code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : List[str] ): snake_case__ : Tuple = ort.SessionOptions() snake_case__ : Optional[Any] = False return options def _lowercase ( self : str ): snake_case__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) snake_case__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) snake_case__ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default snake_case__ : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Any = "A red cat sitting on a park bench" snake_case__ : int = np.random.RandomState(0 ) snake_case__ : Tuple = pipe( prompt=__A , image=__A , mask_image=__A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=__A , output_type="np" , ) snake_case__ : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __lowerCamelCase : str = 5_0003 __lowerCamelCase : List[Any] = 5_0002 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = PLBartTokenizer a_ = None a_ = False def _lowercase ( self : int ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : List[Any] = PLBartTokenizer(__A , language_codes="base" , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = PLBartTokenizer(__A , language_codes="base" , keep_accents=__A ) snake_case__ : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) snake_case__ : int = tokenizer.vocab_size snake_case__ : Tuple = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 4 , __A )] self.assertListEqual(__A , ["__java__", "__python__", "__en_XX__", "<mask>"] ) snake_case__ : Tuple = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" snake_case__ : Dict = tokenizer(__A ).input_ids self.assertEqual( tokenizer.decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) , __A , ) def _lowercase ( self : Dict ): snake_case__ : Dict = PLBartTokenizer(__A , language_codes="multi" , keep_accents=__A ) snake_case__ : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) snake_case__ : List[Any] = tokenizer.vocab_size snake_case__ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 7 , __A )] self.assertListEqual( __A , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) snake_case__ : str = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" snake_case__ : List[Any] = tokenizer(__A ).input_ids self.assertEqual( tokenizer.decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) , __A , ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = "uclanlp/plbart-python-en_XX" a_ = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] a_ = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] a_ = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _lowercase ( cls : Optional[int] ): snake_case__ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) snake_case__ : Optional[Any] = 1 return cls def _lowercase ( self : Optional[Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __A ) def _lowercase ( self : Optional[Any] ): self.assertIn(__A , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] snake_case__ : List[str] = self.tokenizer.decode(__A , skip_special_tokens=__A ) snake_case__ : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__A ) self.assertEqual(__A , __A ) self.assertNotIn(self.tokenizer.eos_token , __A ) def _lowercase ( self : Optional[Any] ): snake_case__ : int = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , __A ) snake_case__ : Dict = 1_0 snake_case__ : List[Any] = self.tokenizer(__A , max_length=__A , truncation=__A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __A ) self.assertEqual(len(__A ) , __A ) def _lowercase ( self : Optional[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def _lowercase ( self : Optional[int] ): snake_case__ : str = tempfile.mkdtemp() snake_case__ : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__A ) snake_case__ : List[Any] = PLBartTokenizer.from_pretrained(__A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __A ) @require_torch def _lowercase ( self : Optional[Any] ): snake_case__ : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__A , return_tensors="pt" ) snake_case__ : int = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __A ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__A , truncation=__A , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) snake_case__ : Optional[Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__A , __A ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) snake_case__ : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.tokenizer(self.src_text , padding=__A , truncation=__A , max_length=3 , return_tensors="pt" ) snake_case__ : str = self.tokenizer( text_target=self.tgt_text , padding=__A , truncation=__A , max_length=1_0 , return_tensors="pt" ) snake_case__ : int = targets["input_ids"] snake_case__ : Tuple = shift_tokens_right(__A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _lowercase ( self : Tuple ): snake_case__ : str = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__A ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : Union[str, Any] , __A : Union[str, Any]=3 , __A : Optional[int]=3_2 , __A : Optional[int]=3 , __A : int=1_0 , __A : Union[str, Any]=[1_0, 2_0, 3_0, 4_0] , __A : Dict=[1, 1, 2, 1] , __A : str=True , __A : Tuple=True , __A : Any="relu" , __A : Optional[int]=3 , __A : int=None , ): snake_case__ : List[str] = parent snake_case__ : List[str] = batch_size snake_case__ : Optional[Any] = image_size snake_case__ : str = num_channels snake_case__ : int = embeddings_size snake_case__ : List[str] = hidden_sizes snake_case__ : str = depths snake_case__ : List[Any] = is_training snake_case__ : Dict = use_labels snake_case__ : Optional[Any] = hidden_act snake_case__ : Any = num_labels snake_case__ : List[str] = scope snake_case__ : List[str] = len(__A ) def _lowercase ( self : int ): snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[str] = None if self.use_labels: snake_case__ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self : List[str] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowercase ( self : Optional[int] , __A : List[str] , __A : Optional[int] , __A : List[Any] ): snake_case__ : Union[str, Any] = TFRegNetModel(config=__A ) snake_case__ : Any = model(__A , training=__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowercase ( self : Tuple , __A : Dict , __A : int , __A : Optional[Any] ): snake_case__ : Tuple = self.num_labels snake_case__ : Tuple = TFRegNetForImageClassification(__A ) snake_case__ : int = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int ): snake_case__ : Tuple = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__ : Optional[Any] = config_and_inputs snake_case__ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a_ = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : List[str] ): snake_case__ : Tuple = TFRegNetModelTester(self ) snake_case__ : List[Any] = ConfigTester(self , config_class=__A , has_text_modality=__A ) def _lowercase ( self : Dict ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _lowercase ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _lowercase ( self : List[Any] ): super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _lowercase ( self : Optional[int] ): pass def _lowercase ( self : Tuple ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__A ) snake_case__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _lowercase ( self : Any ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Tuple ): def check_hidden_states_output(__A : List[str] , __A : Tuple , __A : str ): snake_case__ : List[Any] = model_class(__A ) snake_case__ : List[str] = model(**self._prepare_for_class(__A , __A ) , training=__A ) snake_case__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Optional[int] = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Dict = True check_hidden_states_output(__A , __A , __A ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__A : List[Any] , __A : str , __A : List[Any] , __A : Tuple={} ): snake_case__ : Tuple = model(__A , return_dict=__A , **__A ) snake_case__ : str = model(__A , return_dict=__A , **__A ).to_tuple() def recursive_check(__A : Tuple , __A : Dict ): if isinstance(__A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__A , __A ): recursive_check(__A , __A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__A , __A ) ) , msg=( "Tuple and dict output are not equal. Difference:" f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__A , __A ) for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(__A ) snake_case__ : Union[str, Any] = self._prepare_for_class(__A , __A ) snake_case__ : Tuple = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A ) snake_case__ : Union[str, Any] = self._prepare_for_class(__A , __A , return_labels=__A ) snake_case__ : Any = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A ) snake_case__ : List[Any] = self._prepare_for_class(__A , __A ) snake_case__ : List[str] = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A , {"output_hidden_states": True} ) snake_case__ : Dict = self._prepare_for_class(__A , __A , return_labels=__A ) snake_case__ : Any = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A , {"output_hidden_states": True} ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def _lowercase ( self : Optional[Any] ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = TFRegNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Dict ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase ( self : List[str] ): snake_case__ : Tuple = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Optional[int] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[Any] = image_processor(images=__A , return_tensors="tf" ) # forward pass snake_case__ : Dict = model(**__A , training=__A ) # verify the logits snake_case__ : Any = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) snake_case__ : int = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def SCREAMING_SNAKE_CASE ( snake_case_ : dict[int, list[int]] ): snake_case__ : int = 0 snake_case__ : Dict = len(snake_case_ ) # No of vertices in graph snake_case__ : int = [0] * n snake_case__ : List[str] = [False] * n def dfs(snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[str] ): snake_case__ : Dict = True snake_case__ : int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case_ , snake_case_ , snake_case_ , id_ ) snake_case__ : int = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case__ : str = min(low[at] , low[to] ) snake_case__ : list[tuple[int, int]] = [] for i in range(snake_case_ ): if not visited[i]: dfs(snake_case_ , -1 , snake_case_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case__ : Optional[Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case__ : List[Any] = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case__ : Any = tf_top_k_top_p_filtering(__A , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case__ : Optional[Any] = output[output != -float("inf" )] snake_case__ : Optional[Any] = tf.cast( tf.where(tf.not_equal(__A , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__A , __A , rtol=1e-1_2 ) tf.debugging.assert_equal(__A , __A ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , UpperCamelCase_ ): """simple docstring""" if is_tf_available(): a_ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def _lowercase ( self : Tuple ): # TF-only test: tf.saved_model export snake_case__ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case__ : Any = 2 snake_case__ : List[Any] = 2 class SCREAMING_SNAKE_CASE__ ( tf.Module ): """simple docstring""" def __init__( self : Optional[Any] , __A : List[str] ): super(__A , self ).__init__() snake_case__ : Union[str, Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=__A , ) def _lowercase ( self : Optional[Any] , __A : List[str] , __A : str ): snake_case__ : List[str] = self.model.generate( input_ids=__A , attention_mask=__A , max_new_tokens=__A , return_dict_in_generate=__A , ) return {"sequences": outputs["sequences"]} snake_case__ : int = [[2, 0], [1_0_2, 1_0_3]] snake_case__ : Tuple = [[1, 0], [1, 1]] snake_case__ : Optional[Any] = DummyModel(model=__A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__A , __A , signatures={"serving_default": dummy_model.serving} ) snake_case__ : Tuple = tf.saved_model.load(__A ).signatures["serving_default"] for batch_size in range(1 , len(__A ) + 1 ): snake_case__ : Any = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } snake_case__ : Optional[Any] = serving_func(**__A )["sequences"] snake_case__ : Optional[int] = test_model.generate(**__A , max_new_tokens=__A ) tf.debugging.assert_equal(__A , __A ) @slow def _lowercase ( self : Dict ): # TF-only test: tf.saved_model export snake_case__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case__ : Any = 1 snake_case__ : Optional[int] = 2 class SCREAMING_SNAKE_CASE__ ( tf.Module ): """simple docstring""" def __init__( self : Any , __A : str ): super(__A , self ).__init__() snake_case__ : Any = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=__A , ) def _lowercase ( self : int , __A : Tuple , __A : str ): snake_case__ : int = self.model.generate( input_ids=__A , attention_mask=__A , max_new_tokens=__A , return_dict_in_generate=__A , ) return {"sequences": outputs["sequences"]} snake_case__ : Tuple = [[2], [1_0_2, 1_0_3]] snake_case__ : Optional[Any] = [[1], [1, 1]] snake_case__ : Tuple = DummyModel(model=__A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__A , __A , signatures={"serving_default": dummy_model.serving} ) snake_case__ : Union[str, Any] = tf.saved_model.load(__A ).signatures["serving_default"] for input_row in range(len(__A ) ): snake_case__ : Dict = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } snake_case__ : int = serving_func(**__A )["sequences"] snake_case__ : Union[str, Any] = test_model.generate(**__A , max_new_tokens=__A ) tf.debugging.assert_equal(__A , __A ) @slow @require_tensorflow_text def _lowercase ( self : int ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=__A ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int ): super().__init__() snake_case__ : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__A , "spiece.model" ) , "rb" ).read() ) snake_case__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def _lowercase ( self : Union[str, Any] , __A : Any , *__A : Dict , **__A : str ): snake_case__ : Dict = self.tokenizer.tokenize(__A ) snake_case__, snake_case__ : List[Any] = text.pad_model_inputs( __A , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case__ : str = self.model.generate(input_ids=__A , attention_mask=__A ) return self.tokenizer.detokenize(__A ) snake_case__ : Any = CompleteSentenceTransformer() snake_case__ : str = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) snake_case__ : str = complete_model(__A ) snake_case__ : Optional[int] = tf.keras.Model(__A , __A ) keras_model.save(__A ) def _lowercase ( self : Tuple ): # Has PT equivalent: this test relies on random sampling snake_case__ : Any = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 1_0, "temperature": 0.7, } snake_case__ : Union[str, Any] = 1_4 snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case__ : Tuple = "Hello, my dog is cute and" snake_case__ : str = tokenizer(__A , return_tensors="tf" ) snake_case__ : str = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) snake_case__ : Any = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) snake_case__ : int = model.generate(**__A , eos_token_id=__A , **__A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case__ : Optional[int] = [6_3_8, 1_9_8] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) snake_case__ : Union[str, Any] = model.generate(**__A , eos_token_id=__A , **__A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _lowercase ( self : str ): # Has PT equivalent: ample use of framework-specific code snake_case__ : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) snake_case__ : Optional[int] = "Hugging Face is a technology company based in New York and Paris." snake_case__ : List[str] = bart_tokenizer(__A , return_tensors="tf" ).input_ids snake_case__ : Any = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) snake_case__ : str = bart_model.generate(__A ).numpy() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Tuple , __A : str , __A : Optional[Any]=None , **__A : Optional[int] ): return super().call(__A , **__A ) snake_case__ : Union[str, Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) snake_case__ : Optional[Any] = bart_model.generate(__A , foo="bar" ).numpy() self.assertTrue(np.array_equal(__A , __A ) ) class SCREAMING_SNAKE_CASE__ ( bart_model.model.encoder.__class__ ): """simple docstring""" def _lowercase ( self : int , __A : Union[str, Any] , **__A : Optional[int] ): return super().call(__A , **__A ) snake_case__ : str = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case__ : List[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case__ : str = bart_model.generate(__A ).numpy() with self.assertRaises(__A ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__A , foo="bar" )
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str , __A : Collection[float] | None = None ): if components is None: snake_case__ : Dict = [] snake_case__ : Dict = list(__A ) def __len__( self : Any ): return len(self.__components ) def __str__( self : List[str] ): return "(" + ",".join(map(__A , self.__components ) ) + ")" def __add__( self : List[Any] , __A : Vector ): snake_case__ : Any = len(self ) if size == len(__A ): snake_case__ : Dict = [self.__components[i] + other.component(__A ) for i in range(__A )] return Vector(__A ) else: raise Exception("must have the same size" ) def __sub__( self : List[str] , __A : Vector ): snake_case__ : Union[str, Any] = len(self ) if size == len(__A ): snake_case__ : Optional[int] = [self.__components[i] - other.component(__A ) for i in range(__A )] return Vector(__A ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : List[str] , __A : float ): ... @overload def __mul__( self : Dict , __A : Vector ): ... def __mul__( self : int , __A : float | Vector ): if isinstance(__A , (float, int) ): snake_case__ : List[Any] = [c * other for c in self.__components] return Vector(__A ) elif isinstance(__A , __A ) and len(self ) == len(__A ): snake_case__ : int = len(self ) snake_case__ : Tuple = [self.__components[i] * other.component(__A ) for i in range(__A )] return sum(__A ) else: # error case raise Exception("invalid operand!" ) def _lowercase ( self : str ): return Vector(self.__components ) def _lowercase ( self : str , __A : int ): if isinstance(__A , __A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _lowercase ( self : Union[str, Any] , __A : int , __A : float ): assert -len(self.__components ) <= pos < len(self.__components ) snake_case__ : Optional[Any] = value def _lowercase ( self : int ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) snake_case__ : List[Any] = [c**2 for c in self.__components] return math.sqrt(sum(__A ) ) def _lowercase ( self : int , __A : Vector , __A : bool = False ): snake_case__ : Union[str, Any] = self * other snake_case__ : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): assert isinstance(snake_case_ , snake_case_ ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): assert isinstance(snake_case_ , snake_case_ ) and (isinstance(snake_case_ , snake_case_ )) snake_case__ : List[Any] = [0] * dimension snake_case__ : List[Any] = 1 return Vector(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : Vector , snake_case_ : Vector ): assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (isinstance(snake_case_ , (int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ): random.seed(snake_case_ ) snake_case__ : Union[str, Any] = [random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )] return Vector(snake_case_ ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] , __A : list[list[float]] , __A : int , __A : int ): snake_case__ : List[Any] = matrix snake_case__ : Any = w snake_case__ : Any = h def __str__( self : Union[str, Any] ): snake_case__ : int = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Tuple , __A : Matrix ): if self.__width == other.width() and self.__height == other.height(): snake_case__ : Dict = [] for i in range(self.__height ): snake_case__ : Union[str, Any] = [ self.__matrix[i][j] + other.component(__A , __A ) for j in range(self.__width ) ] matrix.append(__A ) return Matrix(__A , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[Any] , __A : Matrix ): if self.__width == other.width() and self.__height == other.height(): snake_case__ : List[str] = [] for i in range(self.__height ): snake_case__ : int = [ self.__matrix[i][j] - other.component(__A , __A ) for j in range(self.__width ) ] matrix.append(__A ) return Matrix(__A , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : List[str] , __A : float ): ... @overload def __mul__( self : Tuple , __A : Vector ): ... def __mul__( self : List[str] , __A : float | Vector ): if isinstance(__A , __A ): # matrix-vector if len(__A ) == self.__width: snake_case__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): snake_case__ : List[str] = [ self.__matrix[i][j] * other.component(__A ) for j in range(self.__width ) ] ans.change_component(__A , sum(__A ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(__A , (int, float) ): # matrix-scalar snake_case__ : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__A , self.__width , self.__height ) return None def _lowercase ( self : str ): return self.__height def _lowercase ( self : Union[str, Any] ): return self.__width def _lowercase ( self : Optional[Any] , __A : int , __A : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _lowercase ( self : str , __A : int , __A : int , __A : float ): if 0 <= x < self.__height and 0 <= y < self.__width: snake_case__ : Optional[int] = value else: raise Exception("change_component: indices out of bounds" ) def _lowercase ( self : str , __A : int , __A : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) snake_case__ : Tuple = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__A ) ): snake_case__ : Dict = minor[i][:y] + minor[i][y + 1 :] return Matrix(__A , self.__width - 1 , self.__height - 1 ).determinant() def _lowercase ( self : Union[str, Any] , __A : int , __A : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__A , __A ) else: raise Exception("Indices out of bounds" ) def _lowercase ( self : List[str] ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: snake_case__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , __A ) for y in range(self.__width ) ] return sum(__A ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : list[list[float]] = [[0] * n for _ in range(snake_case_ )] return Matrix(snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int , snake_case_ : int ): random.seed(snake_case_ ) snake_case__ : list[list[float]] = [ [random.randint(snake_case_ , snake_case_ ) for _ in range(snake_case_ )] for _ in range(snake_case_ ) ] return Matrix(snake_case_ , snake_case_ , snake_case_ )
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Dict = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "align_text_model" def __init__( self : Dict , __A : Optional[Any]=3_0_5_2_2 , __A : Optional[int]=7_6_8 , __A : Dict=1_2 , __A : Any=1_2 , __A : List[str]=3_0_7_2 , __A : Tuple="gelu" , __A : List[Any]=0.1 , __A : List[str]=0.1 , __A : Optional[Any]=5_1_2 , __A : Optional[int]=2 , __A : int=0.0_2 , __A : Dict=1e-1_2 , __A : Optional[int]=0 , __A : List[Any]="absolute" , __A : str=True , **__A : Optional[Any] , ): super().__init__(**__A ) snake_case__ : Any = vocab_size snake_case__ : str = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Optional[int] = hidden_act snake_case__ : Tuple = intermediate_size snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Union[str, Any] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : Optional[int] = position_embedding_type snake_case__ : Tuple = use_cache snake_case__ : List[str] = pad_token_id @classmethod def _lowercase ( cls : Tuple , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Dict = cls.get_config_dict(__A , **__A ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": snake_case__ : Any = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "align_vision_model" def __init__( self : Union[str, Any] , __A : int = 3 , __A : int = 6_0_0 , __A : float = 2.0 , __A : float = 3.1 , __A : int = 8 , __A : List[int] = [3, 3, 5, 3, 5, 5, 3] , __A : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __A : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __A : List[int] = [] , __A : List[int] = [1, 2, 2, 2, 1, 2, 1] , __A : List[int] = [1, 2, 2, 3, 3, 4, 1] , __A : List[int] = [1, 6, 6, 6, 6, 6, 6] , __A : float = 0.2_5 , __A : str = "swish" , __A : int = 2_5_6_0 , __A : str = "mean" , __A : float = 0.0_2 , __A : float = 0.0_0_1 , __A : float = 0.9_9 , __A : float = 0.2 , **__A : Optional[int] , ): super().__init__(**__A ) snake_case__ : Optional[Any] = num_channels snake_case__ : str = image_size snake_case__ : Optional[Any] = width_coefficient snake_case__ : int = depth_coefficient snake_case__ : List[str] = depth_divisor snake_case__ : int = kernel_sizes snake_case__ : str = in_channels snake_case__ : Optional[Any] = out_channels snake_case__ : Union[str, Any] = depthwise_padding snake_case__ : Dict = strides snake_case__ : Optional[int] = num_block_repeats snake_case__ : Any = expand_ratios snake_case__ : List[Any] = squeeze_expansion_ratio snake_case__ : List[Any] = hidden_act snake_case__ : Dict = hidden_dim snake_case__ : str = pooling_type snake_case__ : Any = initializer_range snake_case__ : List[str] = batch_norm_eps snake_case__ : Optional[Any] = batch_norm_momentum snake_case__ : Any = drop_connect_rate snake_case__ : Optional[int] = sum(__A ) * 4 @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Dict ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Any = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": snake_case__ : str = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "align" a_ = True def __init__( self : int , __A : List[str]=None , __A : Any=None , __A : Tuple=6_4_0 , __A : int=1.0 , __A : Tuple=0.0_2 , **__A : Tuple , ): super().__init__(**__A ) if text_config is None: snake_case__ : List[Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: snake_case__ : Union[str, Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) snake_case__ : Any = AlignTextConfig(**__A ) snake_case__ : List[str] = AlignVisionConfig(**__A ) snake_case__ : List[str] = projection_dim snake_case__ : Union[str, Any] = temperature_init_value snake_case__ : int = initializer_range @classmethod def _lowercase ( cls : Optional[Any] , __A : AlignTextConfig , __A : AlignVisionConfig , **__A : Optional[int] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _lowercase ( self : Tuple ): snake_case__ : Dict = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : Dict = self.vision_config.to_dict() snake_case__ : Dict = self.__class__.model_type return output
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Any = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "mask2former" a_ = ["swin"] a_ = {"hidden_size": "hidden_dim"} def __init__( self : Any , __A : Optional[Dict] = None , __A : int = 2_5_6 , __A : int = 2_5_6 , __A : int = 2_5_6 , __A : int = 1_0_2_4 , __A : str = "relu" , __A : int = 6 , __A : int = 1_0 , __A : int = 8 , __A : float = 0.0 , __A : int = 2_0_4_8 , __A : bool = False , __A : bool = False , __A : int = 4 , __A : int = 2_5_5 , __A : int = 1_0_0 , __A : float = 0.1 , __A : float = 2.0 , __A : float = 5.0 , __A : float = 5.0 , __A : int = 1_2_5_4_4 , __A : float = 3.0 , __A : float = 0.7_5 , __A : float = 0.0_2 , __A : float = 1.0 , __A : bool = True , __A : List[int] = [4, 8, 1_6, 3_2] , __A : bool = None , **__A : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case__ : List[Any] = CONFIG_MAPPING["swin"]( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__A , __A ): snake_case__ : Tuple = backbone_config.pop("model_type" ) snake_case__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] snake_case__ : Optional[int] = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) snake_case__ : Any = backbone_config snake_case__ : Dict = feature_size snake_case__ : List[str] = mask_feature_size snake_case__ : Any = hidden_dim snake_case__ : Tuple = encoder_feedforward_dim snake_case__ : Tuple = activation_function snake_case__ : int = encoder_layers snake_case__ : Any = decoder_layers snake_case__ : Tuple = num_attention_heads snake_case__ : Optional[int] = dropout snake_case__ : Tuple = dim_feedforward snake_case__ : List[Any] = pre_norm snake_case__ : List[str] = enforce_input_projection snake_case__ : List[str] = common_stride snake_case__ : Union[str, Any] = ignore_value snake_case__ : Union[str, Any] = num_queries snake_case__ : int = no_object_weight snake_case__ : Dict = class_weight snake_case__ : List[Any] = mask_weight snake_case__ : str = dice_weight snake_case__ : Optional[int] = train_num_points snake_case__ : List[str] = oversample_ratio snake_case__ : Dict = importance_sample_ratio snake_case__ : int = init_std snake_case__ : Dict = init_xavier_std snake_case__ : Tuple = use_auxiliary_loss snake_case__ : Optional[Any] = feature_strides snake_case__ : Tuple = output_auxiliary_logits snake_case__ : str = decoder_layers super().__init__(**__A ) @classmethod def _lowercase ( cls : Any , __A : PretrainedConfig , **__A : Dict ): return cls( backbone_config=__A , **__A , ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Dict = copy.deepcopy(self.__dict__ ) snake_case__ : int = self.backbone_config.to_dict() snake_case__ : Any = self.__class__.model_type return output
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "big_bird" def __init__( self : Union[str, Any] , __A : int=5_0_3_5_8 , __A : List[Any]=7_6_8 , __A : List[str]=1_2 , __A : int=1_2 , __A : int=3_0_7_2 , __A : Dict="gelu_new" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=4_0_9_6 , __A : Union[str, Any]=2 , __A : Tuple=0.0_2 , __A : Union[str, Any]=1e-1_2 , __A : Tuple=True , __A : Union[str, Any]=0 , __A : List[str]=1 , __A : Any=2 , __A : Dict=6_6 , __A : Union[str, Any]="block_sparse" , __A : int=True , __A : str=False , __A : str=6_4 , __A : List[str]=3 , __A : int=None , **__A : Optional[Any] , ): super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , sep_token_id=__A , **__A , ) snake_case__ : Optional[Any] = vocab_size snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Union[str, Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Union[str, Any] = initializer_range snake_case__ : int = type_vocab_size snake_case__ : List[Any] = layer_norm_eps snake_case__ : int = use_cache snake_case__ : Any = rescale_embeddings snake_case__ : Union[str, Any] = attention_type snake_case__ : Any = use_bias snake_case__ : Union[str, Any] = block_size snake_case__ : Optional[Any] = num_random_blocks snake_case__ : int = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": snake_case__ : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DDIMPipeline a_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } a_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS a_ = False def _lowercase ( self : Union[str, Any] ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) snake_case__ : Dict = DDIMScheduler() snake_case__ : Dict = {"unet": unet, "scheduler": scheduler} return components def _lowercase ( self : Optional[int] , __A : Any , __A : Optional[int]=0 ): if str(__A ).startswith("mps" ): snake_case__ : Union[str, Any] = torch.manual_seed(__A ) else: snake_case__ : Union[str, Any] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Optional[int] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowercase ( self : Dict ): snake_case__ : str = "cpu" snake_case__ : List[str] = self.get_dummy_components() snake_case__ : List[Any] = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : int = self.get_dummy_inputs(__A ) snake_case__ : Any = pipe(**__A ).images snake_case__ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) snake_case__ : int = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] ) snake_case__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1e-3 ) def _lowercase ( self : List[str] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowercase ( self : Union[str, Any] ): super().test_save_load_local(expected_max_difference=3e-3 ) def _lowercase ( self : int ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _lowercase ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ): snake_case__ : Any = "google/ddpm-cifar10-32" snake_case__ : Optional[Any] = UNetaDModel.from_pretrained(__A ) snake_case__ : int = DDIMScheduler() snake_case__ : Union[str, Any] = DDIMPipeline(unet=__A , scheduler=__A ) ddim.to(__A ) ddim.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = torch.manual_seed(0 ) snake_case__ : List[Any] = ddim(generator=__A , eta=0.0 , output_type="numpy" ).images snake_case__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Tuple = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = "google/ddpm-ema-bedroom-256" snake_case__ : List[Any] = UNetaDModel.from_pretrained(__A ) snake_case__ : Union[str, Any] = DDIMScheduler.from_pretrained(__A ) snake_case__ : Tuple = DDIMPipeline(unet=__A , scheduler=__A ) ddpm.to(__A ) ddpm.set_progress_bar_config(disable=__A ) snake_case__ : Any = torch.manual_seed(0 ) snake_case__ : Any = ddpm(generator=__A , output_type="numpy" ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) snake_case__ : str = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def SCREAMING_SNAKE_CASE ( snake_case_ : Features ): snake_case__ : str = np.inf def set_batch_size(snake_case_ : FeatureType ) -> None: nonlocal batch_size if isinstance(snake_case_ , snake_case_ ): snake_case__ : List[Any] = min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(snake_case_ , snake_case_ ): snake_case__ : Tuple = min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(snake_case_ , snake_case_ ) and feature.dtype == "binary": snake_case__ : Tuple = min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(snake_case_ , snake_case_ ) return None if batch_size is np.inf else batch_size class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , __A : NestedDataStructureLike[PathLike] , __A : Optional[NamedSplit] = None , __A : Optional[Features] = None , __A : str = None , __A : bool = False , __A : bool = False , __A : Optional[int] = None , **__A : int , ): super().__init__( __A , split=__A , features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) snake_case__ : Tuple = path_or_paths if isinstance(__A , __A ) else {self.split: path_or_paths} snake_case__ : Union[str, Any] = _PACKAGED_DATASETS_MODULES["parquet"][1] snake_case__ : List[Any] = Parquet( cache_dir=__A , data_files=__A , features=__A , hash=__A , **__A , ) def _lowercase ( self : str ): # Build iterable dataset if self.streaming: snake_case__ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case__ : int = None snake_case__ : int = None snake_case__ : int = None snake_case__ : Tuple = None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) snake_case__ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : Dataset , __A : Union[PathLike, BinaryIO] , __A : Optional[int] = None , **__A : Any , ): snake_case__ : Union[str, Any] = dataset snake_case__ : str = path_or_buf snake_case__ : Union[str, Any] = batch_size or get_writer_batch_size(dataset.features ) snake_case__ : Union[str, Any] = parquet_writer_kwargs def _lowercase ( self : int ): snake_case__ : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: snake_case__ : List[str] = self._write(file_obj=__A , batch_size=__A , **self.parquet_writer_kwargs ) else: snake_case__ : List[str] = self._write(file_obj=self.path_or_buf , batch_size=__A , **self.parquet_writer_kwargs ) return written def _lowercase ( self : Optional[int] , __A : BinaryIO , __A : int , **__A : str ): snake_case__ : int = 0 snake_case__ : Optional[int] = parquet_writer_kwargs.pop("path_or_buf" , __A ) snake_case__ : List[str] = self.dataset.features.arrow_schema snake_case__ : List[str] = pq.ParquetWriter(__A , schema=__A , **__A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __A ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): snake_case__ : Optional[Any] = query_table( table=self.dataset._data , key=slice(__A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__A ) written += batch.nbytes writer.close() return written
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "SpeechT5FeatureExtractor" a_ = "SpeechT5Tokenizer" def __init__( self : Optional[int] , __A : Any , __A : Any ): super().__init__(__A , __A ) def __call__( self : Any , *__A : Tuple , **__A : List[Any] ): snake_case__ : int = kwargs.pop("audio" , __A ) snake_case__ : Optional[int] = kwargs.pop("text" , __A ) snake_case__ : str = kwargs.pop("text_target" , __A ) snake_case__ : List[Any] = kwargs.pop("audio_target" , __A ) snake_case__ : Any = kwargs.pop("sampling_rate" , __A ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: snake_case__ : Union[str, Any] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) elif text is not None: snake_case__ : Dict = self.tokenizer(__A , **__A ) else: snake_case__ : Optional[int] = None if audio_target is not None: snake_case__ : List[str] = self.feature_extractor(audio_target=__A , *__A , sampling_rate=__A , **__A ) snake_case__ : str = targets["input_values"] elif text_target is not None: snake_case__ : List[str] = self.tokenizer(__A , **__A ) snake_case__ : List[Any] = targets["input_ids"] else: snake_case__ : int = None if inputs is None: return targets if targets is not None: snake_case__ : Optional[int] = labels snake_case__ : Any = targets.get("attention_mask" ) if decoder_attention_mask is not None: snake_case__ : Any = decoder_attention_mask return inputs def _lowercase ( self : Optional[int] , *__A : Any , **__A : List[Any] ): snake_case__ : Optional[Any] = kwargs.pop("input_values" , __A ) snake_case__ : List[Any] = kwargs.pop("input_ids" , __A ) snake_case__ : Optional[Any] = kwargs.pop("labels" , __A ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: snake_case__ : Tuple = self.feature_extractor.pad(__A , *__A , **__A ) elif input_ids is not None: snake_case__ : List[Any] = self.tokenizer.pad(__A , **__A ) else: snake_case__ : Dict = None if labels is not None: if "input_ids" in labels or (isinstance(__A , __A ) and "input_ids" in labels[0]): snake_case__ : Any = self.tokenizer.pad(__A , **__A ) snake_case__ : Optional[Any] = targets["input_ids"] else: snake_case__ : List[str] = self.feature_extractor.feature_size snake_case__ : Optional[int] = self.feature_extractor.num_mel_bins snake_case__ : Dict = self.feature_extractor.pad(__A , *__A , **__A ) snake_case__ : Any = feature_size_hack snake_case__ : int = targets["input_values"] else: snake_case__ : Any = None if inputs is None: return targets if targets is not None: snake_case__ : int = labels snake_case__ : str = targets.get("attention_mask" ) if decoder_attention_mask is not None: snake_case__ : Optional[int] = decoder_attention_mask return inputs def _lowercase ( self : int , *__A : Optional[Any] , **__A : Tuple ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowercase ( self : str , *__A : Dict , **__A : List[Any] ): return self.tokenizer.decode(*__A , **__A )
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "char" a_ = "bpe" a_ = "wp" __lowerCamelCase : Any = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["image_processor", "char_tokenizer"] a_ = "ViTImageProcessor" a_ = "MgpstrTokenizer" def __init__( self : Union[str, Any] , __A : Any=None , __A : Dict=None , **__A : Any ): snake_case__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) snake_case__ : List[str] = kwargs.pop("feature_extractor" ) snake_case__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) snake_case__ : List[Any] = tokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained("gpt2" ) snake_case__ : Dict = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__A , __A ) def __call__( self : List[str] , __A : str=None , __A : Optional[Any]=None , __A : Dict=None , **__A : Optional[Any] ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: snake_case__ : Union[str, Any] = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None: snake_case__ : List[str] = self.char_tokenizer(__A , return_tensors=__A , **__A ) if text is None: return inputs elif images is None: return encodings else: snake_case__ : Any = encodings["input_ids"] return inputs def _lowercase ( self : Optional[Any] , __A : Optional[int] ): snake_case__, snake_case__, snake_case__ : List[str] = sequences snake_case__ : Optional[Any] = char_preds.size(0 ) snake_case__, snake_case__ : List[Any] = self._decode_helper(__A , "char" ) snake_case__, snake_case__ : Tuple = self._decode_helper(__A , "bpe" ) snake_case__, snake_case__ : int = self._decode_helper(__A , "wp" ) snake_case__ : Dict = [] snake_case__ : Dict = [] for i in range(__A ): snake_case__ : List[str] = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ : str = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ : str = scores.index(max(__A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ : Any = {} snake_case__ : Union[str, Any] = final_strs snake_case__ : Tuple = final_scores snake_case__ : Optional[Any] = char_strs snake_case__ : Tuple = bpe_strs snake_case__ : Dict = wp_strs return out def _lowercase ( self : str , __A : List[Any] , __A : Union[str, Any] ): if format == DecodeType.CHARACTER: snake_case__ : int = self.char_decode snake_case__ : List[str] = 1 snake_case__ : Optional[int] = "[s]" elif format == DecodeType.BPE: snake_case__ : Optional[int] = self.bpe_decode snake_case__ : List[str] = 2 snake_case__ : Dict = "#" elif format == DecodeType.WORDPIECE: snake_case__ : Union[str, Any] = self.wp_decode snake_case__ : Tuple = 1_0_2 snake_case__ : Optional[Any] = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) snake_case__, snake_case__ : Union[str, Any] = [], [] snake_case__ : Tuple = pred_logits.size(0 ) snake_case__ : int = pred_logits.size(1 ) snake_case__, snake_case__ : Any = pred_logits.topk(1 , dim=-1 , largest=__A , sorted=__A ) snake_case__ : Tuple = preds_index.view(-1 , __A )[:, 1:] snake_case__ : List[Any] = decoder(__A ) snake_case__, snake_case__ : Optional[Any] = torch.nn.functional.softmax(__A , dim=2 ).max(dim=2 ) snake_case__ : str = preds_max_prob[:, 1:] for index in range(__A ): snake_case__ : int = preds_str[index].find(__A ) snake_case__ : Union[str, Any] = preds_str[index][:pred_eos] snake_case__ : Any = preds_index[index].cpu().tolist() snake_case__ : Union[str, Any] = pred_index.index(__A ) if eos_token in pred_index else -1 snake_case__ : Union[str, Any] = preds_max_prob[index][: pred_eos_index + 1] snake_case__ : List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__A ) conf_scores.append(__A ) return dec_strs, conf_scores def _lowercase ( self : Union[str, Any] , __A : Tuple ): snake_case__ : Tuple = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__A )] return decode_strs def _lowercase ( self : List[Any] , __A : Any ): return self.bpe_tokenizer.batch_decode(__A ) def _lowercase ( self : Optional[int] , __A : List[str] ): snake_case__ : Optional[Any] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__A )] return decode_strs
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int ): snake_case__ : Optional[Any] = [0] * no_of_processes snake_case__ : str = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(snake_case_ ): snake_case__ : Optional[int] = burst_time[i] snake_case__ : list[int] = [] snake_case__ : Dict = 0 snake_case__ : Dict = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ : Union[str, Any] = [] snake_case__ : str = -1 for i in range(snake_case_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(snake_case_ ) if len(snake_case_ ) > 0: snake_case__ : List[Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ : List[Any] = i total_time += burst_time[target_process] completed += 1 snake_case__ : List[str] = 0 snake_case__ : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : list[int] ): snake_case__ : Union[str, Any] = [0] * no_of_processes for i in range(snake_case_ ): snake_case__ : Optional[int] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __lowerCamelCase : Any = 4 __lowerCamelCase : int = [2, 5, 3, 7] __lowerCamelCase : Optional[int] = [0, 0, 0, 0] __lowerCamelCase : List[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCamelCase : Tuple = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(f"\nAverage waiting time = {mean(waiting_time):.5f}") print(f"Average turnaround time = {mean(turn_around_time):.5f}")
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__A : List[Any] , **__A : str ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , __A , ) super().__init__(*__A , **__A )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __A : Callable , __A : Optional[Features] = None , __A : str = None , __A : bool = False , __A : bool = False , __A : Optional[dict] = None , __A : Optional[int] = None , **__A : int , ): super().__init__( features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) snake_case__ : Tuple = Generator( cache_dir=__A , features=__A , generator=__A , gen_kwargs=__A , **__A , ) def _lowercase ( self : Any ): # Build iterable dataset if self.streaming: snake_case__ : Optional[int] = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: snake_case__ : Any = None snake_case__ : Union[str, Any] = None snake_case__ : Optional[Any] = None snake_case__ : str = None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) snake_case__ : Optional[Any] = self.builder.as_dataset( split="train" , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __lowerCamelCase : int = random.Random() def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str=1.0 , snake_case_ : Dict=None , snake_case_ : Tuple=None ): if rng is None: snake_case__ : Optional[int] = global_rng snake_case__ : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __A : Any , __A : int=7 , __A : Any=4_0_0 , __A : Tuple=2_0_0_0 , __A : Tuple=2_0_4_8 , __A : List[str]=1_2_8 , __A : Dict=1 , __A : int=5_1_2 , __A : List[str]=3_0 , __A : List[Any]=4_4_1_0_0 , ): snake_case__ : str = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Optional[Any] = min_seq_length snake_case__ : Optional[int] = max_seq_length snake_case__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : List[str] = spectrogram_length snake_case__ : Union[str, Any] = feature_size snake_case__ : int = num_audio_channels snake_case__ : Tuple = hop_length snake_case__ : str = chunk_length snake_case__ : Optional[int] = sampling_rate def _lowercase ( self : str ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowercase ( self : int , __A : Tuple=False , __A : int=False ): def _flatten(__A : Union[str, Any] ): return list(itertools.chain(*__A ) ) if equal_length: snake_case__ : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ : List[str] = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = TvltFeatureExtractor def _lowercase ( self : Any ): snake_case__ : Dict = TvltFeatureExtractionTester(self ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__A , "spectrogram_length" ) ) self.assertTrue(hasattr(__A , "feature_size" ) ) self.assertTrue(hasattr(__A , "num_audio_channels" ) ) self.assertTrue(hasattr(__A , "hop_length" ) ) self.assertTrue(hasattr(__A , "chunk_length" ) ) self.assertTrue(hasattr(__A , "sampling_rate" ) ) def _lowercase ( self : Dict ): snake_case__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[Any] = feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) snake_case__ : List[Any] = self.feature_extraction_class.from_pretrained(__A ) snake_case__ : List[str] = feat_extract_first.to_dict() snake_case__ : str = feat_extract_second.to_dict() snake_case__ : List[Any] = dict_first.pop("mel_filters" ) snake_case__ : Any = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def _lowercase ( self : int ): snake_case__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : List[str] = os.path.join(__A , "feat_extract.json" ) feat_extract_first.to_json_file(__A ) snake_case__ : Any = self.feature_extraction_class.from_json_file(__A ) snake_case__ : Dict = feat_extract_first.to_dict() snake_case__ : Any = feat_extract_second.to_dict() snake_case__ : List[str] = dict_first.pop("mel_filters" ) snake_case__ : int = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def _lowercase ( self : List[str] ): # Initialize feature_extractor snake_case__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 snake_case__ : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case__ : Union[str, Any] = [np.asarray(__A ) for speech_input in speech_inputs] # Test not batched input snake_case__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched snake_case__ : Dict = feature_extractor(__A , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking snake_case__ : Union[str, Any] = feature_extractor( __A , return_tensors="np" , sampling_rate=4_4_1_0_0 , mask_audio=__A ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. snake_case__ : Any = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case__ : str = np.asarray(__A ) snake_case__ : Tuple = feature_extractor(__A , return_tensors="np" , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowercase ( self : Optional[int] , __A : Dict ): snake_case__ : List[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech snake_case__ : Tuple = ds.sort("id" ).select(range(__A ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowercase ( self : Union[str, Any] ): snake_case__ : Dict = self._load_datasamples(1 ) snake_case__ : Any = TvltFeatureExtractor() snake_case__ : List[str] = feature_extractor(__A , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) snake_case__ : Optional[int] = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __A , atol=1e-4 ) )
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def SCREAMING_SNAKE_CASE ( snake_case_ : int ): random.seed(snake_case_ ) np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # ^^ safe to call this function even if cuda is not available class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : Iterable[torch.nn.Parameter] , __A : float = 0.9_9_9_9 , __A : float = 0.0 , __A : int = 0 , __A : bool = False , __A : Union[float, int] = 1.0 , __A : Union[float, int] = 2 / 3 , __A : Optional[Any] = None , __A : Dict[str, Any] = None , **__A : List[str] , ): if isinstance(__A , torch.nn.Module ): snake_case__ : Tuple = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , __A , standard_warn=__A , ) snake_case__ : Union[str, Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility snake_case__ : List[str] = True if kwargs.get("max_value" , __A ) is not None: snake_case__ : Any = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , __A , standard_warn=__A ) snake_case__ : str = kwargs["max_value"] if kwargs.get("min_value" , __A ) is not None: snake_case__ : Dict = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , __A , standard_warn=__A ) snake_case__ : Any = kwargs["min_value"] snake_case__ : Tuple = list(__A ) snake_case__ : str = [p.clone().detach() for p in parameters] if kwargs.get("device" , __A ) is not None: snake_case__ : Dict = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , __A , standard_warn=__A ) self.to(device=kwargs["device"] ) snake_case__ : List[str] = None snake_case__ : Tuple = decay snake_case__ : Dict = min_decay snake_case__ : int = update_after_step snake_case__ : Any = use_ema_warmup snake_case__ : Union[str, Any] = inv_gamma snake_case__ : Optional[int] = power snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = None # set in `step()` snake_case__ : List[Any] = model_cls snake_case__ : int = model_config @classmethod def _lowercase ( cls : Dict , __A : Optional[int] , __A : int ): snake_case__, snake_case__ : Any = model_cls.load_config(__A , return_unused_kwargs=__A ) snake_case__ : Tuple = model_cls.from_pretrained(__A ) snake_case__ : List[Any] = cls(model.parameters() , model_cls=__A , model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def _lowercase ( self : int , __A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) snake_case__ : Any = self.model_cls.from_config(self.model_config ) snake_case__ : Union[str, Any] = self.state_dict() state_dict.pop("shadow_params" , __A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def _lowercase ( self : Tuple , __A : int ): snake_case__ : str = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: snake_case__ : int = 1 - (1 + step / self.inv_gamma) ** -self.power else: snake_case__ : Union[str, Any] = (1 + step) / (1_0 + step) snake_case__ : List[Any] = min(__A , self.decay ) # make sure decay is not smaller than min_decay snake_case__ : Union[str, Any] = max(__A , self.min_decay ) return cur_decay_value @torch.no_grad() def _lowercase ( self : Any , __A : Iterable[torch.nn.Parameter] ): if isinstance(__A , torch.nn.Module ): snake_case__ : int = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , __A , standard_warn=__A , ) snake_case__ : str = parameters.parameters() snake_case__ : List[Any] = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. snake_case__ : str = self.get_decay(self.optimization_step ) snake_case__ : Optional[Any] = decay snake_case__ : str = 1 - decay snake_case__ : Tuple = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): snake_case__ : Any = deepspeed.zero.GatheredParameters(__A , modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def _lowercase ( self : str , __A : Iterable[torch.nn.Parameter] ): snake_case__ : Union[str, Any] = list(__A ) for s_param, param in zip(self.shadow_params , __A ): param.data.copy_(s_param.to(param.device ).data ) def _lowercase ( self : Optional[int] , __A : Tuple=None , __A : Tuple=None ): snake_case__ : Union[str, Any] = [ p.to(device=__A , dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def _lowercase ( self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _lowercase ( self : Tuple , __A : Iterable[torch.nn.Parameter] ): snake_case__ : Any = [param.detach().cpu().clone() for param in parameters] def _lowercase ( self : str , __A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , __A ): param.data.copy_(c_param.data ) # Better memory-wise. snake_case__ : Dict = None def _lowercase ( self : List[str] , __A : dict ): snake_case__ : Tuple = copy.deepcopy(__A ) snake_case__ : List[Any] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) snake_case__ : Optional[Any] = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , __A ): raise ValueError("Invalid min_decay" ) snake_case__ : int = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , __A ): raise ValueError("Invalid optimization_step" ) snake_case__ : List[str] = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , __A ): raise ValueError("Invalid update_after_step" ) snake_case__ : Dict = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __A ): raise ValueError("Invalid use_ema_warmup" ) snake_case__ : Any = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) snake_case__ : Union[str, Any] = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) snake_case__ : List[str] = state_dict.get("shadow_params" , __A ) if shadow_params is not None: snake_case__ : Dict = shadow_params if not isinstance(self.shadow_params , __A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "roformer" def __init__( self : Optional[int] , __A : Tuple=5_0_0_0_0 , __A : Optional[Any]=None , __A : Any=7_6_8 , __A : Optional[Any]=1_2 , __A : Tuple=1_2 , __A : Dict=3_0_7_2 , __A : Dict="gelu" , __A : Any=0.1 , __A : Union[str, Any]=0.1 , __A : str=1_5_3_6 , __A : Optional[Any]=2 , __A : List[Any]=0.0_2 , __A : List[Any]=1e-1_2 , __A : Tuple=0 , __A : Optional[Any]=False , __A : str=True , **__A : Any , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : int = hidden_size if embedding_size is None else embedding_size snake_case__ : str = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : Any = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : List[str] = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : Any = initializer_range snake_case__ : int = layer_norm_eps snake_case__ : List[str] = rotary_value snake_case__ : List[str] = use_cache class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : List[Any] ): if self.task == "multiple-choice": snake_case__ : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Optional[int] = {0: "batch", 1: "sequence"} snake_case__ : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : Dict = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : Optional[int] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : List[Any] = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __lowerCamelCase : Tuple = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __lowerCamelCase : Optional[int] = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowerCamelCase : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowerCamelCase : Any = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __lowerCamelCase : List[Any] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __lowerCamelCase : int = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __call__( self : Dict , __A : int , __A : Optional[str] = None , __A : Optional[str] = None , __A : Union[bool, str] = False , __A : Union[bool, str] = False , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[bool] = None , **__A : Any , ): if titles is None and texts is None: return super().__call__( __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) elif titles is None or texts is None: snake_case__ : Tuple = titles if texts is None else texts return super().__call__( __A , __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) snake_case__ : Optional[int] = titles if not isinstance(__A , __A ) else [titles] snake_case__ : Optional[Any] = texts if not isinstance(__A , __A ) else [texts] snake_case__ : Union[str, Any] = len(__A ) snake_case__ : List[Any] = questions if not isinstance(__A , __A ) else [questions] * n_passages if len(__A ) != len(__A ): raise ValueError( f'''There should be as many titles than texts but got {len(__A )} titles and {len(__A )} texts.''' ) snake_case__ : Tuple = super().__call__(__A , __A , padding=__A , truncation=__A )["input_ids"] snake_case__ : str = super().__call__(__A , add_special_tokens=__A , padding=__A , truncation=__A )["input_ids"] snake_case__ : Tuple = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__A , __A ) ] } if return_attention_mask is not False: snake_case__ : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : List[str] = attention_mask return self.pad(__A , padding=__A , max_length=__A , return_tensors=__A ) def _lowercase ( self : Optional[int] , __A : BatchEncoding , __A : DPRReaderOutput , __A : int = 1_6 , __A : int = 6_4 , __A : int = 4 , ): snake_case__ : Optional[int] = reader_input["input_ids"] snake_case__, snake_case__, snake_case__ : Union[str, Any] = reader_output[:3] snake_case__ : Tuple = len(__A ) snake_case__ : Union[str, Any] = sorted(range(__A ) , reverse=__A , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Tuple = sequence_ids.index(self.pad_token_id ) else: snake_case__ : int = len(__A ) snake_case__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__A , top_spans=__A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__A , start_index=__A , end_index=__A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self : Any , __A : List[int] , __A : List[int] , __A : int , __A : int , ): snake_case__ : Tuple = [] for start_index, start_score in enumerate(__A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : str = sorted(__A , key=lambda __A : x[1] , reverse=__A ) snake_case__ : Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) snake_case__ : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = READER_PRETRAINED_VOCAB_FILES_MAP a_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = READER_PRETRAINED_INIT_CONFIGURATION a_ = ["input_ids", "attention_mask"]
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import math import sys def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if number != int(snake_case_ ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 snake_case__ : Optional[int] = [-1] * (number + 1) snake_case__ : Optional[Any] = 0 for i in range(1 , number + 1 ): snake_case__ : List[Any] = sys.maxsize snake_case__ : int = int(math.sqrt(snake_case_ ) ) for j in range(1 , root + 1 ): snake_case__ : str = 1 + answers[i - (j**2)] snake_case__ : Dict = min(snake_case_ , snake_case_ ) snake_case__ : Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__A , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(__A , "num_attention_heads" ) ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : Dict , __A : Any=1_3 , __A : Optional[int]=3_2 , __A : List[Any]=2 , __A : Dict=3 , __A : Optional[Any]=6_4_0 , __A : Any=4 , __A : Dict="silu" , __A : Union[str, Any]=3 , __A : Tuple=3_2 , __A : Tuple=0.1 , __A : Any=0.1 , __A : Dict=0.1 , __A : Dict=0.0_2 , __A : Any=True , __A : Optional[int]=True , __A : str=1_0 , __A : List[str]=None , ): snake_case__ : Optional[int] = parent snake_case__ : List[str] = batch_size snake_case__ : Dict = image_size snake_case__ : Dict = patch_size snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = last_hidden_size snake_case__ : Any = num_attention_heads snake_case__ : Union[str, Any] = hidden_act snake_case__ : Any = conv_kernel_size snake_case__ : int = output_stride snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : Any = classifier_dropout_prob snake_case__ : Any = use_labels snake_case__ : List[Any] = is_training snake_case__ : str = num_labels snake_case__ : List[str] = initializer_range snake_case__ : Tuple = scope def _lowercase ( self : List[str] ): snake_case__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : str = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self : Optional[Any] ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self : Any , __A : List[Any] , __A : Any , __A : List[Any] , __A : Union[str, Any] ): snake_case__ : List[str] = MobileViTModel(config=__A ) model.to(__A ) model.eval() snake_case__ : Any = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self : Optional[Any] , __A : int , __A : str , __A : Optional[Any] , __A : Any ): snake_case__ : Union[str, Any] = self.num_labels snake_case__ : Any = MobileViTForImageClassification(__A ) model.to(__A ) model.eval() snake_case__ : List[Any] = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[Any] , __A : Optional[int] , __A : Union[str, Any] , __A : Dict , __A : Optional[Any] ): snake_case__ : Optional[int] = self.num_labels snake_case__ : str = MobileViTForSemanticSegmentation(__A ) model.to(__A ) model.eval() snake_case__ : List[str] = model(__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : List[str] = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self : Optional[int] ): snake_case__ : str = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__, snake_case__ : Optional[int] = config_and_inputs snake_case__ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) a_ = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : Any ): snake_case__ : List[str] = MobileViTModelTester(self ) snake_case__ : Tuple = MobileViTConfigTester(self , config_class=__A , has_text_modality=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def _lowercase ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def _lowercase ( self : List[str] ): pass @unittest.skip(reason="MobileViT does not output attentions" ) def _lowercase ( self : int ): pass def _lowercase ( self : Any ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(__A ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self : Tuple ): pass def _lowercase ( self : List[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : List[str] ): def check_hidden_states_output(__A : Any , __A : Any , __A : Optional[Any] ): snake_case__ : List[Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : Any = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : int = outputs.hidden_states snake_case__ : Any = 5 self.assertEqual(len(__A ) , __A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ : Dict = 2 for i in range(len(__A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__, snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(__A , __A , __A ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def _lowercase ( self : List[Any] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def _lowercase ( self : Union[str, Any] ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = MobileViTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Any ): return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def _lowercase ( self : Union[str, Any] ): snake_case__ : Dict = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(__A ) snake_case__ : Dict = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : int = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): snake_case__ : List[str] = model(**__A ) # verify the logits snake_case__ : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) snake_case__ : Dict = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) ) @slow def _lowercase ( self : str ): snake_case__ : Tuple = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) snake_case__ : Dict = model.to(__A ) snake_case__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Dict = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(**__A ) snake_case__ : int = outputs.logits # verify the logits snake_case__ : Tuple = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , __A ) snake_case__ : int = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=__A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4 ) ) @slow def _lowercase ( self : Any ): snake_case__ : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) snake_case__ : Optional[Any] = model.to(__A ) snake_case__ : int = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) snake_case__ : Tuple = prepare_img() snake_case__ : int = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**__A ) snake_case__ : str = outputs.logits.detach().cpu() snake_case__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=__A , target_sizes=[(5_0, 6_0)] ) snake_case__ : Optional[int] = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , __A ) snake_case__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=__A ) snake_case__ : int = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , __A )
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart __lowerCamelCase : Optional[Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } __lowerCamelCase : List[Any] = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Dict = bs[:] snake_case__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Tuple = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Optional[int] = set() snake_case__ : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Union[str, Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : int , __A : Tuple , __A : Tuple , __A : Optional[int]="replace" , __A : Union[str, Any]="<s>" , __A : str="</s>" , __A : List[Any]="</s>" , __A : Union[str, Any]="<s>" , __A : Optional[int]="<unk>" , __A : Optional[int]="<pad>" , __A : Optional[Any]="<mask>" , __A : Optional[Any]=False , **__A : List[Any] , ): snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Dict = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : int = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Any = errors # how to handle errors in decoding snake_case__ : List[Any] = bytes_to_unicode() snake_case__ : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : List[Any] = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : int = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : str = {} snake_case__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Dict , __A : List[Any] ): if token in self.cache: return self.cache[token] snake_case__ : int = tuple(__A ) snake_case__ : Union[str, Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Any = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : int = bigram snake_case__ : List[Any] = [] snake_case__ : Dict = 0 while i < len(__A ): try: snake_case__ : int = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : List[Any] = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : Optional[Any] = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : Tuple = get_pairs(__A ) snake_case__ : Tuple = " ".join(__A ) snake_case__ : Optional[Any] = word return word def _lowercase ( self : Union[str, Any] , __A : Tuple ): snake_case__ : int = [] for token in re.findall(self.pat , __A ): snake_case__ : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Tuple ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : int ): return self.decoder.get(__A ) def _lowercase ( self : Optional[Any] , __A : int ): snake_case__ : Tuple = "".join(__A ) snake_case__ : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : int , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : Any = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : List[Any] = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : List[str] , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : int = [self.cls_token_id] snake_case__ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Tuple , __A : Dict , __A : Any=False , **__A : Union[str, Any] ): snake_case__ : Any = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : List[Any] = " " + text return (text, kwargs)
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
from math import factorial, pi def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : int = 30 ): if not isinstance(snake_case_ , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(snake_case_ , snake_case_ ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) snake_case__ : int = float(snake_case_ ) snake_case__ : int = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : int = 30 ): if not isinstance(snake_case_ , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(snake_case_ , snake_case_ ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) snake_case__ : int = float(snake_case_ ) snake_case__ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCamelCase : List[Any] = parse(importlib.metadata.version("""torch""")) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Version] , snake_case_ : str , snake_case_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) snake_case__ : List[str] = STR_OPERATION_TO_FUNC[operation] if isinstance(snake_case_ , snake_case_ ): snake_case__ : int = parse(importlib.metadata.version(snake_case_ ) ) return operation(snake_case_ , parse(snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): return compare_versions(snake_case_ , snake_case_ , snake_case_ )
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : List[str] = """Hello world! cécé herlolip""" def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ): snake_case__ : str = FairseqRobertaModel.from_pretrained(snake_case_ ) roberta.eval() # disable dropout snake_case__ : Tuple = roberta.model.encoder.sentence_encoder snake_case__ : str = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: snake_case__ : Optional[int] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , snake_case_ ) snake_case__ : List[str] = XLMRobertaXLForSequenceClassification(snake_case_ ) if classification_head else XLMRobertaXLForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings snake_case__ : Any = roberta_sent_encoder.embed_tokens.weight snake_case__ : Optional[int] = roberta_sent_encoder.embed_positions.weight snake_case__ : List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case__ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight snake_case__ : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case__ : BertLayer = model.roberta.encoder.layer[i] snake_case__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] snake_case__ : RobertaAttention = layer.attention snake_case__ : Union[str, Any] = roberta_layer.self_attn_layer_norm.weight snake_case__ : int = roberta_layer.self_attn_layer_norm.bias # self attention snake_case__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case__ : Optional[Any] = roberta_layer.self_attn.q_proj.weight snake_case__ : Optional[Any] = roberta_layer.self_attn.q_proj.bias snake_case__ : List[str] = roberta_layer.self_attn.k_proj.weight snake_case__ : str = roberta_layer.self_attn.k_proj.bias snake_case__ : int = roberta_layer.self_attn.v_proj.weight snake_case__ : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case__ : Union[str, Any] = roberta_layer.self_attn.out_proj.weight snake_case__ : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case__ : Any = roberta_layer.final_layer_norm.weight snake_case__ : List[Any] = roberta_layer.final_layer_norm.bias # intermediate snake_case__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case__ : Dict = roberta_layer.fca.weight snake_case__ : Any = roberta_layer.fca.bias # output snake_case__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case__ : Dict = roberta_layer.fca.weight snake_case__ : Union[str, Any] = roberta_layer.fca.bias # end of layer if classification_head: snake_case__ : Any = roberta.model.classification_heads["mnli"].dense.weight snake_case__ : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.bias snake_case__ : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight snake_case__ : Union[str, Any] = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case__ : Tuple = roberta.model.encoder.lm_head.dense.weight snake_case__ : Any = roberta.model.encoder.lm_head.dense.bias snake_case__ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight snake_case__ : List[Any] = roberta.model.encoder.lm_head.layer_norm.bias snake_case__ : int = roberta.model.encoder.lm_head.weight snake_case__ : Any = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case__ : torch.Tensor = roberta.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 snake_case__ : Any = model(snake_case_ )[0] if classification_head: snake_case__ : Tuple = roberta.model.classification_heads["mnli"](roberta.extract_features(snake_case_ ) ) else: snake_case__ : Optional[Any] = roberta.model(snake_case_ )[0] print(our_output.shape , their_output.shape ) snake_case__ : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case__ : Optional[Any] = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
from math import sqrt def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(snake_case_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( snake_case_ : int = 10001 ): snake_case__ : List[str] = 0 snake_case__ : Optional[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(snake_case_ ): count += 1 while count != nth: number += 2 if is_prime(snake_case_ ): count += 1 return number if __name__ == "__main__": print(f"{solution() = }")
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from __future__ import annotations import math class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : int ): snake_case__ : Union[str, Any] = size # approximate the overall size of segment tree with given value snake_case__ : Dict = [0 for i in range(0 , 4 * size )] # create array to store lazy update snake_case__ : str = [0 for i in range(0 , 4 * size )] snake_case__ : Optional[int] = [0 for i in range(0 , 4 * size )] # flag for lazy update def _lowercase ( self : int , __A : int ): return idx * 2 def _lowercase ( self : str , __A : int ): return idx * 2 + 1 def _lowercase ( self : Any , __A : int , __A : int , __A : int , __A : list[int] ): if left_element == right_element: snake_case__ : List[str] = a[left_element - 1] else: snake_case__ : Optional[Any] = (left_element + right_element) // 2 self.build(self.left(__A ) , __A , __A , __A ) self.build(self.right(__A ) , mid + 1 , __A , __A ) snake_case__ : List[str] = max( self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] ) def _lowercase ( self : Tuple , __A : int , __A : int , __A : int , __A : int , __A : int , __A : int ): if self.flag[idx] is True: snake_case__ : Optional[int] = self.lazy[idx] snake_case__ : int = False if left_element != right_element: snake_case__ : Optional[int] = self.lazy[idx] snake_case__ : List[Any] = self.lazy[idx] snake_case__ : Optional[Any] = True snake_case__ : Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: snake_case__ : Tuple = val if left_element != right_element: snake_case__ : Dict = val snake_case__ : List[str] = val snake_case__ : List[Any] = True snake_case__ : str = True return True snake_case__ : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(__A ) , __A , __A , __A , __A , __A ) self.update(self.right(__A ) , mid + 1 , __A , __A , __A , __A ) snake_case__ : Optional[Any] = max( self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] ) return True def _lowercase ( self : Dict , __A : int , __A : int , __A : int , __A : int , __A : int ): if self.flag[idx] is True: snake_case__ : Optional[int] = self.lazy[idx] snake_case__ : int = False if left_element != right_element: snake_case__ : List[str] = self.lazy[idx] snake_case__ : Any = self.lazy[idx] snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] snake_case__ : List[Any] = (left_element + right_element) // 2 snake_case__ : int = self.query(self.left(__A ) , __A , __A , __A , __A ) snake_case__ : str = self.query(self.right(__A ) , mid + 1 , __A , __A , __A ) return max(__A , __A ) def __str__( self : List[str] ): return str([self.query(1 , 1 , self.size , __A , __A ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __lowerCamelCase : List[Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __lowerCamelCase : List[str] = 15 __lowerCamelCase : str = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Tuple = 0 for ch in input_str: snake_case__ : Optional[int] = ord(snake_case_ ) snake_case__ : List[Any] = pow(2 , snake_case_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __lowerCamelCase : int = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" a_ = None def SCREAMING_SNAKE_CASE ( snake_case_ : "pyspark.sql.DataFrame" , snake_case_ : List[int] , ): import pyspark def generate_fn(): snake_case__ : str = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: snake_case__ : Tuple = df_with_partition_id.select("*" ).where(F'''part_id = {partition_id}''' ).drop("part_id" ) snake_case__ : Any = partition_df.collect() snake_case__ : List[str] = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class SCREAMING_SNAKE_CASE__ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self : Optional[Any] , __A : "pyspark.sql.DataFrame" , __A : List[str]=None , ): snake_case__ : Any = df snake_case__ : Union[str, Any] = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case__ : Dict = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[int] ): yield from self.generate_examples_fn() def _lowercase ( self : Tuple , __A : np.random.Generator ): snake_case__ : Dict = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__A ) return SparkExamplesIterable(self.df , partition_order=__A ) def _lowercase ( self : Tuple , __A : int , __A : int ): snake_case__ : Union[str, Any] = self.split_shard_indices_by_worker(__A , __A ) return SparkExamplesIterable(self.df , partition_order=__A ) @property def _lowercase ( self : Union[str, Any] ): return len(self.partition_order ) class SCREAMING_SNAKE_CASE__ ( datasets.DatasetBuilder ): """simple docstring""" a_ = SparkConfig def __init__( self : Union[str, Any] , __A : "pyspark.sql.DataFrame" , __A : str = None , __A : str = None , **__A : Any , ): import pyspark snake_case__ : List[str] = pyspark.sql.SparkSession.builder.getOrCreate() snake_case__ : int = df snake_case__ : Dict = working_dir super().__init__( cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , ) def _lowercase ( self : List[Any] ): # Returns the path of the created file. def create_cache_and_write_probe(__A : Optional[int] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__A ) snake_case__ : List[str] = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__A , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case__ : int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _lowercase ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : Tuple , __A : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _lowercase ( self : Tuple , __A : List[str] ): import pyspark def get_arrow_batch_size(__A : List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) snake_case__ : List[str] = self.df.count() snake_case__ : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case__ : int = ( self.df.limit(__A ) .repartition(1 ) .mapInArrow(__A , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case__ : List[str] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case__ : int = min(__A , int(approx_total_size / max_shard_size ) ) snake_case__ : Any = self.df.repartition(__A ) def _lowercase ( self : Optional[int] , __A : str , __A : str , __A : int , ): import pyspark snake_case__ : str = ParquetWriter if file_format == "parquet" else ArrowWriter snake_case__ : List[str] = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath snake_case__ : Tuple = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case__ : str = self.config.features snake_case__ : Tuple = self._writer_batch_size snake_case__ : str = self._fs.storage_options def write_arrow(__A : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case__ : Tuple = pyspark.TaskContext().taskAttemptId() snake_case__ : int = next(__A , __A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) snake_case__ : int = 0 snake_case__ : Dict = writer_class( features=__A , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) snake_case__ : Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(__A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case__, snake_case__ : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 snake_case__ : Dict = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) snake_case__ : int = pa.Table.from_batches([batch] ) writer.write_table(__A ) if writer._num_bytes > 0: snake_case__, snake_case__ : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__A ) ): snake_case__ : Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) ) shutil.move(__A , __A ) snake_case__ : Dict = ( self.df.mapInArrow(__A , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _lowercase ( self : Union[str, Any] , __A : "datasets.SplitGenerator" , __A : str = "arrow" , __A : Optional[Union[str, int]] = None , __A : Optional[int] = None , **__A : str , ): self._validate_cache_dir() snake_case__ : str = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__A ) snake_case__ : int = not is_remote_filesystem(self._fs ) snake_case__ : List[Any] = os.path.join if is_local else posixpath.join snake_case__ : List[Any] = "-TTTTT-SSSSS-of-NNNNN" snake_case__ : Optional[int] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' snake_case__ : Union[str, Any] = path_join(self._output_dir , __A ) snake_case__ : Tuple = 0 snake_case__ : Tuple = 0 snake_case__ : Optional[int] = 0 snake_case__ : Union[str, Any] = [] snake_case__ : Dict = [] for task_id, content in self._prepare_split_single(__A , __A , __A ): ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__A ) snake_case__ : Dict = total_num_examples snake_case__ : Tuple = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: snake_case__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case__ : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __A : int , __A : int , __A : int , ): rename( __A , fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace("TTTTT-SSSSS" , f'''{global_shard_id:05d}''' ).replace("NNNNN" , f'''{total_shards:05d}''' ) , ) snake_case__ : Optional[Any] = [] snake_case__ : List[str] = 0 for i in range(len(__A ) ): snake_case__, snake_case__ : Optional[int] = task_id_and_num_shards[i] for shard_id in range(__A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda __A : _rename_shard(*__A ) ).collect() else: # don't use any pattern snake_case__ : Dict = 0 snake_case__ : Optional[int] = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace(__A , "" ) , ) def _lowercase ( self : Tuple , __A : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import datasets from .evaluate import evaluate __lowerCamelCase : Optional[int] = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ __lowerCamelCase : int = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ __lowerCamelCase : str = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _lowercase ( self : Union[str, Any] , __A : Any , __A : List[Any] ): snake_case__ : int = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} snake_case__ : Union[str, Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] snake_case__ : Optional[int] = evaluate(dataset=__A , predictions=__A ) return score
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
import os from datetime import datetime as dt from github import Github __lowerCamelCase : Optional[Any] = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = Github(os.environ["GITHUB_TOKEN"] ) snake_case__ : Tuple = g.get_repo("huggingface/diffusers" ) snake_case__ : int = repo.get_issues(state="open" ) for issue in open_issues: snake_case__ : Any = sorted(issue.get_comments() , key=lambda snake_case_ : i.created_at , reverse=snake_case_ ) snake_case__ : Optional[int] = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__, snake_case__ : Any = analyze_text(snake_case_ ) snake_case__ : List[Any] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. snake_case__ : int = sum(single_char_strings.values() ) # one length string snake_case__ : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case__ : Optional[int] = single_char_strings[ch] snake_case__ : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(snake_case_ ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string snake_case__ : List[Any] = sum(two_char_strings.values() ) snake_case__ : List[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case__ : List[str] = cha + cha if sequence in two_char_strings: snake_case__ : Dict = two_char_strings[sequence] snake_case__ : Dict = int(snake_case_ ) / all_sum my_sec_sum += prob * math.loga(snake_case_ ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : int = Counter() # type: ignore snake_case__ : int = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(snake_case_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : Optional[int] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
import sys __lowerCamelCase : List[str] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): snake_case__ : Tuple = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): snake_case__ : Optional[int] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : Tuple = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 a_ = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a_ = 1 @register_to_config def __init__( self : Any , __A : int = 2_0_0_0 , __A : float = 0.1_5 , __A : float = 0.0_1 , __A : float = 1_3_4_8.0 , __A : float = 1e-5 , __A : int = 1 , ): # standard deviation of the initial noise distribution snake_case__ : Tuple = sigma_max # setable values snake_case__ : Union[str, Any] = None self.set_sigmas(__A , __A , __A , __A ) def _lowercase ( self : Any , __A : torch.FloatTensor , __A : Optional[int] = None ): return sample def _lowercase ( self : str , __A : int , __A : float = None , __A : Union[str, torch.device] = None ): snake_case__ : List[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps snake_case__ : Union[str, Any] = torch.linspace(1 , __A , __A , device=__A ) def _lowercase ( self : str , __A : int , __A : float = None , __A : float = None , __A : float = None ): snake_case__ : List[Any] = sigma_min if sigma_min is not None else self.config.sigma_min snake_case__ : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max snake_case__ : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__A , __A ) snake_case__ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) snake_case__ : List[str] = torch.exp(torch.linspace(math.log(__A ) , math.log(__A ) , __A ) ) snake_case__ : Union[str, Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _lowercase ( self : Tuple , __A : int , __A : str ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _lowercase ( self : Union[str, Any] , __A : torch.FloatTensor , __A : int , __A : torch.FloatTensor , __A : Optional[torch.Generator] = None , __A : bool = True , ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) snake_case__ : Dict = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) snake_case__ : str = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda snake_case__ : Optional[int] = timesteps.to(self.discrete_sigmas.device ) snake_case__ : Dict = self.discrete_sigmas[timesteps].to(sample.device ) snake_case__ : List[Any] = self.get_adjacent_sigma(__A , __A ).to(sample.device ) snake_case__ : Any = torch.zeros_like(__A ) snake_case__ : int = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods snake_case__ : Any = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): snake_case__ : Optional[int] = diffusion.unsqueeze(-1 ) snake_case__ : List[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of snake_case__ : List[str] = randn_tensor( sample.shape , layout=sample.layout , generator=__A , device=sample.device , dtype=sample.dtype ) snake_case__ : Tuple = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? snake_case__ : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__A , prev_sample_mean=__A ) def _lowercase ( self : Optional[int] , __A : torch.FloatTensor , __A : torch.FloatTensor , __A : Optional[torch.Generator] = None , __A : bool = True , ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction snake_case__ : Optional[int] = randn_tensor(sample.shape , layout=sample.layout , generator=__A ).to(sample.device ) # compute step size from the model_output, the noise, and the snr snake_case__ : Dict = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() snake_case__ : Any = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() snake_case__ : Dict = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 snake_case__ : Optional[int] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term snake_case__ : Optional[int] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): snake_case__ : List[Any] = step_size.unsqueeze(-1 ) snake_case__ : List[str] = sample + step_size * model_output snake_case__ : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def _lowercase ( self : Any , __A : torch.FloatTensor , __A : torch.FloatTensor , __A : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ : Tuple = timesteps.to(original_samples.device ) snake_case__ : Union[str, Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] snake_case__ : List[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__A ) * sigmas[:, None, None, None] ) snake_case__ : str = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ): return self.config.num_train_timesteps
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : nn.ModuleList , snake_case_ : nn.ModuleList , snake_case_ : List[int] ): snake_case__ : str = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(snake_case_ ) == len(snake_case_ ), F'''{len(snake_case_ )} != {len(snake_case_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __lowerCamelCase : Dict = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __lowerCamelCase : Dict = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Optional[Any] ): try: snake_case__ : Optional[Any] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : str ): if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(snake_case_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, PreTrainedModel] , snake_case_ : Union[str, Path] = "student" , snake_case_ : Union[int, None] = None , snake_case_ : Union[int, None] = None , snake_case_ : Optional[Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): snake_case__ : str = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(snake_case_ , snake_case_ ): AutoTokenizer.from_pretrained(snake_case_ ).save_pretrained(snake_case_ ) # purely for convenience snake_case__ : str = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).eval() else: assert isinstance(snake_case_ , snake_case_ ), F'''teacher must be a model or string got type {type(snake_case_ )}''' snake_case__ : Dict = teacher.config.to_diff_dict() try: snake_case__, snake_case__ : Union[str, Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: snake_case__ : str = teacher_e if d is None: snake_case__ : Optional[Any] = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): snake_case__, snake_case__ : Tuple = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: snake_case__, snake_case__ : List[Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: snake_case__ : Any = teacher_e if d is None: snake_case__ : str = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(snake_case_ ) # Copy weights snake_case__ : Any = teacher.config_class(**snake_case_ ) snake_case__ : Optional[int] = AutoModelForSeqaSeqLM.from_config(snake_case_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. snake_case__ : Tuple = student.load_state_dict(teacher.state_dict() , strict=snake_case_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save snake_case__, snake_case__ : List[Any] = list(range(snake_case_ ) ), list(range(snake_case_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(snake_case_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: snake_case__ : List[int] = pick_layers_to_copy(snake_case_ , snake_case_ ) if d_layers_to_copy is None: snake_case__ : List[int] = pick_layers_to_copy(snake_case_ , snake_case_ ) try: if hasattr( snake_case_ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , snake_case_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , snake_case_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , snake_case_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , snake_case_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , snake_case_ ) copy_layers(teacher.decoder.block , student.decoder.block , snake_case_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) snake_case__ : str = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(snake_case_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionInpaintPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a_ = frozenset([] ) def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=__A , ) snake_case__ : int = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) snake_case__ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case__ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) snake_case__ : Tuple = CLIPTextModel(__A ) snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case__ : Dict = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self : Tuple , __A : Optional[int] , __A : str=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case__ : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A ) snake_case__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : int = Image.fromarray(np.uinta(__A ) ).convert("RGB" ).resize((6_4, 6_4) ) snake_case__ : Optional[int] = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((6_4, 6_4) ) if str(__A ).startswith("mps" ): snake_case__ : str = torch.manual_seed(__A ) else: snake_case__ : Any = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowercase ( self : List[Any] ): snake_case__ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : Tuple = self.get_dummy_components() snake_case__ : str = StableDiffusionInpaintPipeline(**__A ) snake_case__ : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = self.get_dummy_inputs(__A ) snake_case__ : int = sd_pipe(**__A ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Dict = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[Any] ): snake_case__ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) snake_case__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) snake_case__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) snake_case__ : str = "stabilityai/stable-diffusion-2-inpainting" snake_case__ : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained(__A , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench" snake_case__ : Tuple = torch.manual_seed(0 ) snake_case__ : int = pipe( prompt=__A , image=__A , mask_image=__A , generator=__A , output_type="np" , ) snake_case__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def _lowercase ( self : Dict ): snake_case__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) snake_case__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) snake_case__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) snake_case__ : int = "stabilityai/stable-diffusion-2-inpainting" snake_case__ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( __A , torch_dtype=torch.floataa , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : List[str] = "Face of a yellow cat, high resolution, sitting on a park bench" snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Union[str, Any] = pipe( prompt=__A , image=__A , mask_image=__A , generator=__A , output_type="np" , ) snake_case__ : Any = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowercase ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) snake_case__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) snake_case__ : Union[str, Any] = "stabilityai/stable-diffusion-2-inpainting" snake_case__ : List[str] = PNDMScheduler.from_pretrained(__A , subfolder="scheduler" ) snake_case__ : Tuple = StableDiffusionInpaintPipeline.from_pretrained( __A , safety_checker=__A , scheduler=__A , torch_dtype=torch.floataa , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench" snake_case__ : Tuple = torch.manual_seed(0 ) snake_case__ : List[Any] = pipe( prompt=__A , image=__A , mask_image=__A , generator=__A , num_inference_steps=2 , output_type="np" , ) snake_case__ : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 1_0**9
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCamelCase : List[str] = """base_with_context""" def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Any ): snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) snake_case__ : List[str] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case_ ) for lyr_num, lyr in enumerate(model.encoders ): snake_case__ : str = weights[F'''layers_{lyr_num}'''] snake_case__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case__ : Union[str, Any] = ly_weight["attention"] snake_case__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case__ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case__ : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str ): snake_case__ : int = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) snake_case__ : Tuple = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case_ ) for lyr_num, lyr in enumerate(model.encoders ): snake_case__ : int = weights[F'''layers_{lyr_num}'''] snake_case__ : Any = ly_weight["attention"] snake_case__ : int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case__ : Any = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) snake_case__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case__ : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[Any] ): snake_case__ : Any = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) snake_case__ : str = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) snake_case__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=snake_case_ ) snake_case__ : List[Any] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case__ : Tuple = weights[F'''layers_{lyr_num}'''] snake_case__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) snake_case__ : str = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) snake_case__ : Optional[Any] = ly_weight["self_attention"] snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case__ : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case__ : List[Any] = ly_weight["MultiHeadDotProductAttention_0"] snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) snake_case__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) snake_case__ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) snake_case__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) snake_case__ : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) snake_case__ : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) snake_case__ : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) snake_case__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) snake_case__ : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) snake_case__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) snake_case__ : Tuple = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) snake_case__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): snake_case__ : List[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case__ : Any = jnp.tree_util.tree_map(onp.array , snake_case_ ) snake_case__ : Union[str, Any] = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] snake_case__ : int = os.path.join(args.checkpoint_path , ".." , "config.gin" ) snake_case__ : Optional[int] = inference.parse_training_gin_file(snake_case_ , snake_case_ ) snake_case__ : str = inference.InferenceModel(args.checkpoint_path , snake_case_ ) snake_case__ : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) snake_case__ : List[str] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case__ : Optional[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) snake_case__ : Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case__ : Union[str, Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , snake_case_ ) snake_case__ : List[str] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , snake_case_ ) snake_case__ : Union[str, Any] = load_decoder(ta_checkpoint["target"]["decoder"] , snake_case_ ) snake_case__ : Optional[int] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) snake_case__ : str = SpectrogramDiffusionPipeline( notes_encoder=snake_case_ , continuous_encoder=snake_case_ , decoder=snake_case_ , scheduler=snake_case_ , melgan=snake_case_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"{MODEL}/checkpoint_500000", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) __lowerCamelCase : List[str] = parser.parse_args() main(args)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def _lowercase ( *__A : Any , **__A : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE ( snake_case_ : Image ): snake_case__ : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _lowercase ( self : Dict , __A : str , __A : int , __A : List[Any] ): snake_case__ : Tuple = DepthEstimationPipeline(model=__A , image_processor=__A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowercase ( self : Any , __A : List[Any] , __A : List[str] ): snake_case__ : Optional[int] = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __A ) import datasets snake_case__ : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) snake_case__ : Optional[int] = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __A , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def _lowercase ( self : int ): pass @slow @require_torch def _lowercase ( self : Dict ): snake_case__ : str = "Intel/dpt-large" snake_case__ : Dict = pipeline("depth-estimation" , model=__A ) snake_case__ : Optional[int] = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) snake_case__ : List[str] = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_6_2 ) @require_torch def _lowercase ( self : Optional[int] ): # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Any , __A : nn.Module , __A : int ): super().__init__() snake_case__ : Optional[int] = module snake_case__ : int = nn.Sequential( nn.Linear(module.in_features , __A , bias=__A ) , nn.Linear(__A , module.out_features , bias=__A ) , ) snake_case__ : int = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _lowercase ( self : Optional[Any] , __A : int , *__A : Optional[int] , **__A : Optional[Any] ): return self.module(__A , *__A , **__A ) + self.adapter(__A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = "bigscience/bloom-1b7" # Constant values a_ = 2.109_6595_5269_2574 a_ = "Hello my name is" a_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) a_ = 1_0 def _lowercase ( self : Any ): # Models and tokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): super().setUp() # Models and tokenizer snake_case__ : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) snake_case__ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" ) def _lowercase ( self : Any ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = self.model_abit.config self.assertTrue(hasattr(__A , "quantization_config" ) ) snake_case__ : Optional[int] = config.to_dict() snake_case__ : List[Any] = config.to_diff_dict() snake_case__ : Optional[int] = config.to_json_string() def _lowercase ( self : Optional[Any] ): from bitsandbytes.nn import Paramsabit snake_case__ : Tuple = self.model_fpaa.get_memory_footprint() snake_case__ : Dict = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) snake_case__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _lowercase ( self : List[str] ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" ) snake_case__ : Optional[int] = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS ) def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = BitsAndBytesConfig() snake_case__ : str = True snake_case__ : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__A , device_map="auto" ) snake_case__ : Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" ) snake_case__ : List[str] = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS ) def _lowercase ( self : List[Any] ): with self.assertRaises(__A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = BitsAndBytesConfig() with self.assertRaises(__A ): snake_case__ : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__A , load_in_abit=__A , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _lowercase ( self : int ): with self.assertRaises(__A ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(__A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__A ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(__A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything snake_case__ : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ) snake_case__ : Optional[int] = self.model_fpaa.to(torch.floataa ) snake_case__ : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error snake_case__ : Union[str, Any] = self.model_fpaa.to("cpu" ) # Check this does not throw an error snake_case__ : Union[str, Any] = self.model_fpaa.half() # Check this does not throw an error snake_case__ : int = self.model_fpaa.float() def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=__A , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @classmethod def _lowercase ( cls : Dict ): snake_case__ : Optional[int] = "t5-small" snake_case__ : Tuple = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense snake_case__ : List[Any] = AutoTokenizer.from_pretrained(cls.model_name ) snake_case__ : Optional[Any] = "Translate in German: Hello, my dog is cute" def _lowercase ( self : int ): gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] ): from transformers import TaForConditionalGeneration snake_case__ : Tuple = TaForConditionalGeneration._keep_in_fpaa_modules snake_case__ : Dict = None # test with `t5-small` snake_case__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" ) snake_case__ : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case__ : Any = model.generate(**__A ) # test with `flan-t5-small` snake_case__ : Union[str, Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__A , device_map="auto" ) snake_case__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case__ : int = model.generate(**__A ) snake_case__ : Optional[int] = modules def _lowercase ( self : str ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` snake_case__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) snake_case__ : Tuple = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case__ : str = model.generate(**__A ) # test with `flan-t5-small` snake_case__ : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__A , device_map="auto" ) snake_case__ : str = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) snake_case__ : List[Any] = model.generate(**__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Any ): super().setUp() # model_name snake_case__ : Union[str, Any] = "bigscience/bloom-560m" snake_case__ : int = "t5-small" # Different types of model snake_case__ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" ) # Sequence classification model snake_case__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__A , device_map="auto" ) # CausalLM model snake_case__ : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A , device_map="auto" ) # Seq2seq model snake_case__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__A , device_map="auto" ) def _lowercase ( self : Any ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Any ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Dict ): super().setUp() def _lowercase ( self : Union[str, Any] ): del self.pipe gc.collect() torch.cuda.empty_cache() def _lowercase ( self : str ): snake_case__ : List[Any] = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass snake_case__ : List[Any] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : int ): super().setUp() def _lowercase ( self : Union[str, Any] ): snake_case__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__A , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model snake_case__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch snake_case__ : Optional[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__A ) , self.EXPECTED_OUTPUTS ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Optional[int] ): snake_case__ : Optional[Any] = "facebook/opt-350m" super().setUp() def _lowercase ( self : Dict ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters snake_case__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): snake_case__ : Dict = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability snake_case__ : Dict = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__A ) ): snake_case__ : List[str] = LoRALayer(module.q_proj , rank=1_6 ) snake_case__ : Optional[int] = LoRALayer(module.k_proj , rank=1_6 ) snake_case__ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch snake_case__ : Any = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): snake_case__ : Optional[int] = model.forward(**__A ) out.logits.norm().backward() for module in model.modules(): if isinstance(__A , __A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "gpt2-xl" a_ = 3.3191_8548_5415_2187
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str , snake_case_ : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path snake_case__ : Optional[int] = quote(snake_case_ ) return hfh.hf_hub_url(snake_case_ , snake_case_ , repo_type="dataset" , revision=snake_case_ )
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : Any ): snake_case__ : Dict = metric_id class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = [MetricMock(UpperCamelCase_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _lowercase ( self : Dict ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Any ): if "tmp_path" in args: snake_case__ : Any = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(snake_case_ , match="https://huggingface.co/docs/evaluate" ): func(*snake_case_ )
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Tuple = credit_card_number snake_case__ : int = 0 snake_case__ : Optional[Any] = len(snake_case_ ) - 2 for i in range(snake_case_ , -1 , -2 ): # double the value of every second digit snake_case__ : str = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 snake_case__ : Union[str, Any] = cc_number[:i] + str(snake_case_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(snake_case_ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(snake_case_ ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(snake_case_ ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(snake_case_ ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE ( snake_case_ : float ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE ( snake_case_ : float ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE ( snake_case_ : float ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) snake_case__ : Dict = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(snake_case_ , 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def SCREAMING_SNAKE_CASE ( snake_case_ : float ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) snake_case__ : Optional[Any] = (sidea + sidea + sidea) / 2 snake_case__ : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE ( snake_case_ : float ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float ): if not isinstance(snake_case_ , snake_case_ ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("""\nSurface Areas of various geometric shapes: \n""") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
import math def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(snake_case_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __lowerCamelCase : Tuple = """Enter the base and the power separated by a comma: """ __lowerCamelCase , __lowerCamelCase : List[Any] = map(int, input(prompt).split(""",""")) __lowerCamelCase , __lowerCamelCase : Any = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. __lowerCamelCase : Union[str, Any] = res(xa, ya) __lowerCamelCase : Optional[int] = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : str = {"""vocab_file""": """vocab.json"""} __lowerCamelCase : int = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } __lowerCamelCase : Dict = {"""mgp-str""": 27} class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , __A : Optional[Any] , __A : int="[GO]" , __A : Union[str, Any]="[GO]" , __A : Optional[int]="[s]" , __A : Union[str, Any]="[GO]" , **__A : Optional[int] ): super().__init__( unk_token=__A , bos_token=__A , eos_token=__A , pad_token=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : str = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _lowercase ( self : str ): return len(self.vocab ) def _lowercase ( self : List[Any] ): return dict(self.vocab , **self.added_tokens_encoder ) def _lowercase ( self : int , __A : Union[str, Any] ): snake_case__ : List[Any] = [] for s in text: char_tokens.extend(__A ) return char_tokens def _lowercase ( self : Any , __A : str ): return self.vocab.get(__A , self.vocab.get(self.unk_token ) ) def _lowercase ( self : Optional[Any] , __A : int ): return self.decoder.get(__A ) def _lowercase ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error("Vocabulary path ({}) should be a directory".format(__A ) ) return snake_case__ : Optional[int] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) return (vocab_file,)
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : int ): if len(snake_case_ ) == 0: return False snake_case__ : Dict = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case_ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : str = input("""Enter numbers separated by comma:\n""").strip() __lowerCamelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(""",""")] __lowerCamelCase : List[str] = int(input("""Enter the number to be found in the list:\n""").strip()) __lowerCamelCase : Tuple = """""" if binary_search(sequence, target) else """not """ print(f"{target} was {not_str}found in {sequence}")
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
import numpy as np def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray ): return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray ): return vector * sigmoid(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Tuple = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __lowerCamelCase : List[str] = spec.loader.load_module() __lowerCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Dict = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __lowerCamelCase : Optional[int] = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def SCREAMING_SNAKE_CASE ( ): snake_case__ : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case__ : int = False # source code of `config_class` snake_case__ : Union[str, Any] = inspect.getsource(snake_case_ ) snake_case__ : int = _re_checkpoint.findall(snake_case_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case__, snake_case__ : List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case__ : List[str] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: snake_case__ : List[Any] = True break snake_case__ : Dict = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(snake_case_ ) if len(snake_case_ ) > 0: snake_case__ : Tuple = "\n".join(sorted(snake_case_ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "swin2sr" a_ = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , __A : Tuple=6_4 , __A : Optional[int]=1 , __A : List[str]=3 , __A : List[Any]=1_8_0 , __A : List[str]=[6, 6, 6, 6, 6, 6] , __A : Optional[int]=[6, 6, 6, 6, 6, 6] , __A : List[str]=8 , __A : str=2.0 , __A : Tuple=True , __A : Union[str, Any]=0.0 , __A : Tuple=0.0 , __A : List[str]=0.1 , __A : Tuple="gelu" , __A : Union[str, Any]=False , __A : Optional[Any]=0.0_2 , __A : Tuple=1e-5 , __A : Optional[Any]=2 , __A : Dict=1.0 , __A : List[Any]="1conv" , __A : Dict="pixelshuffle" , **__A : Optional[Any] , ): super().__init__(**__A ) snake_case__ : Dict = image_size snake_case__ : Tuple = patch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = embed_dim snake_case__ : str = depths snake_case__ : str = len(__A ) snake_case__ : str = num_heads snake_case__ : Tuple = window_size snake_case__ : Optional[int] = mlp_ratio snake_case__ : List[Any] = qkv_bias snake_case__ : Dict = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = drop_path_rate snake_case__ : int = hidden_act snake_case__ : List[str] = use_absolute_embeddings snake_case__ : str = layer_norm_eps snake_case__ : Any = initializer_range snake_case__ : str = upscale snake_case__ : Tuple = img_range snake_case__ : List[str] = resi_connection snake_case__ : List[Any] = upsampler
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): snake_case__ : Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _lowercase ( self : Any ): snake_case__ : Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _lowercase ( self : int ): snake_case__ : int = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _lowercase ( self : str ): snake_case__ : Dict = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] snake_case__ : str = "fp16" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _lowercase ( self : str ): snake_case__ : Tuple = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] snake_case__ : Dict = "fp16" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _lowercase ( self : Optional[Any] ): # pass variant but use the non-variant filenames snake_case__ : str = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] snake_case__ : Any = "fp16" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _lowercase ( self : List[str] ): snake_case__ : Tuple = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] snake_case__ : Dict = "fp16" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _lowercase ( self : List[Any] ): snake_case__ : Any = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] snake_case__ : Union[str, Any] = "fp16" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _lowercase ( self : Optional[int] ): # pass variant but use the non-variant filenames snake_case__ : List[str] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] snake_case__ : List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _lowercase ( self : Any ): snake_case__ : Optional[int] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] snake_case__ : List[Any] = "fp16" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __lowerCamelCase : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = 42 a_ = None @staticmethod def _lowercase ( ): raise NotImplementedError def _lowercase ( self : str , __A : Tuple , __A : int , __A : str , **__A : Union[str, Any] ): raise NotImplementedError def _lowercase ( self : int , __A : int ): raise NotImplementedError def _lowercase ( self : Union[str, Any] ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def _lowercase ( cls : str ): return f'''`pip install {cls.pip_package or cls.name}`''' class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "optuna" @staticmethod def _lowercase ( ): return is_optuna_available() def _lowercase ( self : Union[str, Any] , __A : List[str] , __A : int , __A : str , **__A : List[Any] ): return run_hp_search_optuna(__A , __A , __A , **__A ) def _lowercase ( self : Any , __A : List[Any] ): return default_hp_space_optuna(__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "ray" a_ = "'ray[tune]'" @staticmethod def _lowercase ( ): return is_ray_available() def _lowercase ( self : Optional[Any] , __A : Dict , __A : int , __A : str , **__A : List[Any] ): return run_hp_search_ray(__A , __A , __A , **__A ) def _lowercase ( self : List[str] , __A : List[Any] ): return default_hp_space_ray(__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "sigopt" @staticmethod def _lowercase ( ): return is_sigopt_available() def _lowercase ( self : Optional[Any] , __A : str , __A : int , __A : str , **__A : List[str] ): return run_hp_search_sigopt(__A , __A , __A , **__A ) def _lowercase ( self : Optional[Any] , __A : List[str] ): return default_hp_space_sigopt(__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "wandb" @staticmethod def _lowercase ( ): return is_wandb_available() def _lowercase ( self : str , __A : Optional[int] , __A : int , __A : str , **__A : Union[str, Any] ): return run_hp_search_wandb(__A , __A , __A , **__A ) def _lowercase ( self : Optional[Any] , __A : int ): return default_hp_space_wandb(__A ) __lowerCamelCase : Union[str, Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case_ ) > 0: snake_case__ : Any = available_backends[0].name if len(snake_case_ ) > 1: logger.info( F'''{len(snake_case_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : int , __A : int ): snake_case__ : Union[str, Any] = order # a_{0} ... a_{k} snake_case__ : int = [1.0] + [0.0] * order # b_{0} ... b_{k} snake_case__ : Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] snake_case__ : str = [0.0] * self.order # y[n-1] ... y[n-k] snake_case__ : List[str] = [0.0] * self.order def _lowercase ( self : Any , __A : list[float] , __A : list[float] ): if len(__A ) < self.order: snake_case__ : int = [1.0, *a_coeffs] if len(__A ) != self.order + 1: snake_case__ : Optional[int] = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__A )}''' ) raise ValueError(__A ) if len(__A ) != self.order + 1: snake_case__ : Tuple = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__A )}''' ) raise ValueError(__A ) snake_case__ : Tuple = a_coeffs snake_case__ : Optional[Any] = b_coeffs def _lowercase ( self : int , __A : float ): snake_case__ : Union[str, Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) snake_case__ : int = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] snake_case__ : Any = self.input_history[:-1] snake_case__ : str = self.output_history[:-1] snake_case__ : Tuple = sample snake_case__ : int = result return result
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __lowerCamelCase : int = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = "dummy_data" a_ = "datasets" a_ = False def __init__( self : Optional[int] , __A : str , __A : str , __A : Union[Version, str] , __A : Optional[str] = None , __A : bool = False , __A : bool = True , __A : Optional[List[Callable]] = None , ): snake_case__ : Tuple = 0 snake_case__ : Union[str, Any] = dataset_name snake_case__ : List[str] = cache_dir snake_case__ : str = use_local_dummy_data snake_case__ : Any = config # download_callbacks take a single url as input snake_case__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root snake_case__ : Union[str, Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general snake_case__ : Union[str, Any] = str(__A ) # to be downloaded snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None @property def _lowercase ( self : str ): if self._dummy_file is None: snake_case__ : Dict = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self : Any ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def _lowercase ( self : Optional[Any] ): return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def _lowercase ( self : List[Any] ): snake_case__ : List[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) snake_case__ : Dict = cached_path( __A , cache_dir=self.cache_dir , extract_compressed_file=__A , force_extract=__A ) return os.path.join(__A , self.dummy_file_name ) @property def _lowercase ( self : str ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def _lowercase ( self : List[str] ): if self._bucket_url is None: snake_case__ : List[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def _lowercase ( self : List[str] ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def _lowercase ( self : Union[str, Any] , __A : Optional[Any] , *__A : Optional[int] ): if self.load_existing_dummy_data: # dummy data is downloaded and tested snake_case__ : List[str] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned snake_case__ : Dict = self.dummy_file_name # special case when data_url is a dict if isinstance(__A , __A ): return self.create_dummy_data_dict(__A , __A ) elif isinstance(__A , (list, tuple) ): return self.create_dummy_data_list(__A , __A ) else: return self.create_dummy_data_single(__A , __A ) def _lowercase ( self : Union[str, Any] , __A : List[str] , *__A : List[Any] ): return self.download_and_extract(__A ) def _lowercase ( self : Any , __A : Union[str, Any] , __A : str ): return self.download_and_extract(__A ) def _lowercase ( self : Union[str, Any] , __A : int , *__A : List[str] , **__A : str ): return path def _lowercase ( self : Optional[Any] ): return {} def _lowercase ( self : Dict , __A : int , __A : Tuple ): snake_case__ : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__A , __A ): for single_url in single_urls: download_callback(__A ) else: snake_case__ : Optional[Any] = single_urls download_callback(__A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__A , __A ): snake_case__ : List[str] = [os.path.join(__A , urllib.parse.quote_plus(Path(__A ).name ) ) for x in single_urls] else: snake_case__ : List[str] = single_urls snake_case__ : Dict = os.path.join(__A , urllib.parse.quote_plus(Path(__A ).name ) ) snake_case__ : List[str] = value # make sure that values are unique if all(isinstance(__A , __A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique snake_case__ : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self : List[Any] , __A : Optional[Any] , __A : Union[str, Any] ): snake_case__ : Tuple = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one snake_case__ : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __A ) ) for url in data_url ) snake_case__ : Optional[int] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): snake_case__ : Optional[Any] = [data_url[0]] * len(__A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : List[str] = os.path.join(__A , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__A ) return dummy_data_list def _lowercase ( self : Optional[int] , __A : List[Any] , __A : Any ): for download_callback in self.download_callbacks: download_callback(__A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : int = os.path.join(__A , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self : List[str] ): pass def _lowercase ( self : Dict ): pass def _lowercase ( self : Any , __A : Any ): def _iter_archive_members(__A : Tuple ): # this preserves the order of the members inside the ZIP archive snake_case__ : List[str] = Path(self.dummy_file ).parent snake_case__ : Optional[Any] = path.relative_to(__A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: snake_case__ : List[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__A ) snake_case__ : int = Path(__A ) snake_case__ : Any = _iter_archive_members(__A ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__A ).as_posix(), file_path.open("rb" ) def _lowercase ( self : int , __A : Any ): if not isinstance(__A , __A ): snake_case__ : Union[str, Any] = [paths] for path in paths: if os.path.isfile(__A ): if os.path.basename(__A ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__A ): if os.path.basename(__A ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__A ): if filename.startswith((".", "__") ): continue yield os.path.join(__A , __A )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a_ = "convnextv2" def __init__( self : List[Any] , __A : List[Any]=3 , __A : Any=4 , __A : Union[str, Any]=4 , __A : Union[str, Any]=None , __A : int=None , __A : Optional[int]="gelu" , __A : Optional[Any]=0.0_2 , __A : Dict=1e-1_2 , __A : List[Any]=0.0 , __A : List[str]=2_2_4 , __A : Any=None , __A : Union[str, Any]=None , **__A : Any , ): super().__init__(**__A ) snake_case__ : Optional[Any] = num_channels snake_case__ : int = patch_size snake_case__ : str = num_stages snake_case__ : Optional[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes snake_case__ : Union[str, Any] = [3, 3, 9, 3] if depths is None else depths snake_case__ : Tuple = hidden_act snake_case__ : str = initializer_range snake_case__ : int = layer_norm_eps snake_case__ : str = drop_path_rate snake_case__ : int = image_size snake_case__ : Union[str, Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] snake_case__, snake_case__ : Optional[Any] = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __A : int , __A : Any=1_3 , __A : int=3_0 , __A : Optional[int]=2 , __A : Dict=3 , __A : Optional[Any]=True , __A : str=True , __A : List[str]=3_2 , __A : Union[str, Any]=5 , __A : str=4 , __A : Any=3_7 , __A : Optional[Any]="gelu" , __A : Any=0.1 , __A : int=0.1 , __A : Optional[int]=1_0 , __A : List[str]=0.0_2 , ): snake_case__ : Optional[Any] = parent snake_case__ : Any = batch_size snake_case__ : Optional[Any] = image_size snake_case__ : Tuple = patch_size snake_case__ : List[str] = num_channels snake_case__ : Union[str, Any] = is_training snake_case__ : Dict = use_labels snake_case__ : List[str] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : List[Any] = type_sequence_label_size snake_case__ : int = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Tuple = (image_size // patch_size) ** 2 snake_case__ : Optional[int] = num_patches + 1 def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase ( self : Dict , __A : Optional[int] , __A : Dict ): snake_case__ : Dict = FlaxViTModel(config=__A ) snake_case__ : Dict = model(__A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (self.image_size, self.image_size) snake_case__ : Union[str, Any] = (self.patch_size, self.patch_size) snake_case__ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase ( self : List[Any] , __A : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = self.type_sequence_label_size snake_case__ : int = FlaxViTForImageClassification(config=__A ) snake_case__ : Any = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Tuple = 1 snake_case__ : Tuple = FlaxViTForImageClassification(__A ) snake_case__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = model(__A ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ) : Optional[Any] = config_and_inputs snake_case__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase ( self : int ): snake_case__ : Union[str, Any] = FlaxViTModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowercase ( self : List[str] ): self.config_tester.run_common_tests() def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : int ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def _lowercase ( self : Any ): snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(__A ) snake_case__ : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case__ : str = self._prepare_for_class(__A , __A ) snake_case__ : Optional[int] = model_class(__A ) @jax.jit def model_jitted(__A : List[Any] , **__A : List[str] ): return model(pixel_values=__A , **__A ) with self.subTest("JIT Enabled" ): snake_case__ : Any = model_jitted(**__A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case__ : str = model_jitted(**__A ).to_tuple() self.assertEqual(len(__A ) , len(__A ) ) for jitted_output, output in zip(__A , __A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase ( self : int ): for model_class_name in self.all_model_classes: snake_case__ : List[str] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) snake_case__ : Union[str, Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(__A )
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ): def update_area_of_max_square(snake_case_ : int , snake_case_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case__ : List[Any] = update_area_of_max_square(snake_case_ , col + 1 ) snake_case__ : Optional[int] = update_area_of_max_square(row + 1 , col + 1 ) snake_case__ : int = update_area_of_max_square(row + 1 , snake_case_ ) if mat[row][col]: snake_case__ : Optional[int] = 1 + min([right, diagonal, down] ) snake_case__ : Any = max(largest_square_area[0] , snake_case_ ) return sub_problem_sol else: return 0 snake_case__ : str = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case__ : Tuple = update_area_of_max_square_using_dp_array(snake_case_ , col + 1 , snake_case_ ) snake_case__ : List[str] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , snake_case_ ) snake_case__ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , snake_case_ , snake_case_ ) if mat[row][col]: snake_case__ : str = 1 + min([right, diagonal, down] ) snake_case__ : Union[str, Any] = max(largest_square_area[0] , snake_case_ ) snake_case__ : int = sub_problem_sol return sub_problem_sol else: return 0 snake_case__ : List[Any] = [0] snake_case__ : Dict = [[-1] * cols for _ in range(snake_case_ )] update_area_of_max_square_using_dp_array(0 , 0 , snake_case_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ): snake_case__ : Tuple = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case__ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case__ : int = dp_array[row][col + 1] snake_case__ : Optional[Any] = dp_array[row + 1][col + 1] snake_case__ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: snake_case__ : Dict = 1 + min(snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Any = max(dp_array[row][col] , snake_case_ ) else: snake_case__ : List[Any] = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : list[list[int]] ): snake_case__ : List[Any] = [0] * (cols + 1) snake_case__ : str = [0] * (cols + 1) snake_case__ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case__ : Dict = current_row[col + 1] snake_case__ : Optional[int] = next_row[col + 1] snake_case__ : List[str] = next_row[col] if mat[row][col] == 1: snake_case__ : Dict = 1 + min(snake_case_ , snake_case_ , snake_case_ ) snake_case__ : List[str] = max(current_row[col] , snake_case_ ) else: snake_case__ : int = 0 snake_case__ : Union[str, Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Tuple=False ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): snake_case__ : int = len(set_a.intersection(snake_case_ ) ) if alternative_union: snake_case__ : List[Any] = len(snake_case_ ) + len(snake_case_ ) else: snake_case__ : List[str] = len(set_a.union(snake_case_ ) ) return intersection / union if isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) ): snake_case__ : Dict = [element for element in set_a if element in set_b] if alternative_union: snake_case__ : int = len(snake_case_ ) + len(snake_case_ ) return len(snake_case_ ) / union else: snake_case__ : List[str] = set_a + [element for element in set_b if element not in set_a] return len(snake_case_ ) / len(snake_case_ ) return len(snake_case_ ) / len(snake_case_ ) return None if __name__ == "__main__": __lowerCamelCase : str = {"""a""", """b""", """c""", """d""", """e"""} __lowerCamelCase : int = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __lowerCamelCase : Dict = None __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : Optional[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : int = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } __lowerCamelCase : List[str] = """▁""" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = BigBirdTokenizer a_ = ["input_ids", "attention_mask"] a_ = [] def __init__( self : int , __A : Dict=None , __A : int=None , __A : Dict="<unk>" , __A : Union[str, Any]="<s>" , __A : Tuple="</s>" , __A : List[str]="<pad>" , __A : List[Any]="[SEP]" , __A : List[Any]="[MASK]" , __A : List[str]="[CLS]" , **__A : Union[str, Any] , ): snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : Optional[int] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token snake_case__ : int = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) snake_case__ : List[Any] = vocab_file snake_case__ : Tuple = False if not self.vocab_file else True def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] def _lowercase ( self : Any , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : List[Any] , __A : str , __A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Any = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = ort.SessionOptions() snake_case__ : Dict = False return options def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) snake_case__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) snake_case__ : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Dict = "A red cat sitting on a park bench" snake_case__ : int = np.random.RandomState(0 ) snake_case__ : List[Any] = pipe( prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__A , output_type="np" , ) snake_case__ : List[Any] = output.images snake_case__ : Tuple = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : int = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) snake_case__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) snake_case__ : Dict = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) snake_case__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = "A red cat sitting on a park bench" snake_case__ : Union[str, Any] = np.random.RandomState(0 ) snake_case__ : Optional[Any] = pipe( prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__A , output_type="np" , ) snake_case__ : Optional[int] = output.images snake_case__ : Any = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : List[str] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bridgetower_vision_model" def __init__( self : Dict , __A : Optional[int]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=3 , __A : Optional[Any]=1_6 , __A : Any=2_8_8 , __A : str=1 , __A : Any=1e-0_5 , __A : Optional[int]=False , __A : Optional[Any]=True , __A : List[str]=False , **__A : Union[str, Any] , ): super().__init__(**__A ) snake_case__ : Any = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Any = num_channels snake_case__ : str = patch_size snake_case__ : Dict = image_size snake_case__ : Union[str, Any] = initializer_factor snake_case__ : Dict = layer_norm_eps snake_case__ : Tuple = stop_gradient snake_case__ : Any = share_layernorm snake_case__ : Tuple = remove_last_layer @classmethod def _lowercase ( cls : Dict , __A : Union[str, os.PathLike] , **__A : Tuple ): snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) if config_dict.get("model_type" ) == "bridgetower": snake_case__ : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bridgetower_text_model" def __init__( self : Optional[int] , __A : str=5_0_2_6_5 , __A : List[Any]=7_6_8 , __A : int=1_2 , __A : Optional[Any]=1_2 , __A : str=1 , __A : Dict=3_0_7_2 , __A : Tuple="gelu" , __A : Optional[Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_4 , __A : List[str]=1 , __A : List[Any]=1e-0_5 , __A : int=1 , __A : str=0 , __A : str=2 , __A : Union[str, Any]="absolute" , __A : Optional[Any]=True , **__A : Optional[Any] , ): super().__init__(**__A ) snake_case__ : List[str] = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Any = initializer_factor snake_case__ : List[Any] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Union[str, Any] = use_cache snake_case__ : List[str] = pad_token_id snake_case__ : Tuple = bos_token_id snake_case__ : Dict = eos_token_id @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Union[str, Any] ): snake_case__, snake_case__ : Any = cls.get_config_dict(__A , **__A ) if config_dict.get("model_type" ) == "bridgetower": snake_case__ : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "bridgetower" def __init__( self : Optional[int] , __A : Dict=True , __A : Union[str, Any]="gelu" , __A : Tuple=7_6_8 , __A : Dict=1 , __A : Optional[Any]=1e-0_5 , __A : Optional[int]=False , __A : int="add" , __A : List[Any]=1_2 , __A : Any=6 , __A : List[str]=False , __A : int=False , __A : List[Any]=None , __A : Union[str, Any]=None , **__A : str , ): # TODO: remove this once the Hub files are updated. snake_case__ : Optional[int] = kwargs.pop("text_config_dict" , __A ) snake_case__ : Tuple = kwargs.pop("vision_config_dict" , __A ) super().__init__(**__A ) snake_case__ : Dict = share_cross_modal_transformer_layers snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[Any] = hidden_size snake_case__ : Any = initializer_factor snake_case__ : Any = layer_norm_eps snake_case__ : Optional[Any] = share_link_tower_layers snake_case__ : Any = link_tower_type snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Dict = num_hidden_layers snake_case__ : Tuple = tie_word_embeddings snake_case__ : Any = init_layernorm_from_vision_encoder if text_config is None: snake_case__ : Optional[Any] = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: snake_case__ : int = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) snake_case__ : Optional[int] = BridgeTowerTextConfig(**__A ) snake_case__ : Optional[Any] = BridgeTowerVisionConfig(**__A ) @classmethod def _lowercase ( cls : Any , __A : BridgeTowerTextConfig , __A : BridgeTowerVisionConfig , **__A : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = copy.deepcopy(self.__dict__ ) snake_case__ : str = self.text_config.to_dict() snake_case__ : Dict = self.vision_config.to_dict() snake_case__ : str = self.__class__.model_type return output
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
from math import ceil, sqrt def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Tuple = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: snake_case__ : int = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: snake_case__ : Union[str, Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
from collections.abc import Callable import numpy as np def SCREAMING_SNAKE_CASE ( snake_case_ : Callable , snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float ): snake_case__ : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) snake_case__ : Optional[Any] = np.zeros((n + 1,) ) snake_case__ : Any = ya snake_case__ : Optional[int] = xa for k in range(snake_case_ ): snake_case__ : int = y[k] + step_size * ode_func(snake_case_ , y[k] ) snake_case__ : Union[str, Any] = y[k] + ( (step_size / 2) * (ode_func(snake_case_ , y[k] ) + ode_func(x + step_size , snake_case_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError("Input value must be a 'int' type" ) return bin(snake_case_ ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) __lowerCamelCase : List[str] = parser.parse_args() __lowerCamelCase : Optional[int] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __lowerCamelCase : Optional[Any] = CLIPImageProcessor() __lowerCamelCase : Dict = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") __lowerCamelCase : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCamelCase_ ): """simple docstring""" a_ = ["torch", "torchsde"] def __init__( self : List[str] , *__A : List[str] , **__A : str ): requires_backends(self , ["torch", "torchsde"] ) @classmethod def _lowercase ( cls : int , *__A : Optional[int] , **__A : Optional[int] ): requires_backends(cls , ["torch", "torchsde"] ) @classmethod def _lowercase ( cls : Any , *__A : Union[str, Any] , **__A : Optional[int] ): requires_backends(cls , ["torch", "torchsde"] )
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = None @experimental def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Optional[int] ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return _map_with_joblib(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int ): snake_case__ : Union[str, Any] = num_proc if num_proc <= len(snake_case_ ) else len(snake_case_ ) snake_case__ : Dict = [] # We organize the splits ourselve (contiguous splits) for index in range(snake_case_ ): snake_case__ : Tuple = len(snake_case_ ) // num_proc snake_case__ : Dict = len(snake_case_ ) % num_proc snake_case__ : List[str] = div * index + min(snake_case_ , snake_case_ ) snake_case__ : List[Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(snake_case_ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'''Error dividing inputs iterable among processes. ''' F'''Total number of objects {len(snake_case_ )}, ''' F'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( F'''Spawning {num_proc} processes for {len(snake_case_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) snake_case__, snake_case__ : Any = None, None if not disable_tqdm: snake_case__, snake_case__ : Optional[Any] = (RLock(),), tqdm.set_lock with Pool(snake_case_ , initargs=snake_case_ , initializer=snake_case_ ) as pool: snake_case__ : List[Any] = pool.map(snake_case_ , snake_case_ ) logger.info(F'''Finished {num_proc} processes''' ) snake_case__ : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(F'''Unpacked {len(snake_case_ )} objects''' ) return mapped def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=snake_case_ ): return joblib.Parallel()( joblib.delayed(snake_case_ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Optional[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: snake_case__ : Optional[Any] = None
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) == 0: return [] snake_case__, snake_case__ : Union[str, Any] = min(snake_case_ ), max(snake_case_ ) snake_case__ : Dict = int(max_value - min_value ) + 1 snake_case__ : list[list] = [[] for _ in range(snake_case_ )] for i in my_list: buckets[int(i - min_value )].append(snake_case_ ) return [v for bucket in buckets for v in sorted(snake_case_ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] , __A : int ): snake_case__ : List[str] = n snake_case__ : Optional[int] = [None] * self.n snake_case__ : int = 0 # index of the first element snake_case__ : Any = 0 snake_case__ : Union[str, Any] = 0 def __len__( self : Optional[int] ): return self.size def _lowercase ( self : List[str] ): return self.size == 0 def _lowercase ( self : List[str] ): return False if self.is_empty() else self.array[self.front] def _lowercase ( self : List[Any] , __A : List[Any] ): if self.size >= self.n: raise Exception("QUEUE IS FULL" ) snake_case__ : str = data snake_case__ : Union[str, Any] = (self.rear + 1) % self.n self.size += 1 return self def _lowercase ( self : Dict ): if self.size == 0: raise Exception("UNDERFLOW" ) snake_case__ : Union[str, Any] = self.array[self.front] snake_case__ : Any = None snake_case__ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCamelCase : Optional[int] = ["""text""", """image""", """audio"""] def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): snake_case__ : Union[str, Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(snake_case_ , snake_case_ ): inputs.append(create_inputs(snake_case_ ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def SCREAMING_SNAKE_CASE ( snake_case_ : List ): snake_case__ : int = [] for output in outputs: if isinstance(snake_case_ , (str, AgentText) ): output_types.append("text" ) elif isinstance(snake_case_ , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(snake_case_ , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class SCREAMING_SNAKE_CASE__ : """simple docstring""" def _lowercase ( self : int ): self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) snake_case__ : Tuple = self.tool.inputs for _input in inputs: if isinstance(_input , __A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case__ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _lowercase ( self : str ): snake_case__ : List[Any] = create_inputs(self.tool.inputs ) snake_case__ : List[Any] = self.tool(*__A ) # There is a single output if len(self.tool.outputs ) == 1: snake_case__ : int = [outputs] self.assertListEqual(output_types(__A ) , self.tool.outputs ) def _lowercase ( self : int ): self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _lowercase ( self : int ): snake_case__ : int = create_inputs(self.tool.inputs ) snake_case__ : int = self.tool(*__A ) if not isinstance(__A , __A ): snake_case__ : Optional[Any] = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) ) for output, output_type in zip(__A , self.tool.outputs ): snake_case__ : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__A , __A ) ) def _lowercase ( self : str ): snake_case__ : List[Any] = create_inputs(self.tool.inputs ) snake_case__ : str = [] for _input, input_type in zip(__A , self.tool.inputs ): if isinstance(__A , __A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case__ : Union[str, Any] = self.tool(*__A ) if not isinstance(__A , __A ): snake_case__ : int = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) )
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 10**12 ): snake_case__ : List[Any] = 1 snake_case__ : Any = 0 snake_case__ : Dict = 1 snake_case__ : Dict = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"{solution() = }")
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from PIL import Image def SCREAMING_SNAKE_CASE ( snake_case_ : Image , snake_case_ : int ): snake_case__ : Union[str, Any] = (259 * (level + 255)) / (255 * (259 - level)) def contrast(snake_case_ : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(snake_case_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 __lowerCamelCase : Dict = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp __lowerCamelCase : Dict = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Any = { """RUCAIBox/mvp""": 1024, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] a_ = MvpTokenizer def __init__( self : Optional[int] , __A : Optional[int]=None , __A : int=None , __A : str=None , __A : List[str]="replace" , __A : Optional[int]="<s>" , __A : str="</s>" , __A : Optional[int]="</s>" , __A : Optional[int]="<s>" , __A : str="<unk>" , __A : int="<pad>" , __A : List[str]="<mask>" , __A : Dict=False , __A : int=True , **__A : List[str] , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) snake_case__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : Dict = getattr(__A , pre_tok_state.pop("type" ) ) snake_case__ : Optional[Any] = add_prefix_space snake_case__ : str = pre_tok_class(**__A ) snake_case__ : Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case__ : Optional[Any] = "post_processor" snake_case__ : List[Any] = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: snake_case__ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : Union[str, Any] = tuple(state["sep"] ) if "cls" in state: snake_case__ : List[str] = tuple(state["cls"] ) snake_case__ : int = False if state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : Tuple = add_prefix_space snake_case__ : Optional[Any] = True if state.get("trim_offsets" , __A ) != trim_offsets: snake_case__ : Dict = trim_offsets snake_case__ : int = True if changes_to_apply: snake_case__ : int = getattr(__A , state.pop("type" ) ) snake_case__ : Optional[Any] = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property def _lowercase ( self : Optional[Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : List[Any] , __A : Union[str, Any] ): snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value snake_case__ : str = value def _lowercase ( self : Optional[Any] , *__A : str , **__A : Tuple ): snake_case__ : Any = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _lowercase ( self : Tuple , *__A : Optional[int] , **__A : str ): snake_case__ : Union[str, Any] = kwargs.get("is_split_into_words" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _lowercase ( self : Any , __A : str , __A : Optional[str] = None ): snake_case__ : Optional[Any] = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _lowercase ( self : Optional[int] , __A : Optional[int] , __A : int=None ): snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : str , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __lowerCamelCase : Union[str, Any] = HfArgumentParser(InitializationArguments) __lowerCamelCase : Optional[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __lowerCamelCase : str = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) __lowerCamelCase : Dict = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __lowerCamelCase : str = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : str = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __lowerCamelCase : Any = logging.getLogger(__name__) __lowerCamelCase : Union[str, Any] = """Hello world! cécé herlolip""" __lowerCamelCase : str = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): snake_case__ : Tuple = BertAbsConfig( temp_dir="." , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) snake_case__ : Dict = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) snake_case__ : Union[str, Any] = AbsSummarizer(snake_case_ , torch.device("cpu" ) , snake_case_ ) original.eval() snake_case__ : List[str] = BertAbsSummarizer(snake_case_ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) snake_case__ : int = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs snake_case__ : List[str] = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) snake_case__ : Union[str, Any] = torch.tensor(snake_case_ ).unsqueeze(0 ) snake_case__ : Dict = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) snake_case__ : List[Any] = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass snake_case__ : str = encoder_input_ids snake_case__ : Any = decoder_input_ids snake_case__ : Union[str, Any] = None snake_case__ : str = None snake_case__ : Optional[Any] = None snake_case__ : Optional[Any] = None snake_case__ : Any = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical snake_case__ : Optional[int] = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] snake_case__ : Tuple = original.generator(snake_case_ ) snake_case__ : Optional[Any] = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] snake_case__ : int = new_model.generator(snake_case_ ) snake_case__ : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(snake_case_ ) ) snake_case__ : str = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(snake_case_ ) ) snake_case__ : Tuple = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) __lowerCamelCase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def SCREAMING_SNAKE_CASE ( snake_case_ : bool = True , *snake_case_ : Any , **snake_case_ : str ): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) snake_case__ : Union[str, Any] = False if main_process_only: snake_case__ : Dict = PartialState().local_process_index == 0 return _tqdm(*snake_case_ , **snake_case_ , disable=snake_case_ )
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict ): # ===== initialization ===== snake_case__ : str = Mock() snake_case__ : int = conn, Mock() snake_case__ : str = iter([1, None] ) snake_case__ : Optional[Any] = lambda snake_case_ : next(snake_case_ ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=snake_case_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : str , __A : Union[str, Any]=3 , __A : List[Any]=3 , __A : Union[str, Any]=("DownEncoderBlock2D",) , __A : str=(6_4,) , __A : Optional[int]=2 , __A : Union[str, Any]=3_2 , __A : Any="silu" , __A : Optional[Any]=True , ): super().__init__() snake_case__ : Optional[Any] = layers_per_block snake_case__ : Optional[Any] = torch.nn.Convad( __A , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : int = None snake_case__ : Tuple = nn.ModuleList([] ) # down snake_case__ : str = block_out_channels[0] for i, down_block_type in enumerate(__A ): snake_case__ : List[Any] = output_channel snake_case__ : Union[str, Any] = block_out_channels[i] snake_case__ : int = i == len(__A ) - 1 snake_case__ : str = get_down_block( __A , num_layers=self.layers_per_block , in_channels=__A , out_channels=__A , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , ) self.down_blocks.append(__A ) # mid snake_case__ : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , ) # out snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__A , eps=1e-6 ) snake_case__ : List[str] = nn.SiLU() snake_case__ : Tuple = 2 * out_channels if double_z else out_channels snake_case__ : Tuple = nn.Convad(block_out_channels[-1] , __A , 3 , padding=1 ) snake_case__ : Any = False def _lowercase ( self : Dict , __A : str ): snake_case__ : int = x snake_case__ : List[Any] = self.conv_in(__A ) if self.training and self.gradient_checkpointing: def create_custom_forward(__A : Optional[int] ): def custom_forward(*__A : Tuple ): return module(*__A ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: snake_case__ : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__A ) , __A , use_reentrant=__A ) # middle snake_case__ : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , use_reentrant=__A ) else: for down_block in self.down_blocks: snake_case__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A ) # middle snake_case__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __A ) else: # down for down_block in self.down_blocks: snake_case__ : int = down_block(__A ) # middle snake_case__ : Optional[Any] = self.mid_block(__A ) # post-process snake_case__ : Any = self.conv_norm_out(__A ) snake_case__ : Union[str, Any] = self.conv_act(__A ) snake_case__ : Union[str, Any] = self.conv_out(__A ) return sample class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : str , __A : Optional[int]=3 , __A : List[str]=3 , __A : str=("UpDecoderBlock2D",) , __A : List[str]=(6_4,) , __A : List[str]=2 , __A : str=3_2 , __A : int="silu" , __A : Tuple="group" , ): super().__init__() snake_case__ : List[str] = layers_per_block snake_case__ : str = nn.Convad( __A , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ : str = None snake_case__ : int = nn.ModuleList([] ) snake_case__ : str = in_channels if norm_type == "spatial" else None # mid snake_case__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , ) # up snake_case__ : Union[str, Any] = list(reversed(__A ) ) snake_case__ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(__A ): snake_case__ : str = output_channel snake_case__ : int = reversed_block_out_channels[i] snake_case__ : List[Any] = i == len(__A ) - 1 snake_case__ : Tuple = get_up_block( __A , num_layers=self.layers_per_block + 1 , in_channels=__A , out_channels=__A , prev_output_channel=__A , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , resnet_time_scale_shift=__A , ) self.up_blocks.append(__A ) snake_case__ : Optional[Any] = output_channel # out if norm_type == "spatial": snake_case__ : str = SpatialNorm(block_out_channels[0] , __A ) else: snake_case__ : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__A , eps=1e-6 ) snake_case__ : List[Any] = nn.SiLU() snake_case__ : List[Any] = nn.Convad(block_out_channels[0] , __A , 3 , padding=1 ) snake_case__ : Optional[int] = False def _lowercase ( self : str , __A : Union[str, Any] , __A : int=None ): snake_case__ : List[str] = z snake_case__ : str = self.conv_in(__A ) snake_case__ : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__A : Optional[int] ): def custom_forward(*__A : Tuple ): return module(*__A ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle snake_case__ : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , __A , use_reentrant=__A ) snake_case__ : int = sample.to(__A ) # up for up_block in self.up_blocks: snake_case__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(__A ) , __A , __A , use_reentrant=__A ) else: # middle snake_case__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , __A ) snake_case__ : List[Any] = sample.to(__A ) # up for up_block in self.up_blocks: snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A , __A ) else: # middle snake_case__ : Tuple = self.mid_block(__A , __A ) snake_case__ : Optional[int] = sample.to(__A ) # up for up_block in self.up_blocks: snake_case__ : Optional[int] = up_block(__A , __A ) # post-process if latent_embeds is None: snake_case__ : Tuple = self.conv_norm_out(__A ) else: snake_case__ : Optional[Any] = self.conv_norm_out(__A , __A ) snake_case__ : Union[str, Any] = self.conv_act(__A ) snake_case__ : Any = self.conv_out(__A ) return sample class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Any , __A : str , __A : Optional[int] , __A : Dict , __A : Optional[Any]=None , __A : Union[str, Any]="random" , __A : str=False , __A : Any=True ): super().__init__() snake_case__ : Dict = n_e snake_case__ : Optional[Any] = vq_embed_dim snake_case__ : List[Any] = beta snake_case__ : str = legacy snake_case__ : Union[str, Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ : List[str] = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) snake_case__ : Any = self.used.shape[0] snake_case__ : str = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ : Union[str, Any] = self.re_embed snake_case__ : Any = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: snake_case__ : str = n_e snake_case__ : Tuple = sane_index_shape def _lowercase ( self : Any , __A : List[Any] ): snake_case__ : Optional[Any] = inds.shape assert len(__A ) > 1 snake_case__ : int = inds.reshape(ishape[0] , -1 ) snake_case__ : Optional[int] = self.used.to(__A ) snake_case__ : List[str] = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ : List[str] = match.argmax(-1 ) snake_case__ : Union[str, Any] = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ : Union[str, Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ : Optional[Any] = self.unknown_index return new.reshape(__A ) def _lowercase ( self : List[Any] , __A : int ): snake_case__ : str = inds.shape assert len(__A ) > 1 snake_case__ : Optional[int] = inds.reshape(ishape[0] , -1 ) snake_case__ : List[str] = self.used.to(__A ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ : List[str] = 0 # simply set to zero snake_case__ : int = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __A ) return back.reshape(__A ) def _lowercase ( self : List[str] , __A : Union[str, Any] ): # reshape z -> (batch, height, width, channel) and flatten snake_case__ : int = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ : Tuple = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ : List[str] = torch.argmin(torch.cdist(__A , self.embedding.weight ) , dim=1 ) snake_case__ : Optional[Any] = self.embedding(__A ).view(z.shape ) snake_case__ : List[str] = None snake_case__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: snake_case__ : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ : Optional[int] = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ : str = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ : Tuple = self.remap_to_used(__A ) snake_case__ : Optional[int] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _lowercase ( self : Union[str, Any] , __A : Any , __A : int ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ : Dict = self.unmap_to_all(__A ) snake_case__ : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ : Dict = self.embedding(__A ) if shape is not None: snake_case__ : str = z_q.view(__A ) # reshape back to match original input shape snake_case__ : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Dict , __A : List[Any] , __A : Union[str, Any]=False ): snake_case__ : Dict = parameters snake_case__, snake_case__ : Optional[Any] = torch.chunk(__A , 2 , dim=1 ) snake_case__ : Any = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) snake_case__ : Optional[int] = deterministic snake_case__ : Optional[Any] = torch.exp(0.5 * self.logvar ) snake_case__ : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: snake_case__ : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _lowercase ( self : Tuple , __A : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype snake_case__ : List[Any] = randn_tensor( self.mean.shape , generator=__A , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ : List[Any] = self.mean + self.std * sample return x def _lowercase ( self : Dict , __A : Optional[int]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _lowercase ( self : Tuple , __A : str , __A : Any=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ : Tuple = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__A ) def _lowercase ( self : List[str] ): return self.mean
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): snake_case__ : List[str] = 1 snake_case__ : Union[str, Any] = 2 while i * i <= n: snake_case__ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = 1 snake_case__ : Tuple = 1 while True: i += 1 t_num += i if count_divisors(snake_case_ ) > 500: break return t_num if __name__ == "__main__": print(solution())
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] , __A : List[str] , __A : str=1_3 , __A : Any=7 , __A : List[Any]=True , __A : List[str]=True , __A : Optional[Any]=True , __A : List[str]=True , __A : List[Any]=9_9 , __A : Optional[Any]=3_2 , __A : Optional[int]=5 , __A : Union[str, Any]=4 , __A : int=4 , __A : Optional[int]="gelu" , __A : int=0.0 , __A : int=0.1 , __A : Any=True , __A : Any=5_1_2 , __A : List[str]=1_6 , __A : List[str]=2 , __A : str=0.0_2 , __A : int=3 , __A : List[Any]=4 , __A : str=None , ): snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : List[str] = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Dict = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_multiple_size snake_case__ : int = hidden_act snake_case__ : List[str] = hidden_dropout snake_case__ : str = attention_dropout snake_case__ : Dict = weight_tying snake_case__ : str = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : Union[str, Any] = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : str = num_labels snake_case__ : Dict = num_choices snake_case__ : int = scope def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Dict = None if self.use_input_mask: snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[str] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase ( self : Optional[int] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def _lowercase ( self : int ): snake_case__, snake_case__, snake_case__, snake_case__ : Optional[Any] = self.prepare_config_and_inputs() snake_case__ : Dict = True return config, input_ids, input_mask, token_labels def _lowercase ( self : Tuple , __A : int , __A : Dict , __A : List[Any] ): snake_case__ : Tuple = GPTNeoXJapaneseModel(config=__A ) model.to(__A ) model.eval() snake_case__ : Dict = model(__A , attention_mask=__A ) snake_case__ : Dict = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : List[Any] , __A : int , __A : List[str] , __A : Optional[Any] ): snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = GPTNeoXJapaneseModel(__A ) model.to(__A ) model.eval() snake_case__ : Dict = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __A : List[str] , __A : List[Any] , __A : Union[str, Any] , __A : int ): snake_case__ : Any = GPTNeoXJapaneseForCausalLM(config=__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[str] , __A : List[Any] , __A : str , __A : List[Any] ): snake_case__ : Union[str, Any] = True snake_case__ : Tuple = GPTNeoXJapaneseForCausalLM(config=__A ) model.to(__A ) model.eval() # first forward pass snake_case__ : List[str] = model(__A , attention_mask=__A , use_cache=__A ) snake_case__ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Any = model(__A , attention_mask=__A , output_hidden_states=__A ) snake_case__ : Optional[int] = output_from_no_past["hidden_states"][0] snake_case__ : Dict = model( __A , attention_mask=__A , past_key_values=__A , output_hidden_states=__A , )["hidden_states"][0] # select random slice snake_case__ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-3 ) ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__, snake_case__ : Any = config_and_inputs snake_case__ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a_ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : int ): snake_case__ : Dict = GPTNeoXJapaneseModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def _lowercase ( self : int ): snake_case__, snake_case__, snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__A , __A , __A ) def _lowercase ( self : List[Any] ): snake_case__, snake_case__, snake_case__, snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__A , __A , __A ) def _lowercase ( self : Tuple ): # This regression test was failing with PyTorch < 1.3 snake_case__, snake_case__, snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : List[Any] = None self.model_tester.create_and_check_model_as_decoder(__A , __A , __A ) def _lowercase ( self : Any ): snake_case__, snake_case__, snake_case__, snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__A , __A , __A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__A ) @slow def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = "abeja/gpt-neox-japanese-2.7b" snake_case__ : Any = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] snake_case__ : Optional[int] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] snake_case__ : Dict = GPTNeoXJapaneseTokenizer.from_pretrained(__A ) snake_case__ : Dict = GPTNeoXJapaneseForCausalLM.from_pretrained(__A ) snake_case__ : Dict = [] for prompt in prompts: snake_case__ : Tuple = tokenizer(__A , return_tensors="pt" ).input_ids snake_case__ : List[str] = model.generate(__A , max_length=5_0 ) snake_case__ : Optional[int] = tokenizer.batch_decode(__A , skip_special_tokens=__A ) predicted_outputs += generated_string self.assertListEqual(__A , __A )
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase : str = TypeVar("""KEY""") __lowerCamelCase : int = TypeVar("""VAL""") @dataclass(frozen=UpperCamelCase_ , slots=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ): """simple docstring""" a_ = 42 a_ = 42 class SCREAMING_SNAKE_CASE__ ( _Item ): """simple docstring""" def __init__( self : Tuple ): super().__init__(__A , __A ) def __bool__( self : Dict ): return False __lowerCamelCase : List[str] = _DeletedItem() class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Optional[Any] , __A : int = 8 , __A : float = 0.7_5 ): snake_case__ : Dict = initial_block_size snake_case__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case__ : Optional[Any] = capacity_factor snake_case__ : str = 0 def _lowercase ( self : List[str] , __A : KEY ): return hash(__A ) % len(self._buckets ) def _lowercase ( self : Union[str, Any] , __A : int ): return (ind + 1) % len(self._buckets ) def _lowercase ( self : Optional[Any] , __A : int , __A : KEY , __A : VAL ): snake_case__ : Tuple = self._buckets[ind] if not stored: snake_case__ : List[Any] = _Item(__A , __A ) self._len += 1 return True elif stored.key == key: snake_case__ : List[str] = _Item(__A , __A ) return True else: return False def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__A ) def _lowercase ( self : Dict ): if len(self._buckets ) <= self._initial_block_size: return False snake_case__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowercase ( self : Optional[int] , __A : int ): snake_case__ : Optional[Any] = self._buckets snake_case__ : Optional[int] = [None] * new_size snake_case__ : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _lowercase ( self : int ): self._resize(len(self._buckets ) * 2 ) def _lowercase ( self : Union[str, Any] ): self._resize(len(self._buckets ) // 2 ) def _lowercase ( self : int , __A : KEY ): snake_case__ : List[Any] = self._get_bucket_index(__A ) for _ in range(len(self._buckets ) ): yield ind snake_case__ : int = self._get_next_ind(__A ) def _lowercase ( self : Tuple , __A : KEY , __A : VAL ): for ind in self._iterate_buckets(__A ): if self._try_set(__A , __A , __A ): break def __setitem__( self : Union[str, Any] , __A : KEY , __A : VAL ): if self._is_full(): self._size_up() self._add_item(__A , __A ) def __delitem__( self : List[str] , __A : KEY ): for ind in self._iterate_buckets(__A ): snake_case__ : str = self._buckets[ind] if item is None: raise KeyError(__A ) if item is _deleted: continue if item.key == key: snake_case__ : str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __A : KEY ): for ind in self._iterate_buckets(__A ): snake_case__ : Dict = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__A ) def __len__( self : int ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): snake_case__ : Union[str, Any] = " ,".join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCamelCase : Tuple = """true""" def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str=82 , snake_case_ : Optional[int]=16 ): set_seed(42 ) snake_case__ : Tuple = RegressionModel() snake_case__ : int = deepcopy(snake_case_ ) snake_case__ : Dict = RegressionDataset(length=snake_case_ ) snake_case__ : int = DataLoader(snake_case_ , batch_size=snake_case_ ) model.to(accelerator.device ) snake_case__, snake_case__ : Dict = accelerator.prepare(snake_case_ , snake_case_ ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : Dict=False ): snake_case__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) snake_case__ : List[str] = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(snake_case_ : Any ): snake_case__ : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_ ) return outputs with accelerator.main_process_first(): snake_case__ : List[Any] = dataset.map( snake_case_ , batched=snake_case_ , remove_columns=["idx", "sentence1", "sentence2"] , ) snake_case__ : Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case_ : List[Any] ): if use_longest: return tokenizer.pad(snake_case_ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(snake_case_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(snake_case_ , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=16 ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] ): snake_case__ : Tuple = Accelerator(dispatch_batches=snake_case_ , split_batches=snake_case_ ) snake_case__ : int = get_dataloader(snake_case_ , not dispatch_batches ) snake_case__ : List[str] = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=snake_case_ ) snake_case__, snake_case__ : Dict = accelerator.prepare(snake_case_ , snake_case_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : str ): snake_case__ : List[Any] = [] for batch in dataloader: snake_case__, snake_case__ : List[str] = batch.values() with torch.no_grad(): snake_case__ : List[Any] = model(snake_case_ ) snake_case__, snake_case__ : Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case__, snake_case__ : Dict = [], [] for logit, targ in logits_and_targets: logits.append(snake_case_ ) targs.append(snake_case_ ) snake_case__, snake_case__ : List[Any] = torch.cat(snake_case_ ), torch.cat(snake_case_ ) return logits, targs def SCREAMING_SNAKE_CASE ( snake_case_ : Accelerator , snake_case_ : Dict=82 , snake_case_ : Union[str, Any]=False , snake_case_ : Union[str, Any]=False , snake_case_ : Tuple=16 ): snake_case__, snake_case__, snake_case__ : Optional[Any] = get_basic_setup(snake_case_ , snake_case_ , snake_case_ ) snake_case__, snake_case__ : Optional[int] = generate_predictions(snake_case_ , snake_case_ , snake_case_ ) assert ( len(snake_case_ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case_ )}''' def SCREAMING_SNAKE_CASE ( snake_case_ : bool = False , snake_case_ : bool = False ): snake_case__ : Dict = evaluate.load("glue" , "mrpc" ) snake_case__, snake_case__ : Tuple = get_mrpc_setup(snake_case_ , snake_case_ ) # First do baseline snake_case__, snake_case__, snake_case__ : int = setup["no"] model.to(snake_case_ ) model.eval() for batch in dataloader: batch.to(snake_case_ ) with torch.inference_mode(): snake_case__ : Tuple = model(**snake_case_ ) snake_case__ : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case_ , references=batch["labels"] ) snake_case__ : Union[str, Any] = metric.compute() # Then do distributed snake_case__, snake_case__, snake_case__ : List[Any] = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case__ : Union[str, Any] = model(**snake_case_ ) snake_case__ : List[str] = outputs.logits.argmax(dim=-1 ) snake_case__ : List[Any] = batch["labels"] snake_case__, snake_case__ : List[str] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case_ , references=snake_case_ ) snake_case__ : List[str] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[Any] = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(snake_case_ , snake_case_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case__ : Optional[Any] = Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(snake_case_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) snake_case__ : str = Accelerator() test_torch_metrics(snake_case_ , 512 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from __future__ import annotations from math import pi def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __lowerCamelCase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def __init__( self : str , *__A : str , **__A : Optional[Any] ): super().__init__(*__A , **__A ) requires_backends(self , "vision" ) self.check_model_type(__A ) def __call__( self : List[Any] , __A : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__A : Optional[int] ): return super().__call__(__A , **__A ) def _lowercase ( self : List[str] , **__A : Optional[Any] ): return {}, {}, {} def _lowercase ( self : Dict , __A : Tuple ): snake_case__ : Dict = load_image(__A ) snake_case__ : Tuple = image.size snake_case__ : Any = self.image_processor(images=__A , return_tensors=self.framework ) return model_inputs def _lowercase ( self : int , __A : Dict ): snake_case__ : Optional[Any] = self.model(**__A ) return model_outputs def _lowercase ( self : Union[str, Any] , __A : Tuple ): snake_case__ : str = model_outputs.predicted_depth snake_case__ : Optional[Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=__A ) snake_case__ : List[Any] = prediction.squeeze().cpu().numpy() snake_case__ : str = (output * 2_5_5 / np.max(__A )).astype("uint8" ) snake_case__ : Any = Image.fromarray(__A ) snake_case__ : Dict = {} snake_case__ : Tuple = predicted_depth snake_case__ : Dict = depth return output_dict
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : int , __A : List[Any] ): # we need a list not a string, so do something to change the type snake_case__ : Optional[Any] = arr.split("," ) def _lowercase ( self : Tuple ): snake_case__ : str = [int(self.array[0] )] * len(self.array ) snake_case__ : Union[str, Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): snake_case__ : Union[str, Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) snake_case__ : Dict = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowerCamelCase : Any = input("""please input some numbers:""") __lowerCamelCase : int = SubArray(whole_array) __lowerCamelCase : int = array.solve_sub_array() print(("""the results is:""", re))
25
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def _lowercase ( self : Tuple , __A : Union[str, Any]=0 ): snake_case__ : Optional[int] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__A ) ) snake_case__ : Union[str, Any] = np.random.RandomState(__A ) snake_case__ : Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.7_5, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : List[str] ): snake_case__ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Optional[Any] = pipe(**__A ).images snake_case__ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case__ : Any = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase ( self : Any ): snake_case__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case__ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Union[str, Any] = self.get_dummy_inputs() snake_case__ : Optional[int] = pipe(**__A ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case__ : Dict = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case__ : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) # warmup pass to apply optimizations snake_case__ : int = pipe(**self.get_dummy_inputs() ) snake_case__ : Optional[int] = self.get_dummy_inputs() snake_case__ : int = pipe(**__A ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case__ : List[str] = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : List[str] ): snake_case__ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case__ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : int = self.get_dummy_inputs() snake_case__ : Dict = pipe(**__A ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case__ : List[str] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : int ): snake_case__ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case__ : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : int = pipe(**__A ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case__ : List[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : Tuple ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case__ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Optional[Any] = self.get_dummy_inputs() snake_case__ : Optional[Any] = pipe(**__A ).images snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) snake_case__ : int = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Union[str, Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : List[str] ): snake_case__ : Any = ort.SessionOptions() snake_case__ : Union[str, Any] = False return options def _lowercase ( self : str ): snake_case__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case__ : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default snake_case__ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = "A fantasy landscape, trending on artstation" snake_case__ : Tuple = np.random.RandomState(0 ) snake_case__ : str = pipe( prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__A , output_type="np" , ) snake_case__ : str = output.images snake_case__ : Any = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) snake_case__ : List[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase ( self : List[str] ): snake_case__ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case__ : int = init_image.resize((7_6_8, 5_1_2) ) snake_case__ : Dict = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Optional[int] = "A fantasy landscape, trending on artstation" snake_case__ : Tuple = np.random.RandomState(0 ) snake_case__ : Any = pipe( prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__A , output_type="np" , ) snake_case__ : List[Any] = output.images snake_case__ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) snake_case__ : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
from math import factorial class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : Tuple , __A : Dict ): snake_case__ : str = real if isinstance(__A , __A ): snake_case__ : Optional[Any] = [1] * rank else: snake_case__ : int = rank def __repr__( self : Optional[Any] ): return ( f'''{self.real}+''' f'''{'+'.join(str(__A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __A ) def __add__( self : List[Any] , __A : Dict ): if not isinstance(__A , __A ): return Dual(self.real + other , self.duals ) snake_case__ : str = self.duals.copy() snake_case__ : List[str] = other.duals.copy() if len(__A ) > len(__A ): o_dual.extend([1] * (len(__A ) - len(__A )) ) elif len(__A ) < len(__A ): s_dual.extend([1] * (len(__A ) - len(__A )) ) snake_case__ : str = [] for i in range(len(__A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __A ) a_ = __add__ def __sub__( self : Optional[int] , __A : str ): return self + other * -1 def __mul__( self : List[str] , __A : str ): if not isinstance(__A , __A ): snake_case__ : str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __A ) snake_case__ : Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __A ) a_ = __mul__ def __truediv__( self : Dict , __A : Optional[int] ): if not isinstance(__A , __A ): snake_case__ : Union[str, Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __A ) raise ValueError def __floordiv__( self : Tuple , __A : Tuple ): if not isinstance(__A , __A ): snake_case__ : List[str] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __A ) raise ValueError def __pow__( self : Tuple , __A : Tuple ): if n < 0 or isinstance(__A , __A ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self snake_case__ : Any = self for _ in range(n - 1 ): x *= self return x def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : int ): if not callable(snake_case_ ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(snake_case_ , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(snake_case_ , snake_case_ ): raise ValueError("differentiate() requires an int as input for order" ) snake_case__ : Optional[Any] = Dual(snake_case_ , 1 ) snake_case__ : Optional[int] = func(snake_case_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): return y**2 * y**4 print(differentiate(f, 9, 2))
25
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
1