )
snake_case__ : List[str] = vocab_size
snake_case__ : Optional[int] = hidden_size
snake_case__ : Union[str, Any] = num_hidden_layers
snake_case__ : Dict = num_attention_heads
snake_case__ : Tuple = hidden_act
snake_case__ : Any = initializer_factor
snake_case__ : List[Any] = intermediate_size
snake_case__ : Tuple = hidden_dropout_prob
snake_case__ : Optional[int] = attention_probs_dropout_prob
snake_case__ : Any = max_position_embeddings
snake_case__ : Union[str, Any] = type_vocab_size
snake_case__ : Optional[int] = layer_norm_eps
snake_case__ : Optional[Any] = position_embedding_type
snake_case__ : Union[str, Any] = use_cache
snake_case__ : List[str] = pad_token_id
snake_case__ : Tuple = bos_token_id
snake_case__ : Dict = eos_token_id
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Union[str, Any] ):
snake_case__, snake_case__ : Any = cls.get_config_dict(__A , **__A )
if config_dict.get("model_type" ) == "bridgetower":
snake_case__ : Optional[int] = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "bridgetower"
def __init__( self : Optional[int] , __A : Dict=True , __A : Union[str, Any]="gelu" , __A : Tuple=7_6_8 , __A : Dict=1 , __A : Optional[Any]=1e-0_5 , __A : Optional[int]=False , __A : int="add" , __A : List[Any]=1_2 , __A : Any=6 , __A : List[str]=False , __A : int=False , __A : List[Any]=None , __A : Union[str, Any]=None , **__A : str , ):
# TODO: remove this once the Hub files are updated.
snake_case__ : Optional[int] = kwargs.pop("text_config_dict" , __A )
snake_case__ : Tuple = kwargs.pop("vision_config_dict" , __A )
super().__init__(**__A )
snake_case__ : Dict = share_cross_modal_transformer_layers
snake_case__ : Optional[int] = hidden_act
snake_case__ : Optional[Any] = hidden_size
snake_case__ : Any = initializer_factor
snake_case__ : Any = layer_norm_eps
snake_case__ : Optional[Any] = share_link_tower_layers
snake_case__ : Any = link_tower_type
snake_case__ : Optional[Any] = num_attention_heads
snake_case__ : Dict = num_hidden_layers
snake_case__ : Tuple = tie_word_embeddings
snake_case__ : Any = init_layernorm_from_vision_encoder
if text_config is None:
snake_case__ : Optional[Any] = {}
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." )
if vision_config is None:
snake_case__ : int = {}
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." )
snake_case__ : Optional[int] = BridgeTowerTextConfig(**__A )
snake_case__ : Optional[Any] = BridgeTowerVisionConfig(**__A )
@classmethod
def _lowercase ( cls : Any , __A : BridgeTowerTextConfig , __A : BridgeTowerVisionConfig , **__A : List[str] ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A )
def _lowercase ( self : Tuple ):
snake_case__ : Tuple = copy.deepcopy(self.__dict__ )
snake_case__ : str = self.text_config.to_dict()
snake_case__ : Dict = self.vision_config.to_dict()
snake_case__ : str = self.__class__.model_type
return output
| 25 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
a_ = Features({"text": Value("string" )} )
a_ = Features({"labels": ClassLabel} )
a_ = "text"
a_ = "labels"
def _lowercase ( self : Tuple , __A : List[Any] ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
snake_case__ : Any = copy.deepcopy(self )
snake_case__ : Optional[Any] = self.label_schema.copy()
snake_case__ : List[str] = features[self.label_column]
snake_case__ : Dict = label_schema
return task_template
@property
def _lowercase ( self : Tuple ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 25 | 1 |
from math import ceil, sqrt
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ):
snake_case__ : Tuple = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
snake_case__ : int = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
snake_case__ : Union[str, Any] = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f"{solution() = }")
| 25 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_vision_model"
def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ):
super().__init__(**__A )
snake_case__ : List[str] = hidden_size
snake_case__ : Optional[int] = intermediate_size
snake_case__ : List[str] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : str = patch_size
snake_case__ : int = image_size
snake_case__ : int = initializer_range
snake_case__ : Optional[int] = attention_dropout
snake_case__ : str = layer_norm_eps
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Tuple = qkv_bias
@classmethod
def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : Union[str, Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_qformer"
def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ):
super().__init__(pad_token_id=__A , **__A )
snake_case__ : Dict = vocab_size
snake_case__ : Optional[int] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : str = num_attention_heads
snake_case__ : int = hidden_act
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : List[Any] = max_position_embeddings
snake_case__ : int = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : str = position_embedding_type
snake_case__ : Dict = cross_attention_frequency
snake_case__ : List[str] = encoder_hidden_size
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : List[Any] = config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip"
a_ = True
def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ):
super().__init__(**__A )
if vision_config is None:
snake_case__ : Any = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." )
if qformer_config is None:
snake_case__ : Optional[Any] = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." )
if text_config is None:
snake_case__ : Optional[int] = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." )
snake_case__ : List[Any] = InstructBlipVisionConfig(**__A )
snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A )
snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt"
snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A )
snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings
snake_case__ : Tuple = self.text_config.is_encoder_decoder
snake_case__ : str = num_query_tokens
snake_case__ : Dict = self.vision_config.hidden_size
snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
snake_case__ : int = 1.0
snake_case__ : Optional[int] = 0.0_2
@classmethod
def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , )
def _lowercase ( self : Optional[int] ):
snake_case__ : Any = copy.deepcopy(self.__dict__ )
snake_case__ : Optional[Any] = self.vision_config.to_dict()
snake_case__ : List[str] = self.qformer_config.to_dict()
snake_case__ : List[Any] = self.text_config.to_dict()
snake_case__ : List[Any] = self.__class__.model_type
return output
| 25 | 1 |
from collections.abc import Callable
import numpy as np
def SCREAMING_SNAKE_CASE ( snake_case_ : Callable , snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float ):
snake_case__ : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) )
snake_case__ : Optional[Any] = np.zeros((n + 1,) )
snake_case__ : Any = ya
snake_case__ : Optional[int] = xa
for k in range(snake_case_ ):
snake_case__ : int = y[k] + step_size * ode_func(snake_case_ , y[k] )
snake_case__ : Union[str, Any] = y[k] + (
(step_size / 2) * (ode_func(snake_case_ , y[k] ) + ode_func(x + step_size , snake_case_ ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : list ):
if len(snake_case_ ) <= 1:
return lst
snake_case__ : List[Any] = 1
while i < len(snake_case_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case__ : Union[str, Any] = 1
return lst
if __name__ == "__main__":
__lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip()
__lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")]
print(gnome_sort(unsorted))
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(snake_case_ , snake_case_ ):
raise TypeError("Input value must be a 'int' type" )
return bin(snake_case_ ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
from __future__ import annotations
import time
__lowerCamelCase : str = list[tuple[int, int]]
__lowerCamelCase : Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ):
snake_case__ : Optional[int] = pos_x
snake_case__ : Dict = pos_y
snake_case__ : int = (pos_y, pos_x)
snake_case__ : Optional[int] = goal_x
snake_case__ : Tuple = goal_y
snake_case__ : str = parent
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ):
snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A )
snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A )
snake_case__ : int = [self.start]
snake_case__ : Union[str, Any] = False
def _lowercase ( self : Dict ):
while self.node_queue:
snake_case__ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
snake_case__ : Optional[Any] = True
return self.retrace_path(__A )
snake_case__ : int = self.get_successors(__A )
for node in successors:
self.node_queue.append(__A )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Union[str, Any] , __A : Node ):
snake_case__ : str = []
for action in delta:
snake_case__ : str = parent.pos_x + action[1]
snake_case__ : Union[str, Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) )
return successors
def _lowercase ( self : Optional[Any] , __A : Node | None ):
snake_case__ : Tuple = node
snake_case__ : Any = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
snake_case__ : Tuple = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : str , __A : int ):
snake_case__ : str = BreadthFirstSearch(__A , __A )
snake_case__ : int = BreadthFirstSearch(__A , __A )
snake_case__ : Tuple = False
def _lowercase ( self : Optional[Any] ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 )
snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
snake_case__ : List[str] = True
return self.retrace_bidirectional_path(
__A , __A )
snake_case__ : Union[str, Any] = current_bwd_node
snake_case__ : Dict = current_fwd_node
snake_case__ : List[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(__A ),
self.bwd_bfs: self.bwd_bfs.get_successors(__A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(__A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Any , __A : Node , __A : Node ):
snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A )
snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A )
bwd_path.pop()
bwd_path.reverse()
snake_case__ : List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowerCamelCase : str = (0, 0)
__lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowerCamelCase : Any = time.time()
__lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal)
__lowerCamelCase : str = bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
__lowerCamelCase : Optional[Any] = time.time()
__lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal)
__lowerCamelCase : str = bd_bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 25 | 1 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--txt2img_unclip""",
default="""kakaobrain/karlo-v1-alpha""",
type=str,
required=False,
help="""The pretrained txt2img unclip.""",
)
__lowerCamelCase : List[str] = parser.parse_args()
__lowerCamelCase : Optional[int] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__lowerCamelCase : Optional[Any] = CLIPImageProcessor()
__lowerCamelCase : Dict = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""")
__lowerCamelCase : Optional[Any] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Dict = parent
snake_case__ : Optional[int] = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : str = min_resolution
snake_case__ : Tuple = max_resolution
snake_case__ : List[Any] = do_resize
snake_case__ : Dict = size
snake_case__ : List[str] = do_normalize
snake_case__ : Optional[int] = image_mean
snake_case__ : Optional[int] = image_std
snake_case__ : Any = do_rescale
snake_case__ : Optional[int] = rescale_factor
snake_case__ : int = do_pad
def _lowercase ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ):
if not batched:
snake_case__ : List[str] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : Tuple = image.size
else:
snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Dict = int(self.size["shortest_edge"] * h / w )
snake_case__ : Optional[int] = self.size["shortest_edge"]
elif w > h:
snake_case__ : List[Any] = self.size["shortest_edge"]
snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Dict = self.size["shortest_edge"]
snake_case__ : Dict = self.size["shortest_edge"]
else:
snake_case__ : str = []
for image in image_inputs:
snake_case__, snake_case__ : str = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = ConditionalDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : int ):
snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self )
@property
def _lowercase ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Any ):
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : List[str] ):
snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Any = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : Union[str, Any] ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : List[Any] ):
# prepare image and target
snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Union[str, Any] = json.loads(f.read() )
snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : str ):
# prepare image, target and masks_path
snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : int = json.loads(f.read() )
snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" )
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : str = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCamelCase_ ):
"""simple docstring"""
a_ = ["torch", "torchsde"]
def __init__( self : List[str] , *__A : List[str] , **__A : str ):
requires_backends(self , ["torch", "torchsde"] )
@classmethod
def _lowercase ( cls : int , *__A : Optional[int] , **__A : Optional[int] ):
requires_backends(cls , ["torch", "torchsde"] )
@classmethod
def _lowercase ( cls : Any , *__A : Union[str, Any] , **__A : Optional[int] ):
requires_backends(cls , ["torch", "torchsde"] )
| 25 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Optional[int] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCamelCase : str = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCamelCase : str = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ):
snake_case__ : List[Any] = compute_mauve(
p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , )
return out
| 25 | 1 |
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
__lowerCamelCase : Optional[int] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
a_ = None
@experimental
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Optional[int] ):
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
return _map_with_joblib(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int ):
snake_case__ : Union[str, Any] = num_proc if num_proc <= len(snake_case_ ) else len(snake_case_ )
snake_case__ : Dict = [] # We organize the splits ourselve (contiguous splits)
for index in range(snake_case_ ):
snake_case__ : Tuple = len(snake_case_ ) // num_proc
snake_case__ : Dict = len(snake_case_ ) % num_proc
snake_case__ : List[str] = div * index + min(snake_case_ , snake_case_ )
snake_case__ : List[Any] = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(snake_case_ ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F'''Error dividing inputs iterable among processes. '''
F'''Total number of objects {len(snake_case_ )}, '''
F'''length: {sum(len(i[1] ) for i in split_kwds )}''' )
logger.info(
F'''Spawning {num_proc} processes for {len(snake_case_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' )
snake_case__, snake_case__ : Any = None, None
if not disable_tqdm:
snake_case__, snake_case__ : Optional[Any] = (RLock(),), tqdm.set_lock
with Pool(snake_case_ , initargs=snake_case_ , initializer=snake_case_ ) as pool:
snake_case__ : List[Any] = pool.map(snake_case_ , snake_case_ )
logger.info(F'''Finished {num_proc} processes''' )
snake_case__ : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res]
logger.info(F'''Unpacked {len(snake_case_ )} objects''' )
return mapped
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ):
# progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib,
# and it requires monkey-patching joblib internal classes which is subject to change
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=snake_case_ ):
return joblib.Parallel()(
joblib.delayed(snake_case_ )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Optional[Any] = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
snake_case__ : Optional[Any] = None
| 25 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__lowerCamelCase : Union[str, Any] = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__lowerCamelCase : List[Any] = concatenate_datasets
__lowerCamelCase : List[str] = DownloadConfig
__lowerCamelCase : Union[str, Any] = DownloadManager
__lowerCamelCase : str = DownloadMode
__lowerCamelCase : Union[str, Any] = DownloadConfig
__lowerCamelCase : List[str] = DownloadMode
__lowerCamelCase : Dict = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 25 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : list ):
if len(snake_case_ ) == 0:
return []
snake_case__, snake_case__ : Union[str, Any] = min(snake_case_ ), max(snake_case_ )
snake_case__ : Dict = int(max_value - min_value ) + 1
snake_case__ : list[list] = [[] for _ in range(snake_case_ )]
for i in my_list:
buckets[int(i - min_value )].append(snake_case_ )
return [v for bucket in buckets for v in sorted(snake_case_ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 25 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
snake_case__ : str = [True] * limit
snake_case__ : str = False
snake_case__ : str = False
snake_case__ : str = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
snake_case__ : Optional[Any] = i * 2
while index < limit:
snake_case__ : Union[str, Any] = False
snake_case__ : Any = index + i
snake_case__ : Optional[Any] = [2]
for i in range(3 , snake_case_ , 2 ):
if is_prime[i]:
primes.append(snake_case_ )
return primes
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ):
snake_case__ : Optional[int] = prime_sieve(snake_case_ )
snake_case__ : List[Any] = 0
snake_case__ : List[str] = 0
for i in range(len(snake_case_ ) ):
for j in range(i + length , len(snake_case_ ) ):
snake_case__ : Dict = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
snake_case__ : Tuple = j - i
snake_case__ : str = sol
return largest
if __name__ == "__main__":
print(f"{solution() = }")
| 25 | 1 |
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Optional[Any] , __A : int ):
snake_case__ : List[str] = n
snake_case__ : Optional[int] = [None] * self.n
snake_case__ : int = 0 # index of the first element
snake_case__ : Any = 0
snake_case__ : Union[str, Any] = 0
def __len__( self : Optional[int] ):
return self.size
def _lowercase ( self : List[str] ):
return self.size == 0
def _lowercase ( self : List[str] ):
return False if self.is_empty() else self.array[self.front]
def _lowercase ( self : List[Any] , __A : List[Any] ):
if self.size >= self.n:
raise Exception("QUEUE IS FULL" )
snake_case__ : str = data
snake_case__ : Union[str, Any] = (self.rear + 1) % self.n
self.size += 1
return self
def _lowercase ( self : Dict ):
if self.size == 0:
raise Exception("UNDERFLOW" )
snake_case__ : Union[str, Any] = self.array[self.front]
snake_case__ : Any = None
snake_case__ : Dict = (self.front + 1) % self.n
self.size -= 1
return temp
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Optional[Any] = parent
snake_case__ : str = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : Optional[Any] = min_resolution
snake_case__ : List[str] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : str = size
snake_case__ : str = do_normalize
snake_case__ : Optional[Any] = image_mean
snake_case__ : List[str] = image_std
snake_case__ : List[str] = do_rescale
snake_case__ : Tuple = rescale_factor
snake_case__ : Tuple = do_pad
def _lowercase ( self : str ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ):
if not batched:
snake_case__ : List[Any] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : str = image.size
else:
snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Any = int(self.size["shortest_edge"] * h / w )
snake_case__ : Any = self.size["shortest_edge"]
elif w > h:
snake_case__ : Optional[int] = self.size["shortest_edge"]
snake_case__ : Any = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Tuple = self.size["shortest_edge"]
snake_case__ : int = self.size["shortest_edge"]
else:
snake_case__ : Any = []
for image in image_inputs:
snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : int = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = DeformableDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : str ):
snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self )
@property
def _lowercase ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Tuple ):
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "do_rescale" ) )
self.assertTrue(hasattr(__A , "do_pad" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : Any ):
snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Tuple = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : str ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : int ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Union[str, Any] ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : Optional[Any] ):
# prepare image and target
snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Tuple = json.loads(f.read() )
snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : str = DeformableDetrImageProcessor()
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Union[str, Any] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : Any = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : Optional[int] ):
# prepare image, target and masks_path
snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : Any = json.loads(f.read() )
snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" )
snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Any = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : List[str] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : Union[str, Any] = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : list ):
if len(snake_case_ ) <= 1:
return lst
snake_case__ : List[Any] = 1
while i < len(snake_case_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case__ : Union[str, Any] = 1
return lst
if __name__ == "__main__":
__lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip()
__lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")]
print(gnome_sort(unsorted))
| 25 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
__lowerCamelCase : Tuple = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
__lowerCamelCase : Dict = {
"""allenai/led-base-16384""": 1_6384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
snake_case__ : Optional[int] = bs[:]
snake_case__ : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
snake_case__ : Dict = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_ , snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
snake_case__ : Dict = set()
snake_case__ : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case__ : List[Any] = char
return pairs
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["input_ids", "attention_mask"]
def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ):
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , )
with open(__A , encoding="utf-8" ) as vocab_handle:
snake_case__ : Any = json.load(__A )
snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
snake_case__ : Union[str, Any] = errors # how to handle errors in decoding
snake_case__ : Any = bytes_to_unicode()
snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__A , encoding="utf-8" ) as merges_handle:
snake_case__ : str = merges_handle.read().split("\n" )[1:-1]
snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges]
snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) )
snake_case__ : Optional[int] = {}
snake_case__ : Any = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _lowercase ( self : List[Any] ):
return len(self.encoder )
def _lowercase ( self : Any ):
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self : Optional[Any] , __A : Optional[int] ):
if token in self.cache:
return self.cache[token]
snake_case__ : Union[str, Any] = tuple(__A )
snake_case__ : List[Any] = get_pairs(__A )
if not pairs:
return token
while True:
snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
snake_case__, snake_case__ : Dict = bigram
snake_case__ : str = []
snake_case__ : Union[str, Any] = 0
while i < len(__A ):
try:
snake_case__ : Dict = word.index(__A , __A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case__ : str = j
if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case__ : str = tuple(__A )
snake_case__ : int = new_word
if len(__A ) == 1:
break
else:
snake_case__ : List[str] = get_pairs(__A )
snake_case__ : List[Any] = " ".join(__A )
snake_case__ : Optional[int] = word
return word
def _lowercase ( self : Optional[Any] , __A : Optional[Any] ):
snake_case__ : List[str] = []
for token in re.findall(self.pat , __A ):
snake_case__ : Dict = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) )
return bpe_tokens
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
return self.encoder.get(__A , self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , __A : Optional[Any] ):
return self.decoder.get(__A )
def _lowercase ( self : Union[str, Any] , __A : Dict ):
snake_case__ : Optional[Any] = "".join(__A )
snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : List[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
snake_case__ : str = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" )
snake_case__ : str = 0
with open(__A , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
snake_case__ : int = token_index
writer.write(" ".join(__A ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ : Tuple = [self.cls_token_id]
snake_case__ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Any = [self.sep_token_id]
snake_case__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ):
snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()):
snake_case__ : Optional[int] = " " + text
return (text, kwargs)
def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ):
snake_case__ : Optional[Any] = super()._pad(
encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , )
# Load from model defaults
if return_attention_mask is None:
snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A )
if needs_to_be_padded:
snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case__ : int = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
snake_case__ : Tuple = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 25 | 1 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
__lowerCamelCase : Optional[int] = ["""text""", """image""", """audio"""]
def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ):
snake_case__ : Union[str, Any] = []
for input_type in input_types:
if input_type == "text":
inputs.append("Text input" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(snake_case_ , snake_case_ ):
inputs.append(create_inputs(snake_case_ ) )
else:
raise ValueError(F'''Invalid type requested: {input_type}''' )
return inputs
def SCREAMING_SNAKE_CASE ( snake_case_ : List ):
snake_case__ : int = []
for output in outputs:
if isinstance(snake_case_ , (str, AgentText) ):
output_types.append("text" )
elif isinstance(snake_case_ , (Image.Image, AgentImage) ):
output_types.append("image" )
elif isinstance(snake_case_ , (torch.Tensor, AgentAudio) ):
output_types.append("audio" )
else:
raise ValueError(F'''Invalid output: {output}''' )
return output_types
@is_tool_test
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def _lowercase ( self : int ):
self.assertTrue(hasattr(self.tool , "inputs" ) )
self.assertTrue(hasattr(self.tool , "outputs" ) )
snake_case__ : Tuple = self.tool.inputs
for _input in inputs:
if isinstance(_input , __A ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
snake_case__ : Any = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def _lowercase ( self : str ):
snake_case__ : List[Any] = create_inputs(self.tool.inputs )
snake_case__ : List[Any] = self.tool(*__A )
# There is a single output
if len(self.tool.outputs ) == 1:
snake_case__ : int = [outputs]
self.assertListEqual(output_types(__A ) , self.tool.outputs )
def _lowercase ( self : int ):
self.assertTrue(hasattr(self.tool , "description" ) )
self.assertTrue(hasattr(self.tool , "default_checkpoint" ) )
self.assertTrue(self.tool.description.startswith("This is a tool that" ) )
def _lowercase ( self : int ):
snake_case__ : int = create_inputs(self.tool.inputs )
snake_case__ : int = self.tool(*__A )
if not isinstance(__A , __A ):
snake_case__ : Optional[Any] = [outputs]
self.assertEqual(len(__A ) , len(self.tool.outputs ) )
for output, output_type in zip(__A , self.tool.outputs ):
snake_case__ : Any = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(__A , __A ) )
def _lowercase ( self : str ):
snake_case__ : List[Any] = create_inputs(self.tool.inputs )
snake_case__ : str = []
for _input, input_type in zip(__A , self.tool.inputs ):
if isinstance(__A , __A ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
snake_case__ : Union[str, Any] = self.tool(*__A )
if not isinstance(__A , __A ):
snake_case__ : int = [outputs]
self.assertEqual(len(__A ) , len(self.tool.outputs ) )
| 25 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 10**12 ):
snake_case__ : List[Any] = 1
snake_case__ : Any = 0
snake_case__ : Dict = 1
snake_case__ : Dict = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(f"{solution() = }")
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : Any = [0] * len(snake_case_ )
for i in range(1 , len(snake_case_ ) ):
# use last results for better performance - dynamic programming
snake_case__ : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
snake_case__ : str = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
snake_case__ : int = j
return prefix_result
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
return max(prefix_function(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
from PIL import Image
def SCREAMING_SNAKE_CASE ( snake_case_ : Image , snake_case_ : int ):
snake_case__ : Union[str, Any] = (259 * (level + 255)) / (255 * (259 - level))
def contrast(snake_case_ : int ) -> int:
return int(128 + factor * (c - 128) )
return img.point(snake_case_ )
if __name__ == "__main__":
# Load image
with Image.open("""image_data/lena.jpg""") as img:
# Change contrast to 170
__lowerCamelCase : Dict = change_contrast(img, 170)
cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
| 25 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
__lowerCamelCase : Optional[int] = get_logger()
__lowerCamelCase : Optional[dict] = None
class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
"""simple docstring"""
def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ):
super().__init__(features=__A )
import jax
from jaxlib.xla_client import Device
if isinstance(__A , __A ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` '''
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`." )
snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : Any = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
snake_case__ : str = str(jax.devices()[0] )
snake_case__ : str = jnp_array_kwargs
@staticmethod
def _lowercase ( ):
import jax
return {str(__A ): device for device in jax.devices()}
def _lowercase ( self : Optional[Any] , __A : str ):
import jax
import jax.numpy as jnp
if isinstance(__A , __A ) and column:
if all(
isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__A , axis=0 )
return column
def _lowercase ( self : int , __A : Tuple ):
import jax
import jax.numpy as jnp
if isinstance(__A , (str, bytes, type(__A )) ):
return value
elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
snake_case__ : Optional[int] = {}
if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
snake_case__ : Any = {"dtype": jnp.intaa}
else:
snake_case__ : Tuple = {"dtype": jnp.intaa}
elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
snake_case__ : str = {"dtype": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__A , PIL.Image.Image ):
snake_case__ : Optional[Any] = np.asarray(__A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
snake_case__ : int = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ):
snake_case__ : Union[str, Any] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
elif isinstance(__A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] )
return self._tensorize(__A )
def _lowercase ( self : Tuple , __A : dict ):
return map_nested(self._recursive_tensorize , __A , map_list=__A )
def _lowercase ( self : Optional[int] , __A : pa.Table ):
snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A )
snake_case__ : Tuple = self.python_features_decoder.decode_row(__A )
return self.recursive_tensorize(__A )
def _lowercase ( self : Optional[Any] , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A )
snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
snake_case__ : Dict = self._consolidate(__A )
return column
def _lowercase ( self : str , __A : pa.Table ):
snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A )
snake_case__ : int = self.python_features_decoder.decode_batch(__A )
snake_case__ : List[Any] = self.recursive_tensorize(__A )
for column_name in batch:
snake_case__ : Any = self._consolidate(batch[column_name] )
return batch
| 25 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ):
snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Tuple = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) )
self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) )
def _lowercase ( self : Dict ):
snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Union[str, Any] = get_activation("gelu" )
snake_case__ : int = get_activation("gelu_10" )
snake_case__ : Optional[int] = torch_builtin(__A )
snake_case__ : Dict = geluaa(__A )
snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 )
self.assertTrue(torch.max(__A ).item() == 1_0.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _lowercase ( self : str ):
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(__A ):
get_activation("bogus" )
with self.assertRaises(__A ):
get_activation(__A )
def _lowercase ( self : List[str] ):
snake_case__ : List[str] = get_activation("gelu" )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__A ):
snake_case__ : int = acta.a
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__lowerCamelCase : Tuple = {
"""configuration_roberta_prelayernorm""": [
"""ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""RobertaPreLayerNormConfig""",
"""RobertaPreLayerNormOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Tuple = [
"""ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaPreLayerNormForCausalLM""",
"""RobertaPreLayerNormForMaskedLM""",
"""RobertaPreLayerNormForMultipleChoice""",
"""RobertaPreLayerNormForQuestionAnswering""",
"""RobertaPreLayerNormForSequenceClassification""",
"""RobertaPreLayerNormForTokenClassification""",
"""RobertaPreLayerNormModel""",
"""RobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Union[str, Any] = [
"""TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaPreLayerNormForCausalLM""",
"""TFRobertaPreLayerNormForMaskedLM""",
"""TFRobertaPreLayerNormForMultipleChoice""",
"""TFRobertaPreLayerNormForQuestionAnswering""",
"""TFRobertaPreLayerNormForSequenceClassification""",
"""TFRobertaPreLayerNormForTokenClassification""",
"""TFRobertaPreLayerNormMainLayer""",
"""TFRobertaPreLayerNormModel""",
"""TFRobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : List[Any] = [
"""FlaxRobertaPreLayerNormForCausalLM""",
"""FlaxRobertaPreLayerNormForMaskedLM""",
"""FlaxRobertaPreLayerNormForMultipleChoice""",
"""FlaxRobertaPreLayerNormForQuestionAnswering""",
"""FlaxRobertaPreLayerNormForSequenceClassification""",
"""FlaxRobertaPreLayerNormForTokenClassification""",
"""FlaxRobertaPreLayerNormModel""",
"""FlaxRobertaPreLayerNormPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ):
snake_case__ : Optional[int] = []
for part_id in partition_order:
snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(snake_case_ ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 )
snake_case__ : Any = Spark(snake_case_ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 )
snake_case__ : Optional[Any] = [1, 0]
snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions.
snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[int] = spark.range(10 ).repartition(1 )
snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(snake_case_ ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : str = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("numpy.random.Generator" ) as generator_mock:
snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse()
snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] )
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(100 ).repartition(1 )
snake_case__ : Union[str, Any] = Spark(snake_case_ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 25 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ):
snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Tuple = get_activation("gelu" )
self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) )
self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) )
def _lowercase ( self : Dict ):
snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] )
snake_case__ : Union[str, Any] = get_activation("gelu" )
snake_case__ : int = get_activation("gelu_10" )
snake_case__ : Optional[int] = torch_builtin(__A )
snake_case__ : Dict = geluaa(__A )
snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 )
self.assertTrue(torch.max(__A ).item() == 1_0.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _lowercase ( self : str ):
get_activation("gelu" )
get_activation("gelu_10" )
get_activation("gelu_fast" )
get_activation("gelu_new" )
get_activation("gelu_python" )
get_activation("gelu_pytorch_tanh" )
get_activation("linear" )
get_activation("mish" )
get_activation("quick_gelu" )
get_activation("relu" )
get_activation("sigmoid" )
get_activation("silu" )
get_activation("swish" )
get_activation("tanh" )
with self.assertRaises(__A ):
get_activation("bogus" )
with self.assertRaises(__A ):
get_activation(__A )
def _lowercase ( self : List[str] ):
snake_case__ : List[str] = get_activation("gelu" )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = get_activation("gelu" )
self.assertEqual(acta.a , 1 )
with self.assertRaises(__A ):
snake_case__ : int = acta.a
| 25 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : List[str] = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : int = ["""PLBartTokenizer"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[int] = [
"""PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PLBartForCausalLM""",
"""PLBartForConditionalGeneration""",
"""PLBartForSequenceClassification""",
"""PLBartModel""",
"""PLBartPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__lowerCamelCase : int = logging.get_logger(__name__)
__lowerCamelCase : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
__lowerCamelCase : Tuple = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ):
for attribute in key.split("." ):
snake_case__ : int = getattr(snake_case_ , snake_case_ )
if weight_type is not None:
snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape
else:
snake_case__ : List[str] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
snake_case__ : str = value
elif weight_type == "weight_g":
snake_case__ : Union[str, Any] = value
elif weight_type == "weight_v":
snake_case__ : Optional[Any] = value
elif weight_type == "bias":
snake_case__ : str = value
else:
snake_case__ : Union[str, Any] = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ):
snake_case__ : str = []
snake_case__ : Optional[int] = fairseq_model.state_dict()
snake_case__ : int = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
snake_case__ : Dict = False
if "conv_layers" in name:
load_conv_layer(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , )
snake_case__ : str = True
else:
for key, mapped_key in MAPPING.items():
snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key):
# special case since naming is very similar
continue
snake_case__ : int = True
if "*" in mapped_key:
snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2]
snake_case__ : Any = mapped_key.replace("*" , snake_case_ )
if "weight_g" in name:
snake_case__ : List[Any] = "weight_g"
elif "weight_v" in name:
snake_case__ : Optional[Any] = "weight_v"
elif "bias" in name:
snake_case__ : Optional[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
snake_case__ : Optional[Any] = "weight"
else:
snake_case__ : Optional[Any] = None
set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ):
snake_case__ : Tuple = full_name.split("conv_layers." )[-1]
snake_case__ : Union[str, Any] = name.split("." )
snake_case__ : str = int(items[0] )
snake_case__ : str = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
snake_case__ : Any = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' )
snake_case__ : Optional[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' )
snake_case__ : int = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ):
if config_path is not None:
snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
snake_case__ : Tuple = UniSpeechSatConfig()
snake_case__ : str = ""
if is_finetuned:
snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ )
else:
snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ )
snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
snake_case__ : Tuple = model[0].eval()
recursively_load_weights(snake_case_ , snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
__lowerCamelCase : List[Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 25 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mvp import MvpTokenizer
__lowerCamelCase : Any = logging.get_logger(__name__)
__lowerCamelCase : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
# See all MVP models at https://huggingface.co/models?filter=mvp
__lowerCamelCase : Dict = {
"""vocab_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""",
},
"""added_tokens.json""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""",
},
"""merges_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""",
},
}
__lowerCamelCase : Any = {
"""RUCAIBox/mvp""": 1024,
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["input_ids", "attention_mask"]
a_ = MvpTokenizer
def __init__( self : Optional[int] , __A : Optional[int]=None , __A : int=None , __A : str=None , __A : List[str]="replace" , __A : Optional[int]="<s>" , __A : str="</s>" , __A : Optional[int]="</s>" , __A : Optional[int]="<s>" , __A : str="<unk>" , __A : int="<pad>" , __A : List[str]="<mask>" , __A : Dict=False , __A : int=True , **__A : List[str] , ):
super().__init__(
__A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , )
snake_case__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space:
snake_case__ : Dict = getattr(__A , pre_tok_state.pop("type" ) )
snake_case__ : Optional[Any] = add_prefix_space
snake_case__ : str = pre_tok_class(**__A )
snake_case__ : Tuple = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case__ : Optional[Any] = "post_processor"
snake_case__ : List[Any] = getattr(self.backend_tokenizer , __A , __A )
if tokenizer_component_instance:
snake_case__ : List[str] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case__ : Union[str, Any] = tuple(state["sep"] )
if "cls" in state:
snake_case__ : List[str] = tuple(state["cls"] )
snake_case__ : int = False
if state.get("add_prefix_space" , __A ) != add_prefix_space:
snake_case__ : Tuple = add_prefix_space
snake_case__ : Optional[Any] = True
if state.get("trim_offsets" , __A ) != trim_offsets:
snake_case__ : Dict = trim_offsets
snake_case__ : int = True
if changes_to_apply:
snake_case__ : int = getattr(__A , state.pop("type" ) )
snake_case__ : Optional[Any] = component_class(**__A )
setattr(self.backend_tokenizer , __A , __A )
@property
def _lowercase ( self : Optional[Any] ):
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def _lowercase ( self : List[Any] , __A : Union[str, Any] ):
snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value
snake_case__ : str = value
def _lowercase ( self : Optional[Any] , *__A : str , **__A : Tuple ):
snake_case__ : Any = kwargs.get("is_split_into_words" , __A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*__A , **__A )
def _lowercase ( self : Tuple , *__A : Optional[int] , **__A : str ):
snake_case__ : Union[str, Any] = kwargs.get("is_split_into_words" , __A )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._encode_plus(*__A , **__A )
def _lowercase ( self : Any , __A : str , __A : Optional[str] = None ):
snake_case__ : Optional[Any] = self._tokenizer.model.save(__A , name=__A )
return tuple(__A )
def _lowercase ( self : Optional[int] , __A : Optional[int] , __A : int=None ):
snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowercase ( self : str , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Optional[Any] = [self.sep_token_id]
snake_case__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ):
if attention_mask is None:
snake_case__ : Any = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ )
if decoder_head_mask is None:
snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
if cross_attn_head_mask is None:
snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ):
snake_case__ : Optional[Any] = parent
snake_case__ : List[str] = batch_size
snake_case__ : Union[str, Any] = seq_length
snake_case__ : Optional[Any] = is_training
snake_case__ : List[str] = use_labels
snake_case__ : Tuple = vocab_size
snake_case__ : Optional[Any] = hidden_size
snake_case__ : Union[str, Any] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Tuple = intermediate_size
snake_case__ : str = hidden_act
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : int = encoder_layerdrop
snake_case__ : Tuple = decoder_layerdrop
snake_case__ : List[str] = max_position_embeddings
snake_case__ : Tuple = eos_token_id
snake_case__ : Dict = pad_token_id
snake_case__ : str = bos_token_id
def _lowercase ( self : Tuple ):
snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token
snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
snake_case__ : Union[str, Any] = self.get_config()
snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A )
return config, inputs_dict
def _lowercase ( self : Dict ):
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def _lowercase ( self : List[str] ):
snake_case__, snake_case__ : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval()
snake_case__ : List[Any] = inputs_dict["input_ids"]
snake_case__ : Optional[Any] = inputs_dict["attention_mask"]
snake_case__ : Union[str, Any] = inputs_dict["head_mask"]
# first forward pass
snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A )
snake_case__, snake_case__ : Dict = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"]
snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[
"last_hidden_state"
]
# select random slice
snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) )
def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ):
snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval()
snake_case__ : Union[str, Any] = model(**__A )
snake_case__ : Tuple = outputs.encoder_last_hidden_state
snake_case__ : Union[str, Any] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_encoder()
encoder.save_pretrained(__A )
snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ : Dict = model.get_decoder()
decoder.save_pretrained(__A )
snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A )
snake_case__ : List[str] = decoder(
input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
a_ = (
{
"conversational": MaMaaaForConditionalGeneration,
"feature-extraction": MaMaaaModel,
"summarization": MaMaaaForConditionalGeneration,
"text2text-generation": MaMaaaForConditionalGeneration,
"translation": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
a_ = True
a_ = True
a_ = False
a_ = False
def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ):
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def _lowercase ( self : Tuple ):
snake_case__ : Any = MaMaaaModelTester(self )
snake_case__ : Dict = ConfigTester(self , config_class=__A )
def _lowercase ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
snake_case__ : int = model_class(__A )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__A )
snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A )
self.assertEqual(info["missing_keys"] , [] )
def _lowercase ( self : Dict ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A )
def _lowercase ( self : Any ):
snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__A )
def _lowercase ( self : Union[str, Any] ):
snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
snake_case__ : str = model_class(__A )
model.to(__A )
model.eval()
snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) )
if not self.is_encoder_decoder:
snake_case__ : Optional[Any] = inputs["input_ids"]
del inputs["input_ids"]
else:
snake_case__ : Union[str, Any] = inputs["input_ids"]
snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A )
del inputs["input_ids"]
inputs.pop("decoder_input_ids" , __A )
snake_case__ : Tuple = model.get_input_embeddings()
if not self.is_encoder_decoder:
snake_case__ : List[Any] = wte(__A )
else:
snake_case__ : Any = wte(__A )
snake_case__ : Optional[int] = wte(__A )
with torch.no_grad():
model(**__A )[0]
def _lowercase ( self : Optional[Any] ):
snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
snake_case__ : Any = input_dict["input_ids"]
snake_case__ : int = input_ids.ne(1 ).to(__A )
snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A )
if torch_device == "cuda":
model.half()
model.generate(__A , attention_mask=__A )
model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 )
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ )
__lowerCamelCase : Optional[Any] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : str ):
return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" )
def _lowercase ( self : Optional[int] ):
snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : str = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : Optional[Any] = torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
# change to intended input
snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] )
snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] )
snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A )
with torch.no_grad():
snake_case__ : Union[str, Any] = model(**__A )[0]
snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) )
self.assertEqual(output.shape , __A )
# change to expected output here
snake_case__ : List[str] = torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) )
def _lowercase ( self : Optional[Any] ):
snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A )
snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" )
snake_case__ : List[Any] = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" )
snake_case__ : Tuple = model.generate(
input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , )
snake_case__ : List[str] = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
snake_case__ : Dict = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A )
assert generated == expected_en
| 25 | 1 |
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
__lowerCamelCase : Union[str, Any] = HfArgumentParser(InitializationArguments)
__lowerCamelCase : Optional[Any] = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
__lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
__lowerCamelCase : str = {
"""vocab_size""": len(tokenizer),
"""scale_attn_by_inverse_layer_idx""": True,
"""reorder_and_upcast_attn""": True,
}
# Load model config (GPT-2 large in this case)
__lowerCamelCase : Dict = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
__lowerCamelCase : str = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 25 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ):
snake_case__ : Optional[int] = []
for part_id in partition_order:
snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(snake_case_ ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 )
snake_case__ : Any = Spark(snake_case_ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 )
snake_case__ : Optional[Any] = [1, 0]
snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions.
snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Optional[int] = spark.range(10 ).repartition(1 )
snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(snake_case_ ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : str = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("numpy.random.Generator" ) as generator_mock:
snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse()
snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] )
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
snake_case__ : Tuple = spark.range(100 ).repartition(1 )
snake_case__ : Union[str, Any] = Spark(snake_case_ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 25 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCamelCase : str = {
"""configuration_instructblip""": [
"""INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""InstructBlipConfig""",
"""InstructBlipQFormerConfig""",
"""InstructBlipVisionConfig""",
],
"""processing_instructblip""": ["""InstructBlipProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Tuple = [
"""INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""InstructBlipQFormerModel""",
"""InstructBlipPreTrainedModel""",
"""InstructBlipForConditionalGeneration""",
"""InstructBlipVisionModel""",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = ["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = ["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : str = [
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Dict = [
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
__lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 | 1 |
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
__lowerCamelCase : Any = logging.getLogger(__name__)
__lowerCamelCase : Union[str, Any] = """Hello world! cécé herlolip"""
__lowerCamelCase : str = namedtuple(
"""BertAbsConfig""",
[
"""temp_dir""",
"""large""",
"""use_bert_emb""",
"""finetune_bert""",
"""encoder""",
"""share_emb""",
"""max_pos""",
"""enc_layers""",
"""enc_hidden_size""",
"""enc_heads""",
"""enc_ff_size""",
"""enc_dropout""",
"""dec_layers""",
"""dec_hidden_size""",
"""dec_heads""",
"""dec_ff_size""",
"""dec_dropout""",
],
)
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ):
snake_case__ : Tuple = BertAbsConfig(
temp_dir="." , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , )
snake_case__ : Dict = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage )
snake_case__ : Union[str, Any] = AbsSummarizer(snake_case_ , torch.device("cpu" ) , snake_case_ )
original.eval()
snake_case__ : List[str] = BertAbsSummarizer(snake_case_ , torch.device("cpu" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical" )
snake_case__ : int = BertTokenizer.from_pretrained("bert-base-uncased" )
# prepare the model inputs
snake_case__ : List[str] = tokenizer.encode("This is sample éàalj'-." )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
snake_case__ : Union[str, Any] = torch.tensor(snake_case_ ).unsqueeze(0 )
snake_case__ : Dict = tokenizer.encode("This is sample 3 éàalj'-." )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) )
snake_case__ : List[Any] = torch.tensor(snake_case_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
snake_case__ : str = encoder_input_ids
snake_case__ : Any = decoder_input_ids
snake_case__ : Union[str, Any] = None
snake_case__ : str = None
snake_case__ : Optional[Any] = None
snake_case__ : Optional[Any] = None
snake_case__ : Any = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
snake_case__ : Optional[int] = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
snake_case__ : Tuple = original.generator(snake_case_ )
snake_case__ : Optional[Any] = new_model(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0]
snake_case__ : int = new_model.generator(snake_case_ )
snake_case__ : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(snake_case_ ) )
snake_case__ : str = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(snake_case_ ) )
snake_case__ : Tuple = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 )
if are_identical:
logging.info("all weights are equal up to 1e-3" )
else:
raise ValueError("the weights are different. The new model is likely different from the original one." )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary" )
torch.save(
new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" )
if __name__ == "__main__":
__lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--bertabs_checkpoint_path""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch dump.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
__lowerCamelCase : List[str] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 25 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 25 | 1 |
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def SCREAMING_SNAKE_CASE ( snake_case_ : bool = True , *snake_case_ : Any , **snake_case_ : str ):
if not is_tqdm_available():
raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." )
snake_case__ : Union[str, Any] = False
if main_process_only:
snake_case__ : Dict = PartialState().local_process_index == 0
return _tqdm(*snake_case_ , **snake_case_ , disable=snake_case_ )
| 25 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def SCREAMING_SNAKE_CASE ( snake_case_ : dict ):
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ):
snake_case__ : Optional[int] = XGBClassifier()
classifier.fit(snake_case_ , snake_case_ )
return classifier
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Any = load_iris()
snake_case__, snake_case__ : str = data_handling(snake_case_ )
snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split(
snake_case_ , snake_case_ , test_size=0.25 )
snake_case__ : Dict = iris["target_names"]
# Create an XGBoost Classifier from the training data
snake_case__ : Dict = xgboost(snake_case_ , snake_case_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 25 | 1 |
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("socket.socket" )
@patch("builtins.open" )
def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict ):
# ===== initialization =====
snake_case__ : str = Mock()
snake_case__ : int = conn, Mock()
snake_case__ : str = iter([1, None] )
snake_case__ : Optional[Any] = lambda snake_case_ : next(snake_case_ )
# ===== invoke =====
send_file(filename="mytext.txt" , testing=snake_case_ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 25 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ):
snake_case__ : Tuple = args.log_outputs
snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
snake_case__ : List[str] = load_metric("wer" )
snake_case__ : List[str] = load_metric("cer" )
# compute metrics
snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] )
snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}'''
print(snake_case_ )
with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt'''
snake_case__ : int = F'''log_{dataset_id}_targets.txt'''
with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ):
p.write(F'''{i}''' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(F'''{i}''' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case_ , with_indices=snake_case_ )
def SCREAMING_SNAKE_CASE ( snake_case_ : str ):
snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) )
return text
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
# load dataset
snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id )
snake_case__ : List[Any] = feature_extractor.sampling_rate
# resample audio
snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
snake_case__ : int = 0 if torch.cuda.is_available() else -1
snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ : Any ):
snake_case__ : Union[str, Any] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
snake_case__ : Optional[int] = prediction["text"]
snake_case__ : Optional[Any] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_ , snake_case_ )
if __name__ == "__main__":
__lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
__lowerCamelCase : str = parser.parse_args()
main(args)
| 25 | 1 |
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = 42
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
"""simple docstring"""
def __init__( self : str , __A : Union[str, Any]=3 , __A : List[Any]=3 , __A : Union[str, Any]=("DownEncoderBlock2D",) , __A : str=(6_4,) , __A : Optional[int]=2 , __A : Union[str, Any]=3_2 , __A : Any="silu" , __A : Optional[Any]=True , ):
super().__init__()
snake_case__ : Optional[Any] = layers_per_block
snake_case__ : Optional[Any] = torch.nn.Convad(
__A , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : int = None
snake_case__ : Tuple = nn.ModuleList([] )
# down
snake_case__ : str = block_out_channels[0]
for i, down_block_type in enumerate(__A ):
snake_case__ : List[Any] = output_channel
snake_case__ : Union[str, Any] = block_out_channels[i]
snake_case__ : int = i == len(__A ) - 1
snake_case__ : str = get_down_block(
__A , num_layers=self.layers_per_block , in_channels=__A , out_channels=__A , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , )
self.down_blocks.append(__A )
# mid
snake_case__ : List[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , )
# out
snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__A , eps=1e-6 )
snake_case__ : List[str] = nn.SiLU()
snake_case__ : Tuple = 2 * out_channels if double_z else out_channels
snake_case__ : Tuple = nn.Convad(block_out_channels[-1] , __A , 3 , padding=1 )
snake_case__ : Any = False
def _lowercase ( self : Dict , __A : str ):
snake_case__ : int = x
snake_case__ : List[Any] = self.conv_in(__A )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__A : Optional[int] ):
def custom_forward(*__A : Tuple ):
return module(*__A )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
snake_case__ : Optional[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__A ) , __A , use_reentrant=__A )
# middle
snake_case__ : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __A , use_reentrant=__A )
else:
for down_block in self.down_blocks:
snake_case__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A )
# middle
snake_case__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __A )
else:
# down
for down_block in self.down_blocks:
snake_case__ : int = down_block(__A )
# middle
snake_case__ : Optional[Any] = self.mid_block(__A )
# post-process
snake_case__ : Any = self.conv_norm_out(__A )
snake_case__ : Union[str, Any] = self.conv_act(__A )
snake_case__ : Union[str, Any] = self.conv_out(__A )
return sample
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
"""simple docstring"""
def __init__( self : str , __A : Optional[int]=3 , __A : List[str]=3 , __A : str=("UpDecoderBlock2D",) , __A : List[str]=(6_4,) , __A : List[str]=2 , __A : str=3_2 , __A : int="silu" , __A : Tuple="group" , ):
super().__init__()
snake_case__ : List[str] = layers_per_block
snake_case__ : str = nn.Convad(
__A , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : str = None
snake_case__ : int = nn.ModuleList([] )
snake_case__ : str = in_channels if norm_type == "spatial" else None
# mid
snake_case__ : Tuple = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , )
# up
snake_case__ : Union[str, Any] = list(reversed(__A ) )
snake_case__ : Dict = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__A ):
snake_case__ : str = output_channel
snake_case__ : int = reversed_block_out_channels[i]
snake_case__ : List[Any] = i == len(__A ) - 1
snake_case__ : Tuple = get_up_block(
__A , num_layers=self.layers_per_block + 1 , in_channels=__A , out_channels=__A , prev_output_channel=__A , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , resnet_time_scale_shift=__A , )
self.up_blocks.append(__A )
snake_case__ : Optional[Any] = output_channel
# out
if norm_type == "spatial":
snake_case__ : str = SpatialNorm(block_out_channels[0] , __A )
else:
snake_case__ : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__A , eps=1e-6 )
snake_case__ : List[Any] = nn.SiLU()
snake_case__ : List[Any] = nn.Convad(block_out_channels[0] , __A , 3 , padding=1 )
snake_case__ : Optional[int] = False
def _lowercase ( self : str , __A : Union[str, Any] , __A : int=None ):
snake_case__ : List[str] = z
snake_case__ : str = self.conv_in(__A )
snake_case__ : Dict = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__A : Optional[int] ):
def custom_forward(*__A : Tuple ):
return module(*__A )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
snake_case__ : Union[str, Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __A , __A , use_reentrant=__A )
snake_case__ : int = sample.to(__A )
# up
for up_block in self.up_blocks:
snake_case__ : int = torch.utils.checkpoint.checkpoint(
create_custom_forward(__A ) , __A , __A , use_reentrant=__A )
else:
# middle
snake_case__ : str = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __A , __A )
snake_case__ : List[Any] = sample.to(__A )
# up
for up_block in self.up_blocks:
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A , __A )
else:
# middle
snake_case__ : Tuple = self.mid_block(__A , __A )
snake_case__ : Optional[int] = sample.to(__A )
# up
for up_block in self.up_blocks:
snake_case__ : Optional[int] = up_block(__A , __A )
# post-process
if latent_embeds is None:
snake_case__ : Tuple = self.conv_norm_out(__A )
else:
snake_case__ : Optional[Any] = self.conv_norm_out(__A , __A )
snake_case__ : Union[str, Any] = self.conv_act(__A )
snake_case__ : Any = self.conv_out(__A )
return sample
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , __A : str , __A : Optional[int] , __A : Dict , __A : Optional[Any]=None , __A : Union[str, Any]="random" , __A : str=False , __A : Any=True ):
super().__init__()
snake_case__ : Dict = n_e
snake_case__ : Optional[Any] = vq_embed_dim
snake_case__ : List[Any] = beta
snake_case__ : str = legacy
snake_case__ : Union[str, Any] = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case__ : List[str] = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
snake_case__ : Any = self.used.shape[0]
snake_case__ : str = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case__ : Union[str, Any] = self.re_embed
snake_case__ : Any = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
snake_case__ : str = n_e
snake_case__ : Tuple = sane_index_shape
def _lowercase ( self : Any , __A : List[Any] ):
snake_case__ : Optional[Any] = inds.shape
assert len(__A ) > 1
snake_case__ : int = inds.reshape(ishape[0] , -1 )
snake_case__ : Optional[int] = self.used.to(__A )
snake_case__ : List[str] = (inds[:, :, None] == used[None, None, ...]).long()
snake_case__ : List[str] = match.argmax(-1 )
snake_case__ : Union[str, Any] = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case__ : Union[str, Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case__ : Optional[Any] = self.unknown_index
return new.reshape(__A )
def _lowercase ( self : List[Any] , __A : int ):
snake_case__ : str = inds.shape
assert len(__A ) > 1
snake_case__ : Optional[int] = inds.reshape(ishape[0] , -1 )
snake_case__ : List[str] = self.used.to(__A )
if self.re_embed > self.used.shape[0]: # extra token
snake_case__ : List[str] = 0 # simply set to zero
snake_case__ : int = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __A )
return back.reshape(__A )
def _lowercase ( self : List[str] , __A : Union[str, Any] ):
# reshape z -> (batch, height, width, channel) and flatten
snake_case__ : int = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case__ : Tuple = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case__ : List[str] = torch.argmin(torch.cdist(__A , self.embedding.weight ) , dim=1 )
snake_case__ : Optional[Any] = self.embedding(__A ).view(z.shape )
snake_case__ : List[str] = None
snake_case__ : Union[str, Any] = None
# compute loss for embedding
if not self.legacy:
snake_case__ : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case__ : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case__ : Optional[int] = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case__ : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case__ : str = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case__ : Tuple = self.remap_to_used(__A )
snake_case__ : Optional[int] = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case__ : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def _lowercase ( self : Union[str, Any] , __A : Any , __A : int ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
snake_case__ : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case__ : Dict = self.unmap_to_all(__A )
snake_case__ : Dict = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case__ : Dict = self.embedding(__A )
if shape is not None:
snake_case__ : str = z_q.view(__A )
# reshape back to match original input shape
snake_case__ : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self : Dict , __A : List[Any] , __A : Union[str, Any]=False ):
snake_case__ : Dict = parameters
snake_case__, snake_case__ : Optional[Any] = torch.chunk(__A , 2 , dim=1 )
snake_case__ : Any = torch.clamp(self.logvar , -3_0.0 , 2_0.0 )
snake_case__ : Optional[int] = deterministic
snake_case__ : Optional[Any] = torch.exp(0.5 * self.logvar )
snake_case__ : Optional[Any] = torch.exp(self.logvar )
if self.deterministic:
snake_case__ : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def _lowercase ( self : Tuple , __A : Optional[torch.Generator] = None ):
# make sure sample is on the same device as the parameters and has same dtype
snake_case__ : List[Any] = randn_tensor(
self.mean.shape , generator=__A , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case__ : List[Any] = self.mean + self.std * sample
return x
def _lowercase ( self : Dict , __A : Optional[int]=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def _lowercase ( self : Tuple , __A : str , __A : Any=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
snake_case__ : Tuple = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__A )
def _lowercase ( self : List[str] ):
return self.mean
| 25 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
a_ = Features({"text": Value("string" )} )
a_ = Features({"labels": ClassLabel} )
a_ = "text"
a_ = "labels"
def _lowercase ( self : Tuple , __A : List[Any] ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
snake_case__ : Any = copy.deepcopy(self )
snake_case__ : Optional[Any] = self.label_schema.copy()
snake_case__ : List[str] = features[self.label_column]
snake_case__ : Dict = label_schema
return task_template
@property
def _lowercase ( self : Tuple ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 25 | 1 |
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ):
snake_case__ : List[str] = 1
snake_case__ : Union[str, Any] = 2
while i * i <= n:
snake_case__ : int = 0
while n % i == 0:
n //= i
multiplicity += 1
n_divisors *= multiplicity + 1
i += 1
if n > 1:
n_divisors *= 2
return n_divisors
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = 1
snake_case__ : Tuple = 1
while True:
i += 1
t_num += i
if count_divisors(snake_case_ ) > 500:
break
return t_num
if __name__ == "__main__":
print(solution())
| 25 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : Dict = {
"""Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""",
}
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_vision_model"
def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ):
super().__init__(**__A )
snake_case__ : List[str] = hidden_size
snake_case__ : Optional[int] = intermediate_size
snake_case__ : List[str] = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : str = patch_size
snake_case__ : int = image_size
snake_case__ : int = initializer_range
snake_case__ : Optional[int] = attention_dropout
snake_case__ : str = layer_norm_eps
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Tuple = qkv_bias
@classmethod
def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : Union[str, Any] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip_qformer"
def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ):
super().__init__(pad_token_id=__A , **__A )
snake_case__ : Dict = vocab_size
snake_case__ : Optional[int] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : str = num_attention_heads
snake_case__ : int = hidden_act
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : List[Any] = max_position_embeddings
snake_case__ : int = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : str = position_embedding_type
snake_case__ : Dict = cross_attention_frequency
snake_case__ : List[str] = encoder_hidden_size
@classmethod
def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ):
cls._set_token_in_kwargs(__A )
snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("model_type" ) == "instructblip":
snake_case__ : List[Any] = config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__A , **__A )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = "instructblip"
a_ = True
def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ):
super().__init__(**__A )
if vision_config is None:
snake_case__ : Any = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." )
if qformer_config is None:
snake_case__ : Optional[Any] = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." )
if text_config is None:
snake_case__ : Optional[int] = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." )
snake_case__ : List[Any] = InstructBlipVisionConfig(**__A )
snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A )
snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt"
snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A )
snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings
snake_case__ : Tuple = self.text_config.is_encoder_decoder
snake_case__ : str = num_query_tokens
snake_case__ : Dict = self.vision_config.hidden_size
snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
snake_case__ : int = 1.0
snake_case__ : Optional[int] = 0.0_2
@classmethod
def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , )
def _lowercase ( self : Optional[int] ):
snake_case__ : Any = copy.deepcopy(self.__dict__ )
snake_case__ : Optional[Any] = self.vision_config.to_dict()
snake_case__ : List[str] = self.qformer_config.to_dict()
snake_case__ : List[Any] = self.text_config.to_dict()
snake_case__ : List[Any] = self.__class__.model_type
return output
| 25 | 1 |
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Optional[Any] , __A : List[str] , __A : str=1_3 , __A : Any=7 , __A : List[Any]=True , __A : List[str]=True , __A : Optional[Any]=True , __A : List[str]=True , __A : List[Any]=9_9 , __A : Optional[Any]=3_2 , __A : Optional[int]=5 , __A : Union[str, Any]=4 , __A : int=4 , __A : Optional[int]="gelu" , __A : int=0.0 , __A : int=0.1 , __A : Any=True , __A : Any=5_1_2 , __A : List[str]=1_6 , __A : List[str]=2 , __A : str=0.0_2 , __A : int=3 , __A : List[Any]=4 , __A : str=None , ):
snake_case__ : Optional[Any] = parent
snake_case__ : str = batch_size
snake_case__ : Union[str, Any] = seq_length
snake_case__ : List[str] = is_training
snake_case__ : Optional[Any] = use_input_mask
snake_case__ : Optional[int] = use_token_type_ids
snake_case__ : Any = use_labels
snake_case__ : Dict = vocab_size
snake_case__ : Optional[Any] = hidden_size
snake_case__ : Optional[Any] = num_hidden_layers
snake_case__ : Union[str, Any] = num_attention_heads
snake_case__ : Union[str, Any] = intermediate_multiple_size
snake_case__ : int = hidden_act
snake_case__ : List[str] = hidden_dropout
snake_case__ : str = attention_dropout
snake_case__ : Dict = weight_tying
snake_case__ : str = max_position_embeddings
snake_case__ : Tuple = type_vocab_size
snake_case__ : Union[str, Any] = type_sequence_label_size
snake_case__ : Dict = initializer_range
snake_case__ : str = num_labels
snake_case__ : Dict = num_choices
snake_case__ : int = scope
def _lowercase ( self : Optional[Any] ):
snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Dict = None
if self.use_input_mask:
snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
snake_case__ : List[str] = None
if self.use_labels:
snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case__ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def _lowercase ( self : Optional[int] ):
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , )
def _lowercase ( self : int ):
snake_case__, snake_case__, snake_case__, snake_case__ : Optional[Any] = self.prepare_config_and_inputs()
snake_case__ : Dict = True
return config, input_ids, input_mask, token_labels
def _lowercase ( self : Tuple , __A : int , __A : Dict , __A : List[Any] ):
snake_case__ : Tuple = GPTNeoXJapaneseModel(config=__A )
model.to(__A )
model.eval()
snake_case__ : Dict = model(__A , attention_mask=__A )
snake_case__ : Dict = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : List[Any] , __A : int , __A : List[str] , __A : Optional[Any] ):
snake_case__ : Optional[int] = True
snake_case__ : Optional[Any] = GPTNeoXJapaneseModel(__A )
model.to(__A )
model.eval()
snake_case__ : Dict = model(__A , attention_mask=__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Optional[Any] , __A : List[str] , __A : List[Any] , __A : Union[str, Any] , __A : int ):
snake_case__ : Any = GPTNeoXJapaneseForCausalLM(config=__A )
model.to(__A )
model.eval()
snake_case__ : Union[str, Any] = model(__A , attention_mask=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self : List[str] , __A : List[Any] , __A : str , __A : List[Any] ):
snake_case__ : Union[str, Any] = True
snake_case__ : Tuple = GPTNeoXJapaneseForCausalLM(config=__A )
model.to(__A )
model.eval()
# first forward pass
snake_case__ : List[str] = model(__A , attention_mask=__A , use_cache=__A )
snake_case__ : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
snake_case__ : int = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
snake_case__ : Any = model(__A , attention_mask=__A , output_hidden_states=__A )
snake_case__ : Optional[int] = output_from_no_past["hidden_states"][0]
snake_case__ : Dict = model(
__A , attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )["hidden_states"][0]
# select random slice
snake_case__ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-3 ) )
def _lowercase ( self : Dict ):
snake_case__ : Dict = self.prepare_config_and_inputs()
snake_case__, snake_case__, snake_case__, snake_case__ : Any = config_and_inputs
snake_case__ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
a_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
a_ = (
{"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
a_ = False
a_ = False
a_ = False
a_ = False
def _lowercase ( self : int ):
snake_case__ : Dict = GPTNeoXJapaneseModelTester(self )
snake_case__ : Optional[int] = ConfigTester(self , config_class=__A , hidden_size=3_7 )
def _lowercase ( self : Optional[int] ):
self.config_tester.run_common_tests()
def _lowercase ( self : int ):
snake_case__, snake_case__, snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__A , __A , __A )
def _lowercase ( self : List[Any] ):
snake_case__, snake_case__, snake_case__, snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(__A , __A , __A )
def _lowercase ( self : Tuple ):
# This regression test was failing with PyTorch < 1.3
snake_case__, snake_case__, snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case__ : List[Any] = None
self.model_tester.create_and_check_model_as_decoder(__A , __A , __A )
def _lowercase ( self : Any ):
snake_case__, snake_case__, snake_case__, snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(__A , __A , __A )
def _lowercase ( self : Optional[Any] ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*__A )
@slow
def _lowercase ( self : Union[str, Any] ):
snake_case__ : Optional[Any] = "abeja/gpt-neox-japanese-2.7b"
snake_case__ : Any = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"]
snake_case__ : Optional[int] = [
"データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。",
"100年後に必要とされる会社は、「人」が中心の会社です。",
"フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。",
"国境の長いトンネルを抜けると、そこは雪国だった。",
"美味しい日本食といえば、やっぱりお寿司ですよね。",
]
snake_case__ : Dict = GPTNeoXJapaneseTokenizer.from_pretrained(__A )
snake_case__ : Dict = GPTNeoXJapaneseForCausalLM.from_pretrained(__A )
snake_case__ : Dict = []
for prompt in prompts:
snake_case__ : Tuple = tokenizer(__A , return_tensors="pt" ).input_ids
snake_case__ : List[str] = model.generate(__A , max_length=5_0 )
snake_case__ : Optional[int] = tokenizer.batch_decode(__A , skip_special_tokens=__A )
predicted_outputs += generated_string
self.assertListEqual(__A , __A )
| 25 |
def SCREAMING_SNAKE_CASE ( snake_case_ : list ):
if len(snake_case_ ) <= 1:
return lst
snake_case__ : List[Any] = 1
while i < len(snake_case_ ):
if lst[i - 1] <= lst[i]:
i += 1
else:
snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1]
i -= 1
if i == 0:
snake_case__ : Union[str, Any] = 1
return lst
if __name__ == "__main__":
__lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip()
__lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")]
print(gnome_sort(unsorted))
| 25 | 1 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
__lowerCamelCase : str = TypeVar("""KEY""")
__lowerCamelCase : int = TypeVar("""VAL""")
@dataclass(frozen=UpperCamelCase_ , slots=UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ):
"""simple docstring"""
a_ = 42
a_ = 42
class SCREAMING_SNAKE_CASE__ ( _Item ):
"""simple docstring"""
def __init__( self : Tuple ):
super().__init__(__A , __A )
def __bool__( self : Dict ):
return False
__lowerCamelCase : List[str] = _DeletedItem()
class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Optional[Any] , __A : int = 8 , __A : float = 0.7_5 ):
snake_case__ : Dict = initial_block_size
snake_case__ : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
snake_case__ : Optional[Any] = capacity_factor
snake_case__ : str = 0
def _lowercase ( self : List[str] , __A : KEY ):
return hash(__A ) % len(self._buckets )
def _lowercase ( self : Union[str, Any] , __A : int ):
return (ind + 1) % len(self._buckets )
def _lowercase ( self : Optional[Any] , __A : int , __A : KEY , __A : VAL ):
snake_case__ : Tuple = self._buckets[ind]
if not stored:
snake_case__ : List[Any] = _Item(__A , __A )
self._len += 1
return True
elif stored.key == key:
snake_case__ : List[str] = _Item(__A , __A )
return True
else:
return False
def _lowercase ( self : Dict ):
snake_case__ : Optional[Any] = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__A )
def _lowercase ( self : Dict ):
if len(self._buckets ) <= self._initial_block_size:
return False
snake_case__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def _lowercase ( self : Optional[int] , __A : int ):
snake_case__ : Optional[Any] = self._buckets
snake_case__ : Optional[int] = [None] * new_size
snake_case__ : Any = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def _lowercase ( self : int ):
self._resize(len(self._buckets ) * 2 )
def _lowercase ( self : Union[str, Any] ):
self._resize(len(self._buckets ) // 2 )
def _lowercase ( self : int , __A : KEY ):
snake_case__ : List[Any] = self._get_bucket_index(__A )
for _ in range(len(self._buckets ) ):
yield ind
snake_case__ : int = self._get_next_ind(__A )
def _lowercase ( self : Tuple , __A : KEY , __A : VAL ):
for ind in self._iterate_buckets(__A ):
if self._try_set(__A , __A , __A ):
break
def __setitem__( self : Union[str, Any] , __A : KEY , __A : VAL ):
if self._is_full():
self._size_up()
self._add_item(__A , __A )
def __delitem__( self : List[str] , __A : KEY ):
for ind in self._iterate_buckets(__A ):
snake_case__ : str = self._buckets[ind]
if item is None:
raise KeyError(__A )
if item is _deleted:
continue
if item.key == key:
snake_case__ : str = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : str , __A : KEY ):
for ind in self._iterate_buckets(__A ):
snake_case__ : Dict = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__A )
def __len__( self : int ):
return self._len
def __iter__( self : List[str] ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : str ):
snake_case__ : Union[str, Any] = " ,".join(
f'''{item.key}: {item.val}''' for item in self._buckets if item )
return f'''HashMap({val_string})'''
| 25 |
from __future__ import annotations
import time
__lowerCamelCase : str = list[tuple[int, int]]
__lowerCamelCase : Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ):
snake_case__ : Optional[int] = pos_x
snake_case__ : Dict = pos_y
snake_case__ : int = (pos_y, pos_x)
snake_case__ : Optional[int] = goal_x
snake_case__ : Tuple = goal_y
snake_case__ : str = parent
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ):
snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A )
snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A )
snake_case__ : int = [self.start]
snake_case__ : Union[str, Any] = False
def _lowercase ( self : Dict ):
while self.node_queue:
snake_case__ : Optional[Any] = self.node_queue.pop(0 )
if current_node.pos == self.target.pos:
snake_case__ : Optional[Any] = True
return self.retrace_path(__A )
snake_case__ : int = self.get_successors(__A )
for node in successors:
self.node_queue.append(__A )
if not self.reached:
return [self.start.pos]
return None
def _lowercase ( self : Union[str, Any] , __A : Node ):
snake_case__ : str = []
for action in delta:
snake_case__ : str = parent.pos_x + action[1]
snake_case__ : Union[str, Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) )
return successors
def _lowercase ( self : Optional[Any] , __A : Node | None ):
snake_case__ : Tuple = node
snake_case__ : Any = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
snake_case__ : Tuple = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Dict , __A : str , __A : int ):
snake_case__ : str = BreadthFirstSearch(__A , __A )
snake_case__ : int = BreadthFirstSearch(__A , __A )
snake_case__ : Tuple = False
def _lowercase ( self : Optional[Any] ):
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 )
snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
snake_case__ : List[str] = True
return self.retrace_bidirectional_path(
__A , __A )
snake_case__ : Union[str, Any] = current_bwd_node
snake_case__ : Dict = current_fwd_node
snake_case__ : List[Any] = {
self.fwd_bfs: self.fwd_bfs.get_successors(__A ),
self.bwd_bfs: self.bwd_bfs.get_successors(__A ),
}
for bfs in [self.fwd_bfs, self.bwd_bfs]:
for node in successors[bfs]:
bfs.node_queue.append(__A )
if not self.reached:
return [self.fwd_bfs.start.pos]
return None
def _lowercase ( self : Any , __A : Node , __A : Node ):
snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A )
snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A )
bwd_path.pop()
bwd_path.reverse()
snake_case__ : List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
import doctest
doctest.testmod()
__lowerCamelCase : str = (0, 0)
__lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__lowerCamelCase : Any = time.time()
__lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal)
__lowerCamelCase : str = bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bfs_time
print("""Unidirectional BFS computation time : """, bfs_time)
__lowerCamelCase : Optional[Any] = time.time()
__lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal)
__lowerCamelCase : str = bd_bfs.search()
__lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time
print("""Bidirectional BFS computation time : """, bd_bfs_time)
| 25 | 1 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
__lowerCamelCase : Tuple = """true"""
def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=82 , snake_case_ : Optional[int]=16 ):
set_seed(42 )
snake_case__ : Tuple = RegressionModel()
snake_case__ : int = deepcopy(snake_case_ )
snake_case__ : Dict = RegressionDataset(length=snake_case_ )
snake_case__ : int = DataLoader(snake_case_ , batch_size=snake_case_ )
model.to(accelerator.device )
snake_case__, snake_case__ : Dict = accelerator.prepare(snake_case_ , snake_case_ )
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : Dict=False ):
snake_case__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" )
snake_case__ : List[str] = load_dataset("glue" , "mrpc" , split="validation" )
def tokenize_function(snake_case_ : Any ):
snake_case__ : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
with accelerator.main_process_first():
snake_case__ : List[Any] = dataset.map(
snake_case_ , batched=snake_case_ , remove_columns=["idx", "sentence1", "sentence2"] , )
snake_case__ : Optional[Any] = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(snake_case_ : List[Any] ):
if use_longest:
return tokenizer.pad(snake_case_ , padding="longest" , return_tensors="pt" )
return tokenizer.pad(snake_case_ , padding="max_length" , max_length=128 , return_tensors="pt" )
return DataLoader(snake_case_ , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=16 )
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] ):
snake_case__ : Tuple = Accelerator(dispatch_batches=snake_case_ , split_batches=snake_case_ )
snake_case__ : int = get_dataloader(snake_case_ , not dispatch_batches )
snake_case__ : List[str] = AutoModelForSequenceClassification.from_pretrained(
"hf-internal-testing/mrpc-bert-base-cased" , return_dict=snake_case_ )
snake_case__, snake_case__ : Dict = accelerator.prepare(snake_case_ , snake_case_ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : str ):
snake_case__ : List[Any] = []
for batch in dataloader:
snake_case__, snake_case__ : List[str] = batch.values()
with torch.no_grad():
snake_case__ : List[Any] = model(snake_case_ )
snake_case__, snake_case__ : Any = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
snake_case__, snake_case__ : Dict = [], []
for logit, targ in logits_and_targets:
logits.append(snake_case_ )
targs.append(snake_case_ )
snake_case__, snake_case__ : List[Any] = torch.cat(snake_case_ ), torch.cat(snake_case_ )
return logits, targs
def SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : Dict=82 , snake_case_ : Union[str, Any]=False , snake_case_ : Union[str, Any]=False , snake_case_ : Tuple=16 ):
snake_case__, snake_case__, snake_case__ : Optional[Any] = get_basic_setup(snake_case_ , snake_case_ , snake_case_ )
snake_case__, snake_case__ : Optional[int] = generate_predictions(snake_case_ , snake_case_ , snake_case_ )
assert (
len(snake_case_ ) == num_samples
), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case_ )}'''
def SCREAMING_SNAKE_CASE ( snake_case_ : bool = False , snake_case_ : bool = False ):
snake_case__ : Dict = evaluate.load("glue" , "mrpc" )
snake_case__, snake_case__ : Tuple = get_mrpc_setup(snake_case_ , snake_case_ )
# First do baseline
snake_case__, snake_case__, snake_case__ : int = setup["no"]
model.to(snake_case_ )
model.eval()
for batch in dataloader:
batch.to(snake_case_ )
with torch.inference_mode():
snake_case__ : Tuple = model(**snake_case_ )
snake_case__ : Tuple = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=snake_case_ , references=batch["labels"] )
snake_case__ : Union[str, Any] = metric.compute()
# Then do distributed
snake_case__, snake_case__, snake_case__ : List[Any] = setup["ddp"]
model.eval()
for batch in dataloader:
with torch.inference_mode():
snake_case__ : Union[str, Any] = model(**snake_case_ )
snake_case__ : List[str] = outputs.logits.argmax(dim=-1 )
snake_case__ : List[Any] = batch["labels"]
snake_case__, snake_case__ : List[str] = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=snake_case_ , references=snake_case_ )
snake_case__ : List[str] = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'''
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[Any] = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("**Testing gather_for_metrics**" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' )
test_mrpc(snake_case_ , snake_case_ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test torch metrics**" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
snake_case__ : Optional[Any] = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ )
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' )
test_torch_metrics(snake_case_ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test last batch is not dropped when perfectly divisible**" )
snake_case__ : str = Accelerator()
test_torch_metrics(snake_case_ , 512 )
accelerator.state._reset_state()
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Dict = parent
snake_case__ : Optional[int] = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : str = min_resolution
snake_case__ : Tuple = max_resolution
snake_case__ : List[Any] = do_resize
snake_case__ : Dict = size
snake_case__ : List[str] = do_normalize
snake_case__ : Optional[int] = image_mean
snake_case__ : Optional[int] = image_std
snake_case__ : Any = do_rescale
snake_case__ : Optional[int] = rescale_factor
snake_case__ : int = do_pad
def _lowercase ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ):
if not batched:
snake_case__ : List[str] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : Tuple = image.size
else:
snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Dict = int(self.size["shortest_edge"] * h / w )
snake_case__ : Optional[int] = self.size["shortest_edge"]
elif w > h:
snake_case__ : List[Any] = self.size["shortest_edge"]
snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Dict = self.size["shortest_edge"]
snake_case__ : Dict = self.size["shortest_edge"]
else:
snake_case__ : str = []
for image in image_inputs:
snake_case__, snake_case__ : str = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = ConditionalDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : int ):
snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self )
@property
def _lowercase ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Any ):
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : List[str] ):
snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Any = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : Union[str, Any] ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Tuple ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : List[Any] ):
# prepare image and target
snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Union[str, Any] = json.loads(f.read() )
snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : str ):
# prepare image, target and masks_path
snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : int = json.loads(f.read() )
snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" )
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : str = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : str = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
from __future__ import annotations
from math import pi
def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ):
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCamelCase : Optional[int] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCamelCase : str = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCamelCase : str = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def _lowercase ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ):
snake_case__ : List[Any] = compute_mauve(
p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , )
return out
| 25 | 1 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
__lowerCamelCase : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(UpperCamelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self : str , *__A : str , **__A : Optional[Any] ):
super().__init__(*__A , **__A )
requires_backends(self , "vision" )
self.check_model_type(__A )
def __call__( self : List[Any] , __A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__A : Optional[int] ):
return super().__call__(__A , **__A )
def _lowercase ( self : List[str] , **__A : Optional[Any] ):
return {}, {}, {}
def _lowercase ( self : Dict , __A : Tuple ):
snake_case__ : Dict = load_image(__A )
snake_case__ : Tuple = image.size
snake_case__ : Any = self.image_processor(images=__A , return_tensors=self.framework )
return model_inputs
def _lowercase ( self : int , __A : Dict ):
snake_case__ : Optional[Any] = self.model(**__A )
return model_outputs
def _lowercase ( self : Union[str, Any] , __A : Tuple ):
snake_case__ : str = model_outputs.predicted_depth
snake_case__ : Optional[Any] = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=__A )
snake_case__ : List[Any] = prediction.squeeze().cpu().numpy()
snake_case__ : str = (output * 2_5_5 / np.max(__A )).astype("uint8" )
snake_case__ : Any = Image.fromarray(__A )
snake_case__ : Dict = {}
snake_case__ : Tuple = predicted_depth
snake_case__ : Dict = depth
return output_dict
| 25 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__lowerCamelCase : Union[str, Any] = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__lowerCamelCase : List[Any] = concatenate_datasets
__lowerCamelCase : List[str] = DownloadConfig
__lowerCamelCase : Union[str, Any] = DownloadManager
__lowerCamelCase : str = DownloadMode
__lowerCamelCase : Union[str, Any] = DownloadConfig
__lowerCamelCase : List[str] = DownloadMode
__lowerCamelCase : Dict = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 25 | 1 |
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : int , __A : List[Any] ):
# we need a list not a string, so do something to change the type
snake_case__ : Optional[Any] = arr.split("," )
def _lowercase ( self : Tuple ):
snake_case__ : str = [int(self.array[0] )] * len(self.array )
snake_case__ : Union[str, Any] = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
snake_case__ : Union[str, Any] = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
snake_case__ : Dict = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__lowerCamelCase : Any = input("""please input some numbers:""")
__lowerCamelCase : int = SubArray(whole_array)
__lowerCamelCase : int = array.solve_sub_array()
print(("""the results is:""", re))
| 25 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( snake_case_ : int ):
snake_case__ : str = [True] * limit
snake_case__ : str = False
snake_case__ : str = False
snake_case__ : str = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
snake_case__ : Optional[Any] = i * 2
while index < limit:
snake_case__ : Union[str, Any] = False
snake_case__ : Any = index + i
snake_case__ : Optional[Any] = [2]
for i in range(3 , snake_case_ , 2 ):
if is_prime[i]:
primes.append(snake_case_ )
return primes
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ):
snake_case__ : Optional[int] = prime_sieve(snake_case_ )
snake_case__ : List[Any] = 0
snake_case__ : List[str] = 0
for i in range(len(snake_case_ ) ):
for j in range(i + length , len(snake_case_ ) ):
snake_case__ : Dict = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
snake_case__ : Tuple = j - i
snake_case__ : str = sol
return largest
if __name__ == "__main__":
print(f"{solution() = }")
| 25 | 1 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def _lowercase ( self : Tuple , __A : Union[str, Any]=0 ):
snake_case__ : Optional[int] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__A ) )
snake_case__ : Union[str, Any] = np.random.RandomState(__A )
snake_case__ : Dict = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.7_5,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : List[str] ):
snake_case__ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Tuple = self.get_dummy_inputs()
snake_case__ : Optional[Any] = pipe(**__A ).images
snake_case__ : Dict = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 1_2_8, 1_2_8, 3)
snake_case__ : Any = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def _lowercase ( self : Any ):
snake_case__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
snake_case__ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Union[str, Any] = self.get_dummy_inputs()
snake_case__ : Optional[int] = pipe(**__A ).images
snake_case__ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
snake_case__ : Dict = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _lowercase ( self : List[str] ):
snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
snake_case__ : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__A )
# warmup pass to apply optimizations
snake_case__ : int = pipe(**self.get_dummy_inputs() )
snake_case__ : Optional[int] = self.get_dummy_inputs()
snake_case__ : int = pipe(**__A ).images
snake_case__ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
snake_case__ : List[str] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _lowercase ( self : List[str] ):
snake_case__ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
snake_case__ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : int = self.get_dummy_inputs()
snake_case__ : Dict = pipe(**__A ).images
snake_case__ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
snake_case__ : List[str] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _lowercase ( self : int ):
snake_case__ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
snake_case__ : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Tuple = self.get_dummy_inputs()
snake_case__ : int = pipe(**__A ).images
snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
snake_case__ : List[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _lowercase ( self : Tuple ):
snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
snake_case__ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Optional[Any] = self.get_dummy_inputs()
snake_case__ : Optional[Any] = pipe(**__A ).images
snake_case__ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_2_8, 1_2_8, 3)
snake_case__ : int = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowercase ( self : Union[str, Any] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowercase ( self : List[str] ):
snake_case__ : Any = ort.SessionOptions()
snake_case__ : Union[str, Any] = False
return options
def _lowercase ( self : str ):
snake_case__ : int = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
snake_case__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) )
# using the PNDM scheduler by default
snake_case__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Tuple = "A fantasy landscape, trending on artstation"
snake_case__ : Tuple = np.random.RandomState(0 )
snake_case__ : str = pipe(
prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__A , output_type="np" , )
snake_case__ : str = output.images
snake_case__ : Any = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 7_6_8, 3)
snake_case__ : List[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _lowercase ( self : List[str] ):
snake_case__ : List[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
snake_case__ : int = init_image.resize((7_6_8, 5_1_2) )
snake_case__ : Dict = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" )
snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__A )
snake_case__ : Optional[int] = "A fantasy landscape, trending on artstation"
snake_case__ : Tuple = np.random.RandomState(0 )
snake_case__ : Any = pipe(
prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__A , output_type="np" , )
snake_case__ : List[Any] = output.images
snake_case__ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 7_6_8, 3)
snake_case__ : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 25 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
snake_case__ : Optional[Any] = parent
snake_case__ : str = batch_size
snake_case__ : Union[str, Any] = num_channels
snake_case__ : Optional[Any] = min_resolution
snake_case__ : List[str] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : str = size
snake_case__ : str = do_normalize
snake_case__ : Optional[Any] = image_mean
snake_case__ : List[str] = image_std
snake_case__ : List[str] = do_rescale
snake_case__ : Tuple = rescale_factor
snake_case__ : Tuple = do_pad
def _lowercase ( self : str ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ):
if not batched:
snake_case__ : List[Any] = image_inputs[0]
if isinstance(__A , Image.Image ):
snake_case__, snake_case__ : str = image.size
else:
snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Any = int(self.size["shortest_edge"] * h / w )
snake_case__ : Any = self.size["shortest_edge"]
elif w > h:
snake_case__ : Optional[int] = self.size["shortest_edge"]
snake_case__ : Any = int(self.size["shortest_edge"] * w / h )
else:
snake_case__ : Tuple = self.size["shortest_edge"]
snake_case__ : int = self.size["shortest_edge"]
else:
snake_case__ : Any = []
for image in image_inputs:
snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0]
snake_case__ : int = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
a_ = DeformableDetrImageProcessor if is_vision_available() else None
def _lowercase ( self : str ):
snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self )
@property
def _lowercase ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Tuple ):
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "do_rescale" ) )
self.assertTrue(hasattr(__A , "do_pad" ) )
self.assertTrue(hasattr(__A , "size" ) )
def _lowercase ( self : Any ):
snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
snake_case__ : Tuple = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} )
self.assertEqual(image_processor.do_pad , __A )
def _lowercase ( self : str ):
pass
def _lowercase ( self : List[str] ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A )
snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : int ):
# Initialize image_processing
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowercase ( self : Union[str, Any] ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values
snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _lowercase ( self : Optional[Any] ):
# prepare image and target
snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
snake_case__ : Tuple = json.loads(f.read() )
snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
snake_case__ : str = DeformableDetrImageProcessor()
snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Union[str, Any] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : Any = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def _lowercase ( self : Optional[int] ):
# prepare image, target and masks_path
snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
snake_case__ : Any = json.loads(f.read() )
snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" )
snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
snake_case__ : Any = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
snake_case__ : List[str] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
snake_case__ : Union[str, Any] = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
snake_case__ : int = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 25 | 1 |
from math import factorial
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self : Union[str, Any] , __A : Tuple , __A : Dict ):
snake_case__ : str = real
if isinstance(__A , __A ):
snake_case__ : Optional[Any] = [1] * rank
else:
snake_case__ : int = rank
def __repr__( self : Optional[Any] ):
return (
f'''{self.real}+'''
f'''{'+'.join(str(__A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}'''
)
def _lowercase ( self : List[str] ):
snake_case__ : List[str] = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , __A )
def __add__( self : List[Any] , __A : Dict ):
if not isinstance(__A , __A ):
return Dual(self.real + other , self.duals )
snake_case__ : str = self.duals.copy()
snake_case__ : List[str] = other.duals.copy()
if len(__A ) > len(__A ):
o_dual.extend([1] * (len(__A ) - len(__A )) )
elif len(__A ) < len(__A ):
s_dual.extend([1] * (len(__A ) - len(__A )) )
snake_case__ : str = []
for i in range(len(__A ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , __A )
a_ = __add__
def __sub__( self : Optional[int] , __A : str ):
return self + other * -1
def __mul__( self : List[str] , __A : str ):
if not isinstance(__A , __A ):
snake_case__ : str = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , __A )
snake_case__ : Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , __A )
a_ = __mul__
def __truediv__( self : Dict , __A : Optional[int] ):
if not isinstance(__A , __A ):
snake_case__ : Union[str, Any] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , __A )
raise ValueError
def __floordiv__( self : Tuple , __A : Tuple ):
if not isinstance(__A , __A ):
snake_case__ : List[str] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , __A )
raise ValueError
def __pow__( self : Tuple , __A : Tuple ):
if n < 0 or isinstance(__A , __A ):
raise ValueError("power must be a positive integer" )
if n == 0:
return 1
if n == 1:
return self
snake_case__ : Any = self
for _ in range(n - 1 ):
x *= self
return x
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : int ):
if not callable(snake_case_ ):
raise ValueError("differentiate() requires a function as input for func" )
if not isinstance(snake_case_ , (float, int) ):
raise ValueError("differentiate() requires a float as input for position" )
if not isinstance(snake_case_ , snake_case_ ):
raise ValueError("differentiate() requires an int as input for order" )
snake_case__ : Optional[Any] = Dual(snake_case_ , 1 )
snake_case__ : Optional[int] = func(snake_case_ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ):
return y**2 * y**4
print(differentiate(f, 9, 2))
| 25 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__lowerCamelCase : List[str] = logging.get_logger(__name__)
__lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
# See all LED models at https://huggingface.co/models?filter=LED
__lowerCamelCase : Tuple = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
__lowerCamelCase : Dict = {
"""allenai/led-base-16384""": 1_6384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def SCREAMING_SNAKE_CASE ( ):
snake_case__ : Optional[int] = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
snake_case__ : Optional[int] = bs[:]
snake_case__ : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
snake_case__ : Dict = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_ , snake_case_ ) )
def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ):
snake_case__ : Dict = set()
snake_case__ : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case__ : List[Any] = char
return pairs
class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ):
"""simple docstring"""
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ["input_ids", "attention_mask"]
def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ):
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , )
with open(__A , encoding="utf-8" ) as vocab_handle:
snake_case__ : Any = json.load(__A )
snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
snake_case__ : Union[str, Any] = errors # how to handle errors in decoding
snake_case__ : Any = bytes_to_unicode()
snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__A , encoding="utf-8" ) as merges_handle:
snake_case__ : str = merges_handle.read().split("\n" )[1:-1]
snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges]
snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) )
snake_case__ : Optional[int] = {}
snake_case__ : Any = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _lowercase ( self : List[Any] ):
return len(self.encoder )
def _lowercase ( self : Any ):
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self : Optional[Any] , __A : Optional[int] ):
if token in self.cache:
return self.cache[token]
snake_case__ : Union[str, Any] = tuple(__A )
snake_case__ : List[Any] = get_pairs(__A )
if not pairs:
return token
while True:
snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
snake_case__, snake_case__ : Dict = bigram
snake_case__ : str = []
snake_case__ : Union[str, Any] = 0
while i < len(__A ):
try:
snake_case__ : Dict = word.index(__A , __A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case__ : str = j
if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case__ : str = tuple(__A )
snake_case__ : int = new_word
if len(__A ) == 1:
break
else:
snake_case__ : List[str] = get_pairs(__A )
snake_case__ : List[Any] = " ".join(__A )
snake_case__ : Optional[int] = word
return word
def _lowercase ( self : Optional[Any] , __A : Optional[Any] ):
snake_case__ : List[str] = []
for token in re.findall(self.pat , __A ):
snake_case__ : Dict = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) )
return bpe_tokens
def _lowercase ( self : Union[str, Any] , __A : Optional[int] ):
return self.encoder.get(__A , self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , __A : Optional[Any] ):
return self.decoder.get(__A )
def _lowercase ( self : Union[str, Any] , __A : Dict ):
snake_case__ : Optional[Any] = "".join(__A )
snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ):
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : List[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
snake_case__ : str = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" )
snake_case__ : str = 0
with open(__A , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
snake_case__ : int = token_index
writer.write(" ".join(__A ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ : Tuple = [self.cls_token_id]
snake_case__ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ):
snake_case__ : Any = [self.sep_token_id]
snake_case__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ):
snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()):
snake_case__ : Optional[int] = " " + text
return (text, kwargs)
def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ):
snake_case__ : Optional[Any] = super()._pad(
encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , )
# Load from model defaults
if return_attention_mask is None:
snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A )
if needs_to_be_padded:
snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case__ : int = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
snake_case__ : Tuple = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 25 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.