code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Dict , __A : Optional[int]=9_9 , __A : Any=1_3 , __A : Dict=7 , __A : Tuple=9 , __A : int=True , __A : Dict=True , __A : Tuple=False , __A : Dict=3_2 , __A : List[Any]=5 , __A : int=4 , __A : Tuple=3_7 , __A : Tuple=8 , __A : int=0.1 , __A : int=0.0_0_2 , __A : int=1 , __A : Tuple=0 , __A : Dict=0 , __A : List[Any]=None , __A : Optional[int]=None , ): snake_case__ : Any = parent snake_case__ : int = batch_size snake_case__ : Dict = encoder_seq_length snake_case__ : Optional[Any] = decoder_seq_length # For common tests snake_case__ : str = self.decoder_seq_length snake_case__ : Any = is_training snake_case__ : int = use_attention_mask snake_case__ : Any = use_labels snake_case__ : str = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : List[Any] = d_ff snake_case__ : List[str] = relative_attention_num_buckets snake_case__ : str = dropout_rate snake_case__ : int = initializer_factor snake_case__ : Optional[Any] = eos_token_id snake_case__ : Tuple = pad_token_id snake_case__ : List[str] = decoder_start_token_id snake_case__ : Optional[Any] = None snake_case__ : List[str] = decoder_layers def _lowercase ( self : Union[str, Any] ): return TaConfig.from_pretrained("google/umt5-base" ) def _lowercase ( self : Any , __A : Optional[int] , __A : str , __A : Optional[Any] , __A : int=None , __A : Any=None , __A : List[Any]=None , __A : Any=None , __A : Any=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : Union[str, Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : Dict = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__A ) if decoder_head_mask is None: snake_case__ : Tuple = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__A ) if cross_attn_head_mask is None: snake_case__ : Any = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : List[Any] = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = self.get_config() snake_case__ : List[str] = config.num_attention_heads snake_case__ : Union[str, Any] = self.prepare_inputs_dict(__A , __A , __A ) return config, input_dict def _lowercase ( self : Optional[int] ): snake_case__, snake_case__ : int = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : str ): return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowercase ( self : Tuple ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowercase ( self : List[str] , __A : Optional[int] , __A : Optional[int] , __A : List[Any] , __A : str , __A : Any , __A : List[str] , ): snake_case__ : List[Any] = UMTaModel(config=__A ) model.to(__A ) model.eval() snake_case__ : List[Any] = model( input_ids=__A , decoder_input_ids=__A , attention_mask=__A , decoder_attention_mask=__A , ) snake_case__ : List[str] = model(input_ids=__A , decoder_input_ids=__A ) snake_case__ : int = result.last_hidden_state snake_case__ : Optional[Any] = result.past_key_values snake_case__ : Optional[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__A ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowercase ( self : List[str] , __A : Tuple , __A : Dict , __A : int , __A : List[str] , __A : Optional[int] , __A : Any , ): snake_case__ : Optional[Any] = UMTaModel(config=__A ).get_decoder().to(__A ).eval() # first forward pass snake_case__ : Tuple = model(__A , use_cache=__A ) snake_case__ : List[str] = model(__A ) snake_case__ : List[str] = model(__A , use_cache=__A ) self.parent.assertTrue(len(__A ) == len(__A ) ) self.parent.assertTrue(len(__A ) == len(__A ) + 1 ) snake_case__, snake_case__ : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Tuple = model(__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , past_key_values=__A )["last_hidden_state"] # select random slice snake_case__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() snake_case__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-3 ) ) def _lowercase ( self : int , __A : Optional[int] , __A : List[str] , ): snake_case__ : List[str] = UMTaModel(config=__A ).to(__A ).half().eval() snake_case__ : Any = model(**__A )["last_hidden_state"] self.parent.assertFalse(torch.isnan(__A ).any().item() ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a_ = (UMTaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a_ = True a_ = False a_ = False a_ = True a_ = True # The small UMT5 model needs higher percentages for CPU/MP tests a_ = [0.8, 0.9] def _lowercase ( self : int ): snake_case__ : Tuple = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() snake_case__ : Tuple = UMTaModel(config_and_inputs[0] ).to(__A ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __A , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=__A , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def _lowercase ( self : Optional[int] ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__A ) def _lowercase ( self : Tuple ): snake_case__ : Union[str, Any] = ["encoder_attentions", "decoder_attentions", "cross_attentions"] snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : List[Any] = config_and_inputs[0] snake_case__ : Optional[int] = UMTaForConditionalGeneration(__A ).eval() model.to(__A ) snake_case__ : Optional[Any] = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=__A ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__A ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=__A ), } for attn_name, (name, mask) in zip(__A , head_masking.items() ): snake_case__ : List[str] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case__ : str = torch.ones( config.num_decoder_layers , config.num_heads , device=__A ) snake_case__ : str = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=__A , return_dict_in_generate=__A , **__A , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case__ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def _lowercase ( self : List[str] ): pass @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def _lowercase ( self : Dict ): snake_case__ : List[Any] = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=__A ).to(__A ) snake_case__ : Dict = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=__A , legacy=__A ) snake_case__ : Any = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] snake_case__ : List[str] = tokenizer(__A , return_tensors="pt" , padding=__A ).input_ids # fmt: off snake_case__ : Optional[int] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__A , __A ) snake_case__ : Dict = model.generate(input_ids.to(__A ) ) snake_case__ : Optional[int] = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] snake_case__ : str = tokenizer.batch_decode(__A ) self.assertEqual(__A , __A )
25
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionXLImgaImgPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a_ = PipelineTesterMixin.required_optional_params - {"latents"} a_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : str ): torch.manual_seed(0 ) snake_case__ : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=__A , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) snake_case__ : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) snake_case__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=3_2 , ) snake_case__ : Optional[int] = CLIPTextModel(__A ) snake_case__ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__A ) snake_case__ : Optional[Any] = CLIPTextModelWithProjection(__A ) snake_case__ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__A ) snake_case__ : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : Tuple , __A : str , __A : Optional[int]=0 ): snake_case__ : List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A ) snake_case__ : Union[str, Any] = image / 2 + 0.5 if str(__A ).startswith("mps" ): snake_case__ : Optional[int] = torch.manual_seed(__A ) else: snake_case__ : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : str = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.7_5, } return inputs def _lowercase ( self : Tuple ): snake_case__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : str = self.get_dummy_components() snake_case__ : str = StableDiffusionXLImgaImgPipeline(**__A ) snake_case__ : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Optional[Any] = self.get_dummy_inputs(__A ) snake_case__ : Dict = sd_pipe(**__A ).images snake_case__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Any = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase ( self : Tuple ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _lowercase ( self : Tuple ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowercase ( self : Optional[int] ): pass def _lowercase ( self : int ): snake_case__ : List[str] = self.get_dummy_components() snake_case__ : Dict = StableDiffusionXLImgaImgPipeline(**__A ) snake_case__ : Any = sd_pipe.to(__A ) snake_case__ : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) # forward without prompt embeds snake_case__ : int = self.get_dummy_inputs(__A ) snake_case__ : Tuple = 3 * ["this is a negative prompt"] snake_case__ : Optional[Any] = negative_prompt snake_case__ : List[str] = 3 * [inputs["prompt"]] snake_case__ : str = sd_pipe(**__A ) snake_case__ : Optional[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds snake_case__ : Optional[Any] = self.get_dummy_inputs(__A ) snake_case__ : Union[str, Any] = 3 * ["this is a negative prompt"] snake_case__ : Union[str, Any] = 3 * [inputs.pop("prompt" )] ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : int = sd_pipe.encode_prompt(__A , negative_prompt=__A ) snake_case__ : List[str] = sd_pipe( **__A , prompt_embeds=__A , negative_prompt_embeds=__A , pooled_prompt_embeds=__A , negative_pooled_prompt_embeds=__A , ) snake_case__ : Optional[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Union[str, Any] , __A : str , __A : int="cpu" , __A : str=torch.floataa , __A : Tuple=0 ): snake_case__ : Tuple = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Union[str, Any] = np.random.RandomState(__A ).standard_normal((1, 4, 6_4, 6_4) ) snake_case__ : Dict = torch.from_numpy(__A ).to(device=__A , dtype=__A ) snake_case__ : List[str] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowercase ( self : Optional[int] ): snake_case__ : Optional[Any] = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : List[str] = self.get_inputs(__A ) snake_case__ : List[str] = pipe(**__A ).images snake_case__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[Any] = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
25
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Optional[int] = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] __lowerCamelCase : Tuple = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ ): """simple docstring""" a_ = True @register_to_config def __init__( self : int , __A : int = 3 , __A : int = 3 , __A : Tuple[str] = ("DownEncoderBlock2D",) , __A : Tuple[str] = ("UpDecoderBlock2D",) , __A : Tuple[int] = (6_4,) , __A : int = 1 , __A : str = "silu" , __A : int = 4 , __A : int = 3_2 , __A : int = 3_2 , __A : float = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder snake_case__ : List[str] = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) # pass init params to Decoder snake_case__ : Union[str, Any] = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , norm_num_groups=__A , act_fn=__A , ) snake_case__ : List[Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) snake_case__ : Any = nn.Convad(__A , __A , 1 ) snake_case__ : str = False snake_case__ : Dict = False # only relevant if vae tiling is enabled snake_case__ : List[str] = self.config.sample_size snake_case__ : List[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) snake_case__ : Tuple = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) snake_case__ : List[str] = 0.2_5 def _lowercase ( self : int , __A : int , __A : int=False ): if isinstance(__A , (Encoder, Decoder) ): snake_case__ : List[Any] = value def _lowercase ( self : Union[str, Any] , __A : bool = True ): snake_case__ : int = use_tiling def _lowercase ( self : Tuple ): self.enable_tiling(__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = True def _lowercase ( self : Tuple ): snake_case__ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = {} def fn_recursive_add_processors(__A : str , __A : torch.nn.Module , __A : Dict[str, AttentionProcessor] ): if hasattr(__A , "set_processor" ): snake_case__ : List[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __A , __A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__A , __A , __A ) return processors def _lowercase ( self : Union[str, Any] , __A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): snake_case__ : str = len(self.attn_processors.keys() ) if isinstance(__A , __A ) and len(__A ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__A )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__A : str , __A : torch.nn.Module , __A : List[str] ): if hasattr(__A , "set_processor" ): if not isinstance(__A , __A ): module.set_processor(__A ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __A , __A ) for name, module in self.named_children(): fn_recursive_attn_processor(__A , __A , __A ) def _lowercase ( self : Any ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _lowercase ( self : Optional[Any] , __A : torch.FloatTensor , __A : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__A , return_dict=__A ) if self.use_slicing and x.shape[0] > 1: snake_case__ : int = [self.encoder(__A ) for x_slice in x.split(1 )] snake_case__ : str = torch.cat(__A ) else: snake_case__ : Dict = self.encoder(__A ) snake_case__ : Optional[int] = self.quant_conv(__A ) snake_case__ : int = DiagonalGaussianDistribution(__A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__A ) def _lowercase ( self : Optional[Any] , __A : torch.FloatTensor , __A : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__A , return_dict=__A ) snake_case__ : Optional[int] = self.post_quant_conv(__A ) snake_case__ : List[str] = self.decoder(__A ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) @apply_forward_hook def _lowercase ( self : str , __A : torch.FloatTensor , __A : bool = True ): if self.use_slicing and z.shape[0] > 1: snake_case__ : int = [self._decode(__A ).sample for z_slice in z.split(1 )] snake_case__ : Union[str, Any] = torch.cat(__A ) else: snake_case__ : Optional[Any] = self._decode(__A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__A ) def _lowercase ( self : List[Any] , __A : Union[str, Any] , __A : Dict , __A : Union[str, Any] ): snake_case__ : List[str] = min(a.shape[2] , b.shape[2] , __A ) for y in range(__A ): snake_case__ : Optional[Any] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _lowercase ( self : str , __A : int , __A : Union[str, Any] , __A : str ): snake_case__ : Optional[Any] = min(a.shape[3] , b.shape[3] , __A ) for x in range(__A ): snake_case__ : Tuple = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _lowercase ( self : List[str] , __A : torch.FloatTensor , __A : bool = True ): snake_case__ : List[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) snake_case__ : Union[str, Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) snake_case__ : Union[str, Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. snake_case__ : Tuple = [] for i in range(0 , x.shape[2] , __A ): snake_case__ : int = [] for j in range(0 , x.shape[3] , __A ): snake_case__ : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] snake_case__ : Optional[Any] = self.encoder(__A ) snake_case__ : Union[str, Any] = self.quant_conv(__A ) row.append(__A ) rows.append(__A ) snake_case__ : Any = [] for i, row in enumerate(__A ): snake_case__ : Optional[int] = [] for j, tile in enumerate(__A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case__ : str = self.blend_v(rows[i - 1][j] , __A , __A ) if j > 0: snake_case__ : List[Any] = self.blend_h(row[j - 1] , __A , __A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__A , dim=3 ) ) snake_case__ : Any = torch.cat(__A , dim=2 ) snake_case__ : Optional[Any] = DiagonalGaussianDistribution(__A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__A ) def _lowercase ( self : Any , __A : torch.FloatTensor , __A : bool = True ): snake_case__ : Any = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) snake_case__ : Union[str, Any] = int(self.tile_sample_min_size * self.tile_overlap_factor ) snake_case__ : int = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. snake_case__ : Union[str, Any] = [] for i in range(0 , z.shape[2] , __A ): snake_case__ : Dict = [] for j in range(0 , z.shape[3] , __A ): snake_case__ : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] snake_case__ : Optional[Any] = self.post_quant_conv(__A ) snake_case__ : Optional[int] = self.decoder(__A ) row.append(__A ) rows.append(__A ) snake_case__ : Tuple = [] for i, row in enumerate(__A ): snake_case__ : Optional[int] = [] for j, tile in enumerate(__A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case__ : Any = self.blend_v(rows[i - 1][j] , __A , __A ) if j > 0: snake_case__ : Dict = self.blend_h(row[j - 1] , __A , __A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__A , dim=3 ) ) snake_case__ : Any = torch.cat(__A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _lowercase ( self : Union[str, Any] , __A : torch.FloatTensor , __A : bool = False , __A : bool = True , __A : Optional[torch.Generator] = None , ): snake_case__ : List[Any] = sample snake_case__ : int = self.encode(__A ).latent_dist if sample_posterior: snake_case__ : Union[str, Any] = posterior.sample(generator=__A ) else: snake_case__ : int = posterior.mode() snake_case__ : int = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): return getitem, k def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Tuple ): return setitem, k, v def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return delitem, k def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Any , *snake_case_ : int ): try: return fun(snake_case_ , *snake_case_ ), None except Exception as e: return None, e __lowerCamelCase : Any = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) __lowerCamelCase : int = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] __lowerCamelCase : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] __lowerCamelCase : Optional[int] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] __lowerCamelCase : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __lowerCamelCase : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Optional[Any] = HashMap(initial_block_size=4 ) snake_case__ : Optional[Any] = {} for _, (fun, *args) in enumerate(snake_case_ ): snake_case__, snake_case__ : List[str] = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) snake_case__, snake_case__ : Dict = _run_operation(snake_case_ , snake_case_ , *snake_case_ ) assert my_res == py_res assert str(snake_case_ ) == str(snake_case_ ) assert set(snake_case_ ) == set(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) assert set(my.items() ) == set(py.items() ) def SCREAMING_SNAKE_CASE ( ): def is_public(snake_case_ : str ) -> bool: return not name.startswith("_" ) snake_case__ : Tuple = {name for name in dir({} ) if is_public(snake_case_ )} snake_case__ : List[Any] = {name for name in dir(HashMap() ) if is_public(snake_case_ )} assert dict_public_names > hash_public_names
25
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "decision_transformer" a_ = ["past_key_values"] a_ = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __A : Dict=1_7 , __A : Any=4 , __A : Tuple=1_2_8 , __A : Any=4_0_9_6 , __A : Tuple=True , __A : List[Any]=1 , __A : List[Any]=1_0_2_4 , __A : Optional[Any]=3 , __A : Any=1 , __A : Any=None , __A : List[str]="relu" , __A : Dict=0.1 , __A : Any=0.1 , __A : Union[str, Any]=0.1 , __A : Tuple=1e-5 , __A : Optional[Any]=0.0_2 , __A : Tuple=True , __A : Any=True , __A : Tuple=5_0_2_5_6 , __A : List[Any]=5_0_2_5_6 , __A : Any=False , __A : Optional[int]=False , **__A : Optional[Any] , ): snake_case__ : List[str] = state_dim snake_case__ : List[str] = act_dim snake_case__ : Union[str, Any] = hidden_size snake_case__ : List[str] = max_ep_len snake_case__ : List[str] = action_tanh snake_case__ : List[str] = vocab_size snake_case__ : List[Any] = n_positions snake_case__ : Union[str, Any] = n_layer snake_case__ : List[str] = n_head snake_case__ : Tuple = n_inner snake_case__ : str = activation_function snake_case__ : Dict = resid_pdrop snake_case__ : Any = embd_pdrop snake_case__ : Any = attn_pdrop snake_case__ : Union[str, Any] = layer_norm_epsilon snake_case__ : List[str] = initializer_range snake_case__ : List[Any] = scale_attn_weights snake_case__ : Optional[int] = use_cache snake_case__ : Union[str, Any] = scale_attn_by_inverse_layer_idx snake_case__ : Dict = reorder_and_upcast_attn snake_case__ : List[str] = bos_token_id snake_case__ : Optional[int] = eos_token_id super().__init__(bos_token_id=__A , eos_token_id=__A , **__A )
25
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de dรฉbat sur le renseignement", "Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.", "Lorsque Franรงois Hollande tรฉlรฉphone ร  Barack Obama ou quand le ministre des affaires รฉtrangรจres Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils rรฉagissent ร  une vraie dรฉcouverte, qui est celle de" " l'ampleur de la surveillance amรฉricaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When Franรงois Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : int ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowercase ( self : Optional[int] ): snake_case__ : Optional[Any] = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(__A ) def _lowercase ( self : int ): snake_case__ : str = self._create_example_records() snake_case__ : List[Any] = Dataset.from_list(__A ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(__A ): self.assertDictEqual(__A , example_records[i] ) def _lowercase ( self : Optional[Any] ): snake_case__ : int = self._create_example_records() snake_case__ : Dict = Dataset.from_list(__A ) snake_case__ : List[str] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _lowercase ( self : List[str] ): # checks what happens with missing columns snake_case__ : Union[str, Any] = [{"col_1": 1}, {"col_2": "x"}] snake_case__ : Union[str, Any] = Dataset.from_list(__A ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def _lowercase ( self : Union[str, Any] ): # checks if the type can be inferred from the second record snake_case__ : List[Any] = [{"col_1": []}, {"col_1": [1, 2]}] snake_case__ : int = Dataset.from_list(__A ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def _lowercase ( self : Any ): snake_case__ : Tuple = Dataset.from_list([] ) self.assertEqual(len(__A ) , 0 ) self.assertListEqual(dset.column_names , [] )
25
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
1
def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): return 1 if input_a == input_a else 0 def SCREAMING_SNAKE_CASE ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
from PIL import Image def SCREAMING_SNAKE_CASE ( snake_case_ : Image ): snake_case__, snake_case__ : Dict = image.size snake_case__ : List[str] = 0 snake_case__ : List[Any] = image.load() for i in range(snake_case_ ): for j in range(snake_case_ ): snake_case__ : int = pixels[j, i] mean += pixel mean //= width * height for j in range(snake_case_ ): for i in range(snake_case_ ): snake_case__ : str = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCamelCase : Dict = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
25
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de dรฉbat sur le renseignement", "Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.", "Lorsque Franรงois Hollande tรฉlรฉphone ร  Barack Obama ou quand le ministre des affaires รฉtrangรจres Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils rรฉagissent ร  une vraie dรฉcouverte, qui est celle de" " l'ampleur de la surveillance amรฉricaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When Franรงois Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : List[Any] = torch.load(snake_case_ , map_location="cpu" ) if "model" in sd.keys(): snake_case__ : List[Any] = torch.load(snake_case_ , map_location="cpu" )["model"] # pop unnecessary weights snake_case__ : List[str] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(snake_case_ ) snake_case__ : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case__ : Optional[int] = sd.pop(snake_case_ ) snake_case__ : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case__ : int = sd[key] # We split QKV in separate Q,K,V snake_case__ : List[Any] = key.replace(".qkv_proj." , ".q_proj." ) snake_case__ : Any = key.replace(".qkv_proj." , ".k_proj." ) snake_case__ : Optional[int] = key.replace(".qkv_proj." , ".v_proj." ) snake_case__ : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case__, snake_case__, snake_case__ : Dict = torch.split(snake_case_ , depth // 3 , dim=0 ) snake_case__ : Union[str, Any] = q snake_case__ : Optional[Any] = k snake_case__ : Union[str, Any] = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Any=None ): snake_case__ : int = load_checkpoint(snake_case_ ) if config is not None: snake_case__ : Tuple = OPTConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = OPTConfig() snake_case__ : Union[str, Any] = OPTModel(snake_case_ ).half().eval() model.load_state_dict(snake_case_ ) # Check results Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowerCamelCase : Optional[int] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
25
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"โ€œ%โ€˜โ€๏ฟฝโ€”โ€™โ€ฆโ€“]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with ๐Ÿค— Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with ๐Ÿค— Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
1
from cva import destroyAllWindows, imread, imshow, waitKey def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): # getting number of pixels in the image snake_case__, snake_case__ : Optional[int] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(snake_case_ ): for j in range(snake_case_ ): snake_case__ : Optional[int] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __lowerCamelCase : Optional[Any] = imread("""image_data/lena.jpg""", 1) # convert to its negative __lowerCamelCase : Optional[Any] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
25
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCamelCase : List[Any] = random.Random() def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any]=1.0 , snake_case_ : List[str]=None , snake_case_ : str=None ): if rng is None: snake_case__ : str = global_rng snake_case__ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __A : Union[str, Any] , __A : List[Any]=7 , __A : int=4_0_0 , __A : Union[str, Any]=2_0_0_0 , __A : Union[str, Any]=1_0 , __A : Optional[Any]=1_6_0 , __A : int=8 , __A : Dict=0.0 , __A : Optional[int]=4_0_0_0 , __A : Optional[int]=False , __A : Union[str, Any]=True , ): snake_case__ : List[str] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = min_seq_length snake_case__ : Union[str, Any] = max_seq_length snake_case__ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : Optional[Any] = padding_value snake_case__ : List[str] = sampling_rate snake_case__ : Optional[int] = return_attention_mask snake_case__ : int = do_normalize snake_case__ : Tuple = feature_size snake_case__ : int = chunk_length snake_case__ : Any = hop_length def _lowercase ( self : int ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self : List[str] , __A : Any=False , __A : Dict=False ): def _flatten(__A : Any ): return list(itertools.chain(*__A ) ) if equal_length: snake_case__ : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ : Tuple = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = WhisperFeatureExtractor if is_speech_available() else None def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = WhisperFeatureExtractionTester(self ) def _lowercase ( self : Tuple ): snake_case__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : List[str] = feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) snake_case__ : List[str] = self.feature_extraction_class.from_pretrained(__A ) snake_case__ : Tuple = feat_extract_first.to_dict() snake_case__ : List[Any] = feat_extract_second.to_dict() snake_case__ : int = feat_extract_first.mel_filters snake_case__ : Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Any = os.path.join(__A , "feat_extract.json" ) feat_extract_first.to_json_file(__A ) snake_case__ : List[str] = self.feature_extraction_class.from_json_file(__A ) snake_case__ : Union[str, Any] = feat_extract_first.to_dict() snake_case__ : List[Any] = feat_extract_second.to_dict() snake_case__ : Any = feat_extract_first.mel_filters snake_case__ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def _lowercase ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case__ : Any = [np.asarray(__A ) for speech_input in speech_inputs] # Test feature size snake_case__ : List[str] = feature_extractor(__A , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case__ : Any = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features snake_case__ : int = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test batched snake_case__ : List[str] = feature_extractor(__A , return_tensors="np" ).input_features snake_case__ : Tuple = feature_extractor(__A , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case__ : List[Any] = np.asarray(__A ) snake_case__ : Tuple = feature_extractor(__A , return_tensors="np" ).input_features snake_case__ : Union[str, Any] = feature_extractor(__A , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) # Test truncation required snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] snake_case__ : Optional[Any] = [np.asarray(__A ) for speech_input in speech_inputs] snake_case__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case__ : List[Any] = [np.asarray(__A ) for speech_input in speech_inputs_truncated] snake_case__ : Union[str, Any] = feature_extractor(__A , return_tensors="np" ).input_features snake_case__ : Tuple = feature_extractor(__A , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1e-3 ) ) def _lowercase ( self : Optional[Any] ): import torch snake_case__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : List[Any] = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) snake_case__ : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ : Optional[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case__ : List[str] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowercase ( self : List[str] , __A : Dict ): snake_case__ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech snake_case__ : Optional[int] = ds.sort("id" ).select(range(__A ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowercase ( self : Union[str, Any] ): # fmt: off snake_case__ : List[str] = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on snake_case__ : Tuple = self._load_datasamples(1 ) snake_case__ : Any = WhisperFeatureExtractor() snake_case__ : List[str] = feature_extractor(__A , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , __A , atol=1e-4 ) ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Dict = self._load_datasamples(1 )[0] snake_case__ : Dict = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue snake_case__ : List[str] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1e-3 ) )
25
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
1
import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : int=None , __A : List[Any]=None ): # Input as list snake_case__ : Optional[int] = list(poly_a or [0] )[:] snake_case__ : Optional[int] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() snake_case__ : Optional[int] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() snake_case__ : Dict = len(self.polyB ) # Add 0 to make lengths equal a power of 2 snake_case__ : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform snake_case__ : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product snake_case__ : List[Any] = self.__multiply() def _lowercase ( self : str , __A : str ): snake_case__ : List[Any] = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(__A ) <= 1: return dft[0] # snake_case__ : Union[str, Any] = self.c_max_length // 2 while next_ncol > 0: snake_case__ : Dict = [[] for i in range(__A )] snake_case__ : Optional[Any] = self.root**next_ncol # First half of next step snake_case__ : Any = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step snake_case__ : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update snake_case__ : List[Any] = new_dft snake_case__ : Dict = next_ncol // 2 return dft[0] def _lowercase ( self : Optional[Any] ): snake_case__ : Tuple = self.__dft("A" ) snake_case__ : int = self.__dft("B" ) snake_case__ : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT snake_case__ : str = 2 while next_ncol <= self.c_max_length: snake_case__ : List[Any] = [[] for i in range(__A )] snake_case__ : Any = self.root ** (next_ncol // 2) snake_case__ : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update snake_case__ : Dict = new_inverse_c next_ncol *= 2 # Unpack snake_case__ : List[str] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : List[Any] ): snake_case__ : Union[str, Any] = "A = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) snake_case__ : Optional[Any] = "B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) snake_case__ : Tuple = "A*B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): snake_case__ : Tuple = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case__ : Any = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) snake_case__ : str = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) snake_case__ : Optional[int] = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) snake_case__ : Dict = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) snake_case__ : Optional[int] = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) snake_case__ : Optional[int] = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) snake_case__ : Tuple = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) snake_case__ : Any = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) snake_case__ : Optional[Any] = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) snake_case__ : Any = key.replace("image_encoder.module" , "flava.image_model" ) snake_case__ : Dict = key.replace("text_encoder.module" , "flava.text_model" ) snake_case__ : Union[str, Any] = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) snake_case__ : Dict = key.replace("mm_encoder.module" , "flava.multimodal_model" ) snake_case__ : Dict = key.replace("text_projection" , "flava.text_projection" ) snake_case__ : Optional[int] = key.replace("image_projection" , "flava.image_projection" ) snake_case__ : Optional[Any] = value.float() for key, value in codebook_state_dict.items(): snake_case__ : List[Any] = value return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : str , snake_case_ : List[Any]=None ): if config_path is not None: snake_case__ : List[str] = FlavaConfig.from_pretrained(snake_case_ ) else: snake_case__ : List[str] = FlavaConfig() snake_case__ : Dict = FlavaForPreTraining(snake_case_ ).eval() snake_case__ : Optional[int] = convert_dalle_checkpoint(snake_case_ , snake_case_ , save_checkpoint=snake_case_ ) if os.path.exists(snake_case_ ): snake_case__ : Any = torch.load(snake_case_ , map_location="cpu" ) else: snake_case__ : List[Any] = torch.hub.load_state_dict_from_url(snake_case_ , map_location="cpu" ) snake_case__ : Union[str, Any] = upgrade_state_dict(snake_case_ , snake_case_ ) hf_model.load_state_dict(snake_case_ ) snake_case__ : Dict = hf_model.state_dict() snake_case__ : Union[str, Any] = count_parameters(snake_case_ ) snake_case__ : str = count_parameters(snake_case_ ) + count_parameters(snake_case_ ) assert torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCamelCase : Dict = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
25
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
1
import argparse import datetime def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : str = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } snake_case__ : Dict = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(snake_case_ ) < 11: raise ValueError("Must be 10 characters long" ) # Get month snake_case__ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) snake_case__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day snake_case__ : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator snake_case__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year snake_case__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation snake_case__ : Dict = datetime.date(int(snake_case_ ) , int(snake_case_ ) , int(snake_case_ ) ) # Start math if m <= 2: snake_case__ : str = y - 1 snake_case__ : Optional[Any] = m + 12 # maths var snake_case__ : int = int(str(snake_case_ )[:2] ) snake_case__ : int = int(str(snake_case_ )[2:] ) snake_case__ : int = int(2.6 * m - 5.39 ) snake_case__ : int = int(c / 4 ) snake_case__ : int = int(k / 4 ) snake_case__ : int = int(d + k ) snake_case__ : int = int(t + u + v + x ) snake_case__ : int = int(z - (2 * c) ) snake_case__ : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response snake_case__ : str = F'''Your date {date_input}, is a {days[str(snake_case_ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : str = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) __lowerCamelCase : str = parser.parse_args() zeller(args.date_input)
25
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullbackโ€“Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCamelCase : Optional[Any] = logging.getLogger(__name__) __lowerCamelCase : Any = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __lowerCamelCase : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase_ )} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default=UpperCamelCase_ , metadata={"help": "The input training data file (a text file)."} ) a_ = field( default=UpperCamelCase_ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a_ = field(default=UpperCamelCase_ , metadata={"help": "Whether ot not to use whole word mask."} ) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a_ = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a_ = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a_ = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE ( snake_case_ : DataTrainingArguments , snake_case_ : PreTrainedTokenizer , snake_case_ : bool = False , snake_case_ : Optional[str] = None , ): def _dataset(snake_case_ : str , snake_case_ : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=snake_case_ , file_path=snake_case_ , block_size=args.block_size , ref_path=snake_case_ , ) return LineByLineTextDataset(tokenizer=snake_case_ , file_path=snake_case_ , block_size=args.block_size ) else: return TextDataset( tokenizer=snake_case_ , file_path=snake_case_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=snake_case_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(snake_case_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case__, snake_case__, snake_case__ : List[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: snake_case__ : List[str] = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: snake_case__ : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) snake_case__ : Optional[int] = AutoModelWithLMHead.from_config(snake_case_ ) model.resize_token_embeddings(len(snake_case_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: snake_case__ : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: snake_case__ : Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets snake_case__ : Optional[int] = ( get_dataset(snake_case_ , tokenizer=snake_case_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) snake_case__ : str = ( get_dataset(snake_case_ , tokenizer=snake_case_ , evaluate=snake_case_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": snake_case__ : int = DataCollatorForPermutationLanguageModeling( tokenizer=snake_case_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: snake_case__ : int = DataCollatorForWholeWordMask( tokenizer=snake_case_ , mlm_probability=data_args.mlm_probability ) else: snake_case__ : List[str] = DataCollatorForLanguageModeling( tokenizer=snake_case_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case__ : Optional[Any] = Trainer( model=snake_case_ , args=snake_case_ , data_collator=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , prediction_loss_only=snake_case_ , ) # Training if training_args.do_train: snake_case__ : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=snake_case_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case__ : Union[str, Any] = trainer.evaluate() snake_case__ : str = math.exp(eval_output["eval_loss"] ) snake_case__ : List[str] = {"perplexity": perplexity} snake_case__ : int = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(snake_case_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , snake_case_ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(snake_case_ ) return results def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
25
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Tuple = str(SCREAMING_SNAKE_CASE_ ) return n == n[::-1] def SCREAMING_SNAKE_CASE ( snake_case_ : str = 1000000 ): snake_case__ : List[Any] = 0 for i in range(1 , SCREAMING_SNAKE_CASE_ ): if is_palindrome(SCREAMING_SNAKE_CASE_ ) and is_palindrome(bin(SCREAMING_SNAKE_CASE_ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
700
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def SCREAMING_SNAKE_CASE ( snake_case_ : str ): class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : int ): snake_case__ : Any = metric_id class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = [MetricMock(_snake_case ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _lowercase ( self : List[str] ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any , snake_case_ : Dict ): if "tmp_path" in args: snake_case__ : List[str] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__A , match="https://huggingface.co/docs/evaluate" ): func(*__A )
701
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def _lowercase ( *__A : Tuple , **__A : Optional[int] ): pass @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _lowercase ( self : Optional[int] , __A : Tuple , __A : int , __A : Optional[Any] ): snake_case__ : Any = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) snake_case__ : Optional[Any] = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def _lowercase ( self : int , __A : List[Any] , __A : int ): snake_case__ : Union[str, Any] = vqa_pipeline(UpperCAmelCase_ , top_k=1 ) self.assertEqual( UpperCAmelCase_ , [ [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}], [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}], ] , ) @require_torch def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) snake_case__ : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" snake_case__ : Union[str, Any] = "How many cats are there?" snake_case__ : str = vqa_pipeline(image=UpperCAmelCase_ , question="How many cats are there?" , top_k=2 ) self.assertEqual( UpperCAmelCase_ , [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}, {"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}] ) snake_case__ : List[str] = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( UpperCAmelCase_ , [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}, {"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}] ) @slow @require_torch def _lowercase ( self : Union[str, Any] ): snake_case__ : int = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) snake_case__ : Optional[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" snake_case__ : int = "How many cats are there?" snake_case__ : List[Any] = vqa_pipeline(image=UpperCAmelCase_ , question=UpperCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}] ) snake_case__ : Any = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}] ) snake_case__ : str = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [[{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def _lowercase ( self : List[str] ): pass
702
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("ยก" ) , ord("ยฌ" ) + 1 ) ) + list(range(ord("ยฎ" ) , ord("รฟ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
0
import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
703
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "beit" def __init__( self : Optional[Any] , __A : int=8_1_9_2 , __A : str=7_6_8 , __A : Tuple=1_2 , __A : Optional[Any]=1_2 , __A : Dict=3_0_7_2 , __A : Any="gelu" , __A : List[Any]=0.0 , __A : Dict=0.0 , __A : Tuple=0.0_2 , __A : Optional[Any]=1e-1_2 , __A : List[Any]=2_2_4 , __A : List[str]=1_6 , __A : Optional[int]=3 , __A : List[str]=False , __A : str=False , __A : str=False , __A : Dict=False , __A : List[Any]=0.1 , __A : str=0.1 , __A : Optional[Any]=True , __A : int=[3, 5, 7, 1_1] , __A : Optional[int]=[1, 2, 3, 6] , __A : Union[str, Any]=True , __A : Tuple=0.4 , __A : Optional[Any]=2_5_6 , __A : Tuple=1 , __A : Tuple=False , __A : Tuple=2_5_5 , **__A : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) snake_case__ : Union[str, Any] = vocab_size snake_case__ : Dict = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : int = initializer_range snake_case__ : Optional[Any] = layer_norm_eps snake_case__ : Optional[int] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[Any] = num_channels snake_case__ : Union[str, Any] = use_mask_token snake_case__ : int = use_absolute_position_embeddings snake_case__ : Union[str, Any] = use_relative_position_bias snake_case__ : List[Any] = use_shared_relative_position_bias snake_case__ : int = layer_scale_init_value snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ : Dict = out_indices snake_case__ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ : List[str] = use_auxiliary_head snake_case__ : str = auxiliary_loss_weight snake_case__ : List[Any] = auxiliary_channels snake_case__ : Union[str, Any] = auxiliary_num_convs snake_case__ : int = auxiliary_concat_input snake_case__ : Union[str, Any] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = version.parse("1.11" ) @property def _lowercase ( self : List[str] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self : Optional[int] ): return 1e-4
704
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def SCREAMING_SNAKE_CASE ( ): raise RuntimeError("CUDA out of memory." ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Tuple ): super().__init__() snake_case__ : Union[str, Any] = nn.Linear(3 , 4 ) snake_case__ : List[str] = nn.BatchNormad(4 ) snake_case__ : Any = nn.Linear(4 , 5 ) def _lowercase ( self : List[str] , __A : Union[str, Any] ): return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): snake_case__ : str = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__A : Dict ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [1_2_8, 6_4, 3_2, 1_6, 8] ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__A : List[Any] , __A : List[str] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga snake_case__ : Tuple = mock_training_loop_function("hello" ) self.assertListEqual(__lowerCamelCase , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def _lowercase ( self : Dict ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__A : List[str] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def _lowercase ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__A : Optional[int] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def _lowercase ( self : Dict ): @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__A : Tuple , __A : Tuple , __A : Tuple ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(1_2_8 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def _lowercase ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__A : List[Any] ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def _lowercase ( self : str ): snake_case__ : Union[str, Any] = torch.cuda.memory_allocated() snake_case__ : List[str] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) snake_case__ : Dict = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
705
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowerCamelCase : List[Any] = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): snake_case__ : Union[str, Any] = {} state_dict.pop("pixel_mean" , lowerCamelCase_ ) state_dict.pop("pixel_std" , lowerCamelCase_ ) snake_case__ : str = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : int = key.replace(lowerCamelCase_ , lowerCamelCase_ ) if re.match(lowerCamelCase_ , lowerCamelCase_ ): snake_case__ : int = int(re.match(lowerCamelCase_ , lowerCamelCase_ ).group(2 ) ) if layer_nb == 0: snake_case__ : Optional[Any] = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: snake_case__ : List[str] = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: snake_case__ : List[Any] = key.replace("layers.2" , "proj_out" ) snake_case__ : Any = value snake_case__ : int = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Dict , snake_case_ : List[str]="ybelkada/segment-anything" ): snake_case__ : Dict = hf_hub_download(lowerCamelCase_ , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: snake_case__ : Tuple = SamConfig() elif "sam_vit_l" in model_name: snake_case__ : Union[str, Any] = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case__ : Tuple = SamConfig( vision_config=lowerCamelCase_ , ) elif "sam_vit_h" in model_name: snake_case__ : Optional[Any] = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case__ : str = SamConfig( vision_config=lowerCamelCase_ , ) snake_case__ : Optional[int] = torch.load(lowerCamelCase_ , map_location="cpu" ) snake_case__ : Union[str, Any] = replace_keys(lowerCamelCase_ ) snake_case__ : int = SamImageProcessor() snake_case__ : Dict = SamProcessor(image_processor=lowerCamelCase_ ) snake_case__ : Union[str, Any] = SamModel(lowerCamelCase_ ) hf_model.load_state_dict(lowerCamelCase_ ) snake_case__ : Dict = hf_model.to("cuda" ) snake_case__ : Dict = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' snake_case__ : Any = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("RGB" ) snake_case__ : Dict = [[[400, 650]]] snake_case__ : List[str] = [[1]] snake_case__ : Any = processor(images=np.array(lowerCamelCase_ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : Tuple = hf_model(**lowerCamelCase_ ) snake_case__ : str = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 snake_case__ : Union[str, Any] = processor( images=np.array(lowerCamelCase_ ) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : List[str] = hf_model(**lowerCamelCase_ ) snake_case__ : List[Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 snake_case__ : Tuple = ((75, 275, 1725, 850),) snake_case__ : str = processor(images=np.array(lowerCamelCase_ ) , input_boxes=lowerCamelCase_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : Tuple = hf_model(**lowerCamelCase_ ) snake_case__ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. snake_case__ : str = [[[400, 650], [800, 650]]] snake_case__ : Optional[int] = [[1, 1]] snake_case__ : Any = processor( images=np.array(lowerCamelCase_ ) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : List[str] = hf_model(**lowerCamelCase_ ) snake_case__ : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() __lowerCamelCase : Union[str, Any] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowerCamelCase : List[str] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
import re def SCREAMING_SNAKE_CASE ( snake_case_ : str ): if len(re.findall("[ATCG]" , snake_case_ ) ) != len(snake_case_ ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
707
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __A , unittest.TestCase ): """simple docstring""" a_ = OpenAIGPTTokenizer a_ = OpenAIGPTTokenizerFast a_ = True a_ = False def _lowercase ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case__ : List[str] = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : int = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__A ) ) def _lowercase ( self : Tuple , __A : Optional[Any] ): return "lower newer", "lower newer" def _lowercase ( self : List[str] ): snake_case__ : str = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) snake_case__ : Any = '''lower''' snake_case__ : Dict = ['''low''', '''er</w>'''] snake_case__ : int = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) snake_case__ : Any = tokens + ['''<unk>'''] snake_case__ : Tuple = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def _lowercase ( self : Optional[Any] , __A : Dict=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__A , **__A ) # Simple input snake_case__ : str = '''This is a simple input''' snake_case__ : int = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case__ : Optional[int] = ('''This is a simple input''', '''This is a pair''') snake_case__ : List[str] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="max_length" ) # Simple input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="max_length" ) # Simple input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="max_length" , ) # Pair input self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="max_length" ) # Pair input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="max_length" ) # Pair input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="max_length" , ) def _lowercase ( self : Dict ): pass @require_ftfy @require_spacy @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __A ): """simple docstring""" pass
708
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[Any] = HfArgumentParser(__lowerCAmelCase ) snake_case__ : List[str] = parser.parse_args_into_dataclasses()[0] snake_case__ : int = TensorFlowBenchmark(args=__lowerCAmelCase ) try: snake_case__ : Dict = parser.parse_args_into_dataclasses()[0] except ValueError as e: snake_case__ : List[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." snake_case__ : str = " ".join(str(__lowerCAmelCase ).split(" " )[:-1] ) snake_case__ : Dict = "" snake_case__ : Tuple = eval(str(__lowerCAmelCase ).split(" " )[-1] ) snake_case__ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ : Any = full_error_msg + begin_error_msg + str(__lowerCAmelCase ) raise ValueError(__lowerCAmelCase ) benchmark.run() if __name__ == "__main__": main()
709
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de dรฉbat sur le renseignement", "Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.", "Lorsque Franรงois Hollande tรฉlรฉphone ร  Barack Obama ou quand le ministre des affaires รฉtrangรจres Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils rรฉagissent ร  une vraie dรฉcouverte, qui est celle de" " l'ampleur de la surveillance amรฉricaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When Franรงois Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
0
def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = 0 for i in range(1 , 1001 ): total += i**i return str(lowerCamelCase__ )[-10:] if __name__ == "__main__": print(solution())
710
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __lowerCamelCase : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __lowerCamelCase : List[Any] = {'facebook/blenderbot-3B': 128} class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] a_ = BlenderbotTokenizer def __init__( self : Dict , __A : Optional[Any]=None , __A : List[str]=None , __A : Optional[Any]=None , __A : List[Any]="replace" , __A : List[Any]="<s>" , __A : str="</s>" , __A : List[str]="</s>" , __A : List[Any]="<s>" , __A : Union[str, Any]="<unk>" , __A : Optional[Any]="<pad>" , __A : Dict="<mask>" , __A : Any=False , __A : Tuple=True , **__A : Dict , ): super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) snake_case__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : Optional[Any] = getattr(__A , pre_tok_state.pop("type" ) ) snake_case__ : List[Any] = add_prefix_space snake_case__ : Optional[Any] = pre_tok_class(**__A ) snake_case__ : Any = add_prefix_space snake_case__ : Any = "post_processor" snake_case__ : Optional[Any] = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: snake_case__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case__ : List[Any] = tuple(state["sep"] ) if "cls" in state: snake_case__ : Optional[int] = tuple(state["cls"] ) snake_case__ : List[str] = False if state.get("add_prefix_space" , __A ) != add_prefix_space: snake_case__ : List[str] = add_prefix_space snake_case__ : int = True if state.get("trim_offsets" , __A ) != trim_offsets: snake_case__ : List[str] = trim_offsets snake_case__ : Dict = True if changes_to_apply: snake_case__ : Tuple = getattr(__A , state.pop("type" ) ) snake_case__ : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowercase ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : Optional[Any] , __A : List[Any] ): snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value snake_case__ : List[str] = value def _lowercase ( self : Optional[int] , *__A : Optional[Any] , **__A : List[str] ): snake_case__ : int = kwargs.get("is_split_into_words" , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def _lowercase ( self : str , *__A : Union[str, Any] , **__A : List[Any] ): snake_case__ : Optional[int] = kwargs.get("is_split_into_words" , __A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def _lowercase ( self : str , __A : str , __A : Optional[str] = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def _lowercase ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Dict , __A : List[int] , __A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _lowercase ( self : List[str] , __A : "Conversation" ): snake_case__ : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: snake_case__ : Tuple = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def _lowercase ( self : Any ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowercase ( self : Tuple ): snake_case__ : Optional[int] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def _lowercase ( self : int ): snake_case__ : str = self._create_example_records() snake_case__ : Tuple = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def _lowercase ( self : Tuple ): snake_case__ : List[str] = self._create_example_records() snake_case__ : Tuple = Dataset.from_list(_a ) snake_case__ : Any = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _lowercase ( self : str ): # checks what happens with missing columns snake_case__ : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] snake_case__ : Optional[int] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def _lowercase ( self : Optional[Any] ): # checks if the type can be inferred from the second record snake_case__ : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] snake_case__ : List[str] = Dataset.from_list(_a ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
712
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
0
import re def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): if len(re.findall("[ATCG]" , __UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
713
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
0
def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): snake_case__ : List[str] = [int(lowerCAmelCase__ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowerCAmelCase__ ) == 4 and all(0 <= int(lowerCAmelCase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __lowerCamelCase : Any = input().strip() __lowerCamelCase : List[Any] = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(f"{ip} is a {valid_or_invalid} IP v4 address.")
714
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"โ€œ%โ€˜โ€๏ฟฝโ€”โ€™โ€ฆโ€“]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with ๐Ÿค— Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with ๐Ÿค— Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
0
import socket def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : List[str] = socket.gethostname() snake_case__ : Tuple = 12312 sock.connect((host, port) ) sock.send(b"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: snake_case__ : Union[str, Any] = sock.recv(1024 ) if not data: break out_file.write(__A ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
715
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
0
def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ : List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase ) if number < 0: return False snake_case__ : str = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
716
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Tuple = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = ["""ViTFeatureExtractor"""] __lowerCamelCase : List[str] = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __lowerCamelCase : Dict = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize __lowerCamelCase : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" __lowerCamelCase : Optional[int] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" __lowerCamelCase : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _lowercase ( self : int , __A : Optional[Any] ): import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _lowercase ( self : str , __A : Any , __A : Optional[int] , __A : List[str]=0.9 , __A : Optional[Any]=3 , __A : str=0.5 ): if NLTK_VERSION >= version.Version("3.6.5" ): snake_case__ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase_ ) , word_tokenize(lowerCamelCase_ ) , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ ) ] else: snake_case__ : Dict = [ meteor_score.single_meteor_score(lowerCamelCase_ , lowerCamelCase_ , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ ) ] return {"meteor": np.mean(lowerCamelCase_ )}
718
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def SCREAMING_SNAKE_CASE ( snake_case_ : Any=32 , snake_case_ : Optional[int]=10 , snake_case_ : Optional[int]=100 , snake_case_ : Optional[int]=1026 , snake_case_ : Optional[int]=True , snake_case_ : Tuple="data/tokenized_stories_train_wikitext103.jbl" , snake_case_ : List[str]="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set snake_case__, snake_case__ : Optional[int] = generate_datasets( _A , _A , number=_A , min_len=1026 , trim=_A ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? snake_case__ : Optional[int] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model snake_case__ : str = load_gpta("gpt2" ).to(_A ) print("computing perplexity on objective set" ) snake_case__ : List[str] = compute_perplexity(_A , _A , _A ).item() print("perplexity on objective set:" , _A ) # collect igf pairs and save to file demo.jbl collect_objective_set(_A , _A , _A , _A , _A , _A , _A , _A ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Tuple=15 , snake_case_ : Tuple=128 , snake_case_ : Tuple=100 , snake_case_ : Optional[Any]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model snake_case__ : List[str] = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model snake_case__ : str = SecondaryLearner(_A ) # Train secondary learner snake_case__ : int = train_secondary_learner( _A , _A , max_epochs=_A , batch_size=_A , eval_freq=100 , igf_model_path=_A , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : str=32 , snake_case_ : Optional[int]=1000 , snake_case_ : Tuple=16 , snake_case_ : Tuple=1.0 , snake_case_ : Dict=recopy_gpta , snake_case_ : str=None , snake_case_ : Tuple=10 , snake_case_ : str="gpt2_finetuned.pt" , ): snake_case__ : Tuple = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) snake_case__ : Optional[int] = RandomSampler(_A ) snake_case__ : Optional[Any] = DataLoader(_A , sampler=_A ) snake_case__ : Union[str, Any] = max_steps // (len(_A )) + 1 snake_case__ : str = 0 snake_case__ : Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=_A ) snake_case__, snake_case__, snake_case__ : Tuple = recopy_model(_A , _A , _A ) model.train() if secondary_learner is not None: secondary_learner.to(_A ) secondary_learner.eval() snake_case__ : Any = [] snake_case__ : List[str] = 0 snake_case__ : Tuple = [] snake_case__ : List[str] = [] # Compute the performance of the transformer model at the beginning snake_case__ : int = compute_perplexity(_A , _A , _A ) test_perps.append(_A ) print("Test perplexity, step" , _A , ":" , _A ) for epoch in range(int(_A ) ): for step, example in enumerate(_A ): torch.cuda.empty_cache() snake_case__ : Optional[Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) snake_case__ : Tuple = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() snake_case__ : Any = model(_A , labels=_A ) snake_case__ : Optional[int] = True if secondary_learner is not None: snake_case__ : int = secondary_learner.forward( torch.tensor(_A , dtype=torch.long , device=_A ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_A ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: snake_case__ : Optional[int] = -1 if predicted_q < threshold: snake_case__ : List[Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) snake_case__ : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() snake_case__ : Union[str, Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: snake_case__ : int = compute_perplexity(_A , _A , _A ) test_perps.append(_A ) print("Test perplexity, step" , _A , ":" , _A ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _A ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def SCREAMING_SNAKE_CASE ( ): snake_case__ : Union[str, Any] = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=_A , type=_A , required=_A , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_A , type=_A , required=_A , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_A , default=_A , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_A , default=_A , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_A , type=_A , required=_A , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_A , type=_A , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_A , default=_A , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=_A , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=_A , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=_A , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1000 , type=_A , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=_A , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_A , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=_A , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=_A , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1026 , type=_A , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_A , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=_A , type=_A , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=_A , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_A , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=_A , type=_A , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_A , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner snake_case__ : Optional[int] = joblib.load("data/IGF_values.jbl" ) # Train secondary learner snake_case__ : Union[str, Any] = training_secondary_learner( _A , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model snake_case__ : Union[str, Any] = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model snake_case__, snake_case__ : int = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=_A ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _A , _A , _A , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_A , secondary_learner=_A , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
719
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCamelCase : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : List[str] ): snake_case__ : int = WavaVecaForSequenceClassification.from_pretrained(snake_case_ , config=snake_case_ ) snake_case__ : Dict = downstream_dict["projector.weight"] snake_case__ : List[str] = downstream_dict["projector.bias"] snake_case__ : int = downstream_dict["model.post_net.linear.weight"] snake_case__ : Optional[Any] = downstream_dict["model.post_net.linear.bias"] return model def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Dict ): snake_case__ : Tuple = WavaVecaForAudioFrameClassification.from_pretrained(snake_case_ , config=snake_case_ ) snake_case__ : Optional[int] = downstream_dict["model.linear.weight"] snake_case__ : Union[str, Any] = downstream_dict["model.linear.bias"] return model def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : int ): snake_case__ : List[Any] = WavaVecaForXVector.from_pretrained(snake_case_ , config=snake_case_ ) snake_case__ : List[str] = downstream_dict["connector.weight"] snake_case__ : List[str] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case__ : List[str] = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] snake_case__ : Tuple = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] snake_case__ : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] snake_case__ : Union[str, Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] snake_case__ : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] snake_case__ : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] snake_case__ : Any = downstream_dict["objective.W"] return model @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Optional[Any] ): snake_case__ : List[Any] = torch.load(snake_case_ , map_location="cpu" ) snake_case__ : List[str] = checkpoint["Downstream"] snake_case__ : Tuple = WavaVecaConfig.from_pretrained(snake_case_ ) snake_case__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained( snake_case_ , return_attention_mask=snake_case_ , do_normalize=snake_case_ ) snake_case__ : Optional[Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): snake_case__ : Any = convert_classification(snake_case_ , snake_case_ , snake_case_ ) elif arch.endswith("ForAudioFrameClassification" ): snake_case__ : Dict = convert_diarization(snake_case_ , snake_case_ , snake_case_ ) elif arch.endswith("ForXVector" ): snake_case__ : Optional[int] = convert_xvector(snake_case_ , snake_case_ , snake_case_ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: snake_case__ : Union[str, Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(snake_case_ ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") __lowerCamelCase : List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
720
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullbackโ€“Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ): snake_case__ : Dict = tempfile.mkdtemp() # fmt: off snake_case__ : Optional[int] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case__ : Tuple = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case__ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] snake_case__ : List[str] = {"""unk_token""": """<unk>"""} snake_case__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) snake_case__ : Optional[Any] = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } snake_case__ : Tuple = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowercase , _lowercase ) def _lowercase ( self : List[Any] , **__A : List[str] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self : List[Any] , **__A : str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self : Union[str, Any] , **__A : int ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def _lowercase ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Any ): snake_case__ : Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case__ : Optional[int] = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Any ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Union[str, Any] = self.get_rust_tokenizer() snake_case__ : List[Any] = self.get_image_processor() snake_case__ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) snake_case__ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) snake_case__ : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def _lowercase ( self : Tuple ): snake_case__ : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case__ : List[str] = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) snake_case__ : int = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : Dict = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : str = self.prepare_image_inputs() snake_case__ : Union[str, Any] = image_processor(_lowercase , return_tensors="np" ) snake_case__ : Any = processor(images=_lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : List[str] = self.get_tokenizer() snake_case__ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : int = """lower newer""" snake_case__ : List[str] = processor(text=_lowercase ) snake_case__ : Optional[int] = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : Any ): snake_case__ : int = self.get_image_processor() snake_case__ : str = self.get_tokenizer() snake_case__ : Union[str, Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : str = """lower newer""" snake_case__ : Tuple = self.prepare_image_inputs() snake_case__ : Dict = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def _lowercase ( self : List[str] ): snake_case__ : Tuple = self.get_image_processor() snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : Optional[int] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : str = processor.batch_decode(_lowercase ) snake_case__ : Any = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def _lowercase ( self : str ): snake_case__ : Dict = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[Any] = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) snake_case__ : Union[str, Any] = """lower newer""" snake_case__ : Optional[Any] = self.prepare_image_inputs() snake_case__ : Optional[Any] = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
721
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Tuple = SwinvaConfig() snake_case__ : Dict = swinva_name.split("_" ) snake_case__ : Dict = name_split[1] if "to" in name_split[3]: snake_case__ : Optional[int] = int(name_split[3][-3:] ) else: snake_case__ : Optional[Any] = int(name_split[3] ) if "to" in name_split[2]: snake_case__ : Optional[int] = int(name_split[2][-2:] ) else: snake_case__ : Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": snake_case__ : Dict = 96 snake_case__ : List[str] = (2, 2, 6, 2) snake_case__ : List[Any] = (3, 6, 12, 24) elif model_size == "small": snake_case__ : str = 96 snake_case__ : Union[str, Any] = (2, 2, 18, 2) snake_case__ : Optional[Any] = (3, 6, 12, 24) elif model_size == "base": snake_case__ : List[str] = 128 snake_case__ : Union[str, Any] = (2, 2, 18, 2) snake_case__ : Optional[int] = (4, 8, 16, 32) else: snake_case__ : str = 192 snake_case__ : str = (2, 2, 18, 2) snake_case__ : List[Any] = (6, 12, 24, 48) if "to" in swinva_name: snake_case__ : Optional[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): snake_case__ : int = 21841 snake_case__ : int = "huggingface/label-files" snake_case__ : Union[str, Any] = "imagenet-22k-id2label.json" snake_case__ : int = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="dataset" ) , "r" ) ) snake_case__ : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : Union[str, Any] = idalabel snake_case__ : Union[str, Any] = {v: k for k, v in idalabel.items()} else: snake_case__ : List[Any] = 1000 snake_case__ : List[str] = "huggingface/label-files" snake_case__ : List[Any] = "imagenet-1k-id2label.json" snake_case__ : str = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="dataset" ) , "r" ) ) snake_case__ : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : Dict = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} snake_case__ : List[str] = img_size snake_case__ : Any = num_classes snake_case__ : Dict = embed_dim snake_case__ : Union[str, Any] = depths snake_case__ : Optional[Any] = num_heads snake_case__ : Any = window_size return config def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): if "patch_embed.proj" in name: snake_case__ : Optional[int] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: snake_case__ : List[str] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: snake_case__ : Optional[int] = "encoder." + name if "attn.proj" in name: snake_case__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: snake_case__ : Union[str, Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: snake_case__ : str = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: snake_case__ : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: snake_case__ : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: snake_case__ : int = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: snake_case__ : Dict = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: snake_case__ : int = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: snake_case__ : List[str] = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: snake_case__ : int = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": snake_case__ : str = "layernorm.weight" if name == "norm.bias": snake_case__ : str = "layernorm.bias" if "head" in name: snake_case__ : List[str] = name.replace("head" , "classifier" ) else: snake_case__ : List[str] = "swinv2." + name return name def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : List[Any] ): for key in orig_state_dict.copy().keys(): snake_case__ : Optional[Any] = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: snake_case__ : Optional[int] = key.split("." ) snake_case__ : Any = int(key_split[1] ) snake_case__ : Optional[Any] = int(key_split[3] ) snake_case__ : Optional[int] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : int = val[:dim, :] snake_case__ : Dict = val[dim : dim * 2, :] snake_case__ : Optional[int] = val[-dim:, :] else: snake_case__ : Union[str, Any] = val[:dim] snake_case__ : Optional[Any] = val[ dim : dim * 2 ] snake_case__ : Any = val[-dim:] else: snake_case__ : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Tuple ): snake_case__ : Any = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() snake_case__ : int = get_swinva_config(snake_case__ ) snake_case__ : List[Any] = SwinvaForImageClassification(snake_case__ ) model.eval() snake_case__ : Tuple = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) snake_case__ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ : List[Any] = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) snake_case__ : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) snake_case__ : List[Any] = image_processor(images=snake_case__ , return_tensors="pt" ) snake_case__ : List[str] = timm_model(inputs["pixel_values"] ) snake_case__ : Tuple = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __lowerCamelCase : Tuple = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
700
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
0
import unittest from transformers import DonutProcessor __lowerCamelCase : Any = """naver-clova-ix/donut-base""" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : int = DonutProcessor.from_pretrained(__A ) def _lowercase ( self : str ): snake_case__ : Optional[Any] = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } snake_case__ : Any = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) snake_case__ : Any = self.processor.tokenajson(__A ) self.assertDictEqual(__A , __A )
701
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : Any = "cpu" , __A : List[str] = "openai/clip-vit-large-patch14" ): snake_case__ : List[str] = device snake_case__ : List[str] = CLIPTokenizerFast.from_pretrained(__A ) snake_case__ : Optional[Any] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] snake_case__ : Any = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] snake_case__ : Dict = torchvision.transforms.Normalize(self.image_mean , self.image_std ) snake_case__ : Dict = torchvision.transforms.Resize(2_2_4 ) snake_case__ : Tuple = torchvision.transforms.CenterCrop(2_2_4 ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : List[str] = self.resize(__A ) snake_case__ : int = self.center_crop(__A ) snake_case__ : Optional[int] = self.normalize(__A ) return images def __call__( self : str , __A : Union[str, Any]=None , __A : List[Any]=None , **__A : Dict ): snake_case__ : str = self.tokenizer(text=__A , **__A ) snake_case__ : Tuple = self.preprocess_img(__A ) snake_case__ : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __A : List[str]=1_0 , __A : List[str]=0.0_1 , __A : int=None , __A : Tuple=None , __A : Tuple=None , __A : Union[str, Any]=None , __A : str=None , __A : Dict=None , __A : List[Any]=False , __A : Tuple=True , __A : int="image" , __A : List[Any]=True , __A : Tuple=False , __A : Dict=False , __A : List[Any]=False , ): super().__init__() snake_case__ : Union[str, Any] = None snake_case__ : Union[str, Any] = device if device else get_device() if vqgan: snake_case__ : Any = vqgan else: snake_case__ : List[str] = load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: snake_case__ : Optional[Any] = clip else: snake_case__ : int = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) snake_case__ : List[Any] = ProcessorGradientFlow(device=self.device ) snake_case__ : str = iterations snake_case__ : Any = lr snake_case__ : int = log snake_case__ : List[str] = make_grid snake_case__ : List[Any] = return_val snake_case__ : List[Any] = quantize snake_case__ : Union[str, Any] = self.vqgan.decoder.z_shape def _lowercase ( self : Tuple , __A : str=None , __A : Dict=None , __A : str=5 , __A : Dict=True ): snake_case__ : List[str] = [] if output_path is None: snake_case__ : List[Any] = "./animation.gif" if input_path is None: snake_case__ : List[str] = self.save_path snake_case__ : List[Any] = sorted(glob(input_path + "/*" ) ) if not len(__A ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(__A ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) snake_case__ : Dict = total_duration / len(__A ) snake_case__ : Optional[int] = [frame_duration] * len(__A ) if extend_frames: snake_case__ : int = 1.5 snake_case__ : List[Any] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(f'''gif saved to {output_path}''' ) def _lowercase ( self : str , __A : List[str]=None , __A : str=None ): if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError snake_case__ : List[str] = preprocess(Image.open(__A ) , target_image_size=2_5_6 ).to(self.device ) snake_case__ : Optional[Any] = preprocess_vqgan(__A ) snake_case__, *snake_case__ : Optional[Any] = self.vqgan.encode(__A ) return z def _lowercase ( self : Optional[Any] , __A : int ): snake_case__ : Union[str, Any] = self.latent.detach().requires_grad_() snake_case__ : Optional[int] = base_latent + transform_vector if self.quantize: snake_case__, *snake_case__ : Optional[int] = self.vqgan.quantize(__A ) else: snake_case__ : Tuple = trans_latent return self.vqgan.decode(__A ) def _lowercase ( self : List[Any] , __A : List[str] , __A : List[str] , __A : Union[str, Any]=None ): snake_case__ : List[str] = self.clip_preprocessor(text=__A , images=__A , return_tensors="pt" , padding=__A ) snake_case__ : str = self.clip(**__A ) snake_case__ : Any = clip_outputs.logits_per_image if weights is not None: snake_case__ : List[Any] = similarity_logits * weights return similarity_logits.sum() def _lowercase ( self : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] , __A : Any ): snake_case__ : str = self._get_clip_similarity(pos_prompts["prompts"] , __A , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: snake_case__ : Optional[Any] = self._get_clip_similarity(neg_prompts["prompts"] , __A , weights=neg_prompts["weights"] ) else: snake_case__ : Optional[Any] = torch.tensor([1] , device=self.device ) snake_case__ : Dict = -torch.log(__A ) + torch.log(__A ) return loss def _lowercase ( self : List[Any] , __A : Optional[Any] , __A : Union[str, Any] , __A : List[Any] ): snake_case__ : Dict = torch.randn_like(self.latent , requires_grad=__A , device=self.device ) snake_case__ : Dict = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() snake_case__ : Union[str, Any] = self._add_vector(__A ) snake_case__ : Tuple = loop_post_process(__A ) snake_case__ : List[Any] = self._get_CLIP_loss(__A , __A , __A ) print("CLIP loss" , __A ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _lowercase ( self : Tuple , __A : Union[str, Any] , __A : Tuple , __A : Dict ): wandb.init(reinit=__A , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: snake_case__ : Dict = Image.open(__A ) snake_case__ : List[Any] = image.resize((2_5_6, 2_5_6) ) wandb.log("Original Image" , wandb.Image(__A ) ) def _lowercase ( self : int , __A : List[str] ): if not prompts: return [] snake_case__ : Optional[Any] = [] snake_case__ : List[str] = [] if isinstance(__A , __A ): snake_case__ : List[Any] = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(__A , (tuple, list) ): snake_case__ : List[str] = prompt[0] snake_case__ : Optional[Any] = float(prompt[1] ) elif ":" in prompt: snake_case__, snake_case__ : Dict = prompt.split(":" ) snake_case__ : Any = float(__A ) else: snake_case__ : List[Any] = prompt snake_case__ : Optional[int] = 1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def _lowercase ( self : Tuple , __A : int , __A : Tuple=None , __A : Any=None , __A : Optional[Any]=True , __A : List[str]=False , __A : Optional[int]=True , __A : str=True , __A : Union[str, Any]=None , ): if image_path: snake_case__ : str = self._get_latent(__A ) else: snake_case__ : List[str] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." snake_case__ : List[str] = self.process_prompts(__A ) snake_case__ : List[Any] = self.process_prompts(__A ) if save_final and save_path is None: snake_case__ : Any = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: snake_case__ : Dict = save_path + "_" + get_timestamp() os.makedirs(__A ) snake_case__ : Union[str, Any] = save_path snake_case__ : Optional[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(__A ) ) snake_case__ : Dict = loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"Image": wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
702
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("ยก" ) , ord("ยฌ" ) + 1 ) ) + list(range(ord("ยฎ" ) , ord("รฟ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
0
from __future__ import annotations __lowerCamelCase : Optional[Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int , snake_case_ : list[list[int]] , ): snake_case__ : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid snake_case__ : Optional[int] = 1 snake_case__ : Tuple = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid snake_case__ : List[str] = init[0] snake_case__ : Optional[Any] = init[1] snake_case__ : Dict = 0 snake_case__ : Optional[int] = g + heuristic[x][y] # cost from starting cell to destination cell snake_case__ : List[Any] = [[f, g, x, y]] snake_case__ : List[Any] = False # flag that is set when search is complete snake_case__ : Optional[Any] = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case__ : Dict = cell.pop() snake_case__ : Any = next_cell[2] snake_case__ : str = next_cell[3] snake_case__ : str = next_cell[1] if x == goal[0] and y == goal[1]: snake_case__ : Optional[int] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions snake_case__ : List[Any] = x + DIRECTIONS[i][0] snake_case__ : List[Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case__ : Any = g + cost snake_case__ : List[str] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case__ : List[str] = 1 snake_case__ : Optional[int] = i snake_case__ : Tuple = [] snake_case__ : str = goal[0] snake_case__ : int = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case__ : int = x - DIRECTIONS[action[x][y]][0] snake_case__ : Tuple = y - DIRECTIONS[action[x][y]][1] snake_case__ : List[Any] = xa snake_case__ : Optional[int] = ya invpath.append([x, y] ) snake_case__ : Tuple = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __lowerCamelCase : int = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __lowerCamelCase : List[str] = [0, 0] # all coordinates are given in format [y,x] __lowerCamelCase : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1] __lowerCamelCase : Optional[Any] = 1 # the cost map which pushes the path closer to the goal __lowerCamelCase : List[str] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __lowerCamelCase : Optional[int] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __lowerCamelCase : str = 99 __lowerCamelCase : Optional[int] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
703
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
0
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict=None , **snake_case_ : Any ): snake_case__ : int = [x.strip() for x in open(snake_case_ ).readlines()] snake_case__ : Tuple = [x.strip() for x in open(snake_case_ ).readlines()][: len(snake_case_ )] snake_case__ : Tuple = calculate_rouge(snake_case_ , snake_case_ , **snake_case_ ) if save_path is not None: save_json(snake_case_ , snake_case_ , indent=snake_case_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
704
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __a , unittest.TestCase ): """simple docstring""" a_ = LongformerTokenizer a_ = True a_ = LongformerTokenizerFast a_ = True def _lowercase ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : List[str] = dict(zip(a_ , range(len(a_ ) ) ) ) snake_case__ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Any = {"""unk_token""": """<unk>"""} snake_case__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def _lowercase ( self : Union[str, Any] , **__A : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def _lowercase ( self : str , **__A : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def _lowercase ( self : Tuple , __A : Tuple ): snake_case__ : int = """lower newer""" snake_case__ : Optional[int] = """lower newer""" return input_text, output_text def _lowercase ( self : Optional[int] ): snake_case__ : Any = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : int = """lower newer""" snake_case__ : Union[str, Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case__ : int = tokenizer.tokenize(a_ ) # , add_prefix_space=True) self.assertListEqual(a_ , a_ ) snake_case__ : Any = tokens + [tokenizer.unk_token] snake_case__ : str = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def _lowercase ( self : List[Any] ): snake_case__ : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=a_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cรฉcรฉ herlolip 418" , add_special_tokens=a_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def _lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) snake_case__ : Union[str, Any] = tokenizer.encode("sequence builders" , add_special_tokens=a_ ) snake_case__ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=a_ ) snake_case__ : Tuple = tokenizer.encode( "sequence builders" , add_special_tokens=a_ , add_prefix_space=a_ ) snake_case__ : Optional[Any] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=a_ , add_prefix_space=a_ ) snake_case__ : List[str] = tokenizer.build_inputs_with_special_tokens(a_ ) snake_case__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowercase ( self : str ): snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : Dict = """Encode this sequence.""" snake_case__ : Optional[Any] = tokenizer.byte_encoder[""" """.encode("utf-8" )[0]] # Testing encoder arguments snake_case__ : Union[str, Any] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a_ , a_ ) snake_case__ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a_ , a_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) snake_case__ : Union[str, Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a_ , a_ ) # Testing spaces after special tokens snake_case__ : List[str] = """<mask>""" tokenizer.add_special_tokens( {"mask_token": AddedToken(a_ , lstrip=a_ , rstrip=a_ )} ) # mask token has a left space snake_case__ : str = tokenizer.convert_tokens_to_ids(a_ ) snake_case__ : int = """Encode <mask> sequence""" snake_case__ : Tuple = """Encode <mask>sequence""" snake_case__ : List[str] = tokenizer.encode(a_ ) snake_case__ : Optional[int] = encoded.index(a_ ) snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a_ , a_ ) snake_case__ : Union[str, Any] = tokenizer.encode(a_ ) snake_case__ : Optional[int] = encoded.index(a_ ) snake_case__ : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a_ , a_ ) def _lowercase ( self : Tuple ): pass def _lowercase ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : str = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(a_ , **a_ ) snake_case__ : List[str] = """A, <mask> AllenNLP sentence.""" snake_case__ : Tuple = tokenizer_r.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) snake_case__ : Optional[int] = tokenizer_p.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) snake_case__ : int = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) snake_case__ : int = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( a_ , ["<s>", "A", ",", "<mask>", "ฤ Allen", "N", "LP", "ฤ sentence", ".", "</s>"] ) self.assertSequenceEqual( a_ , ["<s>", "A", ",", "<mask>", "ฤ Allen", "N", "LP", "ฤ sentence", ".", "</s>"] ) def _lowercase ( self : List[str] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case__ : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , a_ ) self.assertEqual(post_processor_state["add_prefix_space"] , a_ ) self.assertEqual(post_processor_state["trim_offsets"] , a_ ) def _lowercase ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : Optional[int] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ : int = f'''{text_of_1_token} {text_of_1_token}''' snake_case__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : Dict = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : str = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : Dict = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : Union[str, Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) snake_case__ : Tuple = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : Union[str, Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : Any = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , ) snake_case__ : List[str] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) snake_case__ : Optional[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , )
705
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowerCamelCase : List[str] = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) a_ = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) a_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowercase ( self : List[str] ): snake_case__ : List[Any] = self.task_name.lower() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "train" a_ = "dev" a_ = "test" class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 4_2 a_ = 4_2 a_ = 4_2 def __init__( self : str , __A : List[Any] , __A : Tuple , __A : List[str] = None , __A : List[Any] = Split.train , __A : List[Any] = None , ): warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the ๐Ÿค— Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , __lowerCAmelCase , ) snake_case__ : Dict = args snake_case__ : List[Any] = glue_processors[args.task_name]() snake_case__ : Optional[Any] = glue_output_modes[args.task_name] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: snake_case__ : List[Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file snake_case__ : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) snake_case__ : List[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case__, snake_case__ : Optional[Any] = label_list[2], label_list[1] snake_case__ : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case__ : List[Any] = cached_features_file + ".lock" with FileLock(__lowerCAmelCase ): if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: snake_case__ : Union[str, Any] = time.time() snake_case__ : List[Any] = torch.load(__lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: snake_case__ : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: snake_case__ : Optional[int] = self.processor.get_test_examples(args.data_dir ) else: snake_case__ : Optional[int] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: snake_case__ : Union[str, Any] = examples[:limit_length] snake_case__ : Any = glue_convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , max_length=args.max_seq_length , label_list=__lowerCAmelCase , output_mode=self.output_mode , ) snake_case__ : str = time.time() torch.save(self.features , __lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : List[str] ): return len(self.features ) def __getitem__( self : Any , __A : List[str] ): return self.features[i] def _lowercase ( self : Any ): return self.label_list
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __A : Optional[Any] , __A : int=7 , __A : Any=3 , __A : Tuple=1_8 , __A : List[Any]=3_0 , __A : Union[str, Any]=4_0_0 , __A : Tuple=True , __A : int=None , __A : List[Any]=True , ): snake_case__ : List[str] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : Any = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Tuple = num_channels snake_case__ : int = image_size snake_case__ : Optional[Any] = min_resolution snake_case__ : int = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Tuple = size snake_case__ : Union[str, Any] = do_normalize def _lowercase ( self : Union[str, Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" a_ = ImageGPTImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : List[str] = ImageGPTImageProcessingTester(self ) @property def _lowercase ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : List[Any] ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , "clusters" ) ) self.assertTrue(hasattr(lowercase_ , "do_resize" ) ) self.assertTrue(hasattr(lowercase_ , "size" ) ) self.assertTrue(hasattr(lowercase_ , "do_normalize" ) ) def _lowercase ( self : int ): snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) snake_case__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def _lowercase ( self : Tuple ): snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) snake_case__ : str = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[Any] = os.path.join(lowercase_ , "image_processor.json" ) image_processor_first.to_json_file(lowercase_ ) snake_case__ : Optional[int] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() snake_case__ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def _lowercase ( self : Dict ): snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) snake_case__ : Union[str, Any] = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() snake_case__ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def _lowercase ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( ): snake_case__ : int = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) snake_case__ : Union[str, Any] = Image.open(dataset[4]["file"] ) snake_case__ : Optional[Any] = Image.open(dataset[5]["file"] ) snake_case__ : Optional[Any] = [imagea, imagea] return images @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : List[str] ): snake_case__ : Union[str, Any] = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) snake_case__ : Tuple = prepare_images() # test non-batched snake_case__ : Optional[Any] = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) snake_case__ : Union[str, Any] = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched snake_case__ : int = image_processing(lowercase_ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) snake_case__ : Dict = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
707
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
0
def SCREAMING_SNAKE_CASE ( snake_case_ : int = 10 , snake_case_ : int = 1000 , snake_case_ : bool = True ): assert ( isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int ): return int((number_a + number_a) / 2 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ): assert ( isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(snake_case_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) snake_case__ : Optional[Any] = lower snake_case__ : List[Any] = higher snake_case__ : Tuple = [] while True: snake_case__ : List[Any] = get_avg(_lowercase , _lowercase ) last_numbers.append(_lowercase ) if answer(_lowercase ) == "low": snake_case__ : Optional[int] = number elif answer(_lowercase ) == "high": snake_case__ : Tuple = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = int(input("Enter lower value : " ).strip() ) snake_case__ : Dict = int(input("Enter high value : " ).strip() ) snake_case__ : Optional[int] = int(input("Enter value to guess : " ).strip() ) guess_the_number(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": main()
708
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : str ): snake_case__ : Dict = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) snake_case__ : List[str] = AutoTokenizer.from_pretrained("xlm-roberta-base" ) snake_case__ : Dict = "The dog is cute and lives in the garden house" snake_case__ : List[str] = jnp.array([tokenizer.encode(__lowerCAmelCase )] ) snake_case__ : Any = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim snake_case__ : int = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) snake_case__ : List[Any] = model(__lowerCAmelCase )["last_hidden_state"] self.assertEqual(output.shape , __lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __lowerCAmelCase , atol=1e-3 ) )
709
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de dรฉbat sur le renseignement", "Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.", "Lorsque Franรงois Hollande tรฉlรฉphone ร  Barack Obama ou quand le ministre des affaires รฉtrangรจres Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils rรฉagissent ร  une vraie dรฉcouverte, qui est celle de" " l'ampleur de la surveillance amรฉricaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When Franรงois Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): """simple docstring""" def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = tempfile.mkdtemp() snake_case__ : int = 8 # DPR tok snake_case__ : Union[str, Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case__ : str = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) snake_case__ : Any = os.path.join(UpperCAmelCase_ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok snake_case__ : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case__ : Optional[int] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) snake_case__ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case__ : List[str] = {"unk_token": "<unk>"} snake_case__ : List[str] = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) snake_case__ : str = os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : int = os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase_ ) ) def _lowercase ( self : str ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _lowercase ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _lowercase ( self : List[str] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def _lowercase ( self : str ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowercase ( self : Union[str, Any] ): snake_case__ : List[str] = self.get_dummy_dataset() snake_case__ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case__ : Any = dataset snake_case__ : str = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowercase ( self : str , __A : List[str] ): snake_case__ : Dict = self.get_dummy_dataset() snake_case__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: snake_case__ : List[str] = os.path.join(self.tmpdirname , "dataset" ) snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset snake_case__ : Union[str, Any] = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case__ : str = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_ ) , ) return retriever def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case__ : List[Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) snake_case__ : List[Any] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) snake_case__ : Union[str, Any] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(UpperCAmelCase_ , open(UpperCAmelCase_ , "wb" ) ) snake_case__ : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) snake_case__ : Union[str, Any] = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowercase ( self : Optional[int] ): snake_case__ : List[Any] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Any = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case__ : str = self.get_dummy_dataset() retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : List[str] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : Dict ): snake_case__ : str = 1 snake_case__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) snake_case__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Union[str, Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Dict ): snake_case__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : Union[str, Any] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Any = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = 1 snake_case__ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) snake_case__ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Optional[Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : Optional[int] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : Optional[Any] ): snake_case__ : Tuple = 1 snake_case__ : Optional[Any] = self.get_dummy_legacy_index_retriever() snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Optional[int] = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : List[str] ): snake_case__ : Any = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : List[Any] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Optional[Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self : Union[str, Any] ): import torch snake_case__ : List[str] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : List[Any] = [[5, 7], [1_0, 1_1]] snake_case__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Dict = retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ ) snake_case__, snake_case__, snake_case__ : str = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) snake_case__ : str = retriever( UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ , return_tensors="pt" , ) snake_case__, snake_case__, snake_case__, snake_case__ : Dict = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self : List[Any] ): snake_case__ : Tuple = self.get_dpr_ctx_encoder_tokenizer() snake_case__ : Tuple = 1 snake_case__ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) retriever.set_ctx_encoder_tokenizer(UpperCAmelCase_ ) snake_case__ : Optional[Any] = [[5, 7], [1_0, 1_1]] snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Union[str, Any] = retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ ) self.assertEqual( len(UpperCAmelCase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , UpperCAmelCase_ ) # check for doc token related keys in dictionary.
710
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = 4_2 # [batch_size x 3] a_ = 4_2 # [batch_size x 3] a_ = 4_2 # [batch_size x 3] a_ = 4_2 # [batch_size x 3] a_ = 4_2 a_ = 4_2 a_ = 4_2 a_ = 4_2 a_ = 4_2 def _lowercase ( self : List[Any] ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowercase ( self : str ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowercase ( self : List[Any] ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowercase ( self : str ): snake_case__ : List[str] = torch.arange(self.height * self.width ) snake_case__ : List[str] = torch.stack( [ pixel_indices % self.width, torch.div(UpperCamelCase__ , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def _lowercase ( self : List[Any] ): snake_case__ : List[Any] = self.shape snake_case__ : List[str] = int(np.prod(UpperCamelCase__ ) ) snake_case__ : Union[str, Any] = self.get_image_coords() snake_case__ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) snake_case__ : List[str] = self.get_camera_rays(UpperCamelCase__ ) snake_case__ : str = rays.view(UpperCamelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowercase ( self : Dict , __A : torch.Tensor ): snake_case__ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] snake_case__ : Union[str, Any] = coords.view(UpperCamelCase__ , -1 , 2 ) snake_case__ : Any = self.resolution() snake_case__ : str = self.fov() snake_case__ : str = (flat.float() / (res - 1)) * 2 - 1 snake_case__ : List[str] = fracs * torch.tan(fov / 2 ) snake_case__ : int = fracs.view(UpperCamelCase__ , -1 , 2 ) snake_case__ : Optional[Any] = ( self.z.view(UpperCamelCase__ , 1 , 3 ) + self.x.view(UpperCamelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCamelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) snake_case__ : Tuple = directions / directions.norm(dim=-1 , keepdim=UpperCamelCase__ ) snake_case__ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCamelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCamelCase__ , *UpperCamelCase__ , 2 , 3 ) def _lowercase ( self : Union[str, Any] , __A : int , __A : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCamelCase__ , height=UpperCamelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): snake_case__ : Tuple = [] snake_case__ : Dict = [] snake_case__ : List[str] = [] snake_case__ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): snake_case__ : int = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) snake_case__ : Tuple = -z * 4 snake_case__ : Optional[int] = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) snake_case__ : Tuple = np.cross(_lowercase , _lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , width=_lowercase , height=_lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_lowercase )) , )
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase : str = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : Tuple , __A : Optional[int]=7 , __A : int=3 , __A : List[str]=1_8 , __A : Dict=3_0 , __A : int=4_0_0 , __A : int=True , __A : str=None , __A : Optional[Any]=True , ): snake_case__ : Optional[Any] = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : Optional[int] = parent snake_case__ : List[Any] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Tuple = image_size snake_case__ : Optional[int] = min_resolution snake_case__ : int = max_resolution snake_case__ : Optional[Any] = do_resize snake_case__ : str = size snake_case__ : Any = apply_ocr def _lowercase ( self : List[Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" a_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowercase ( self : str ): snake_case__ : Tuple = LayoutLMvaImageProcessingTester(self ) @property def _lowercase ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Union[str, Any] ): snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) self.assertTrue(hasattr(__A , "apply_ocr" ) ) def _lowercase ( self : Optional[int] ): snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : Tuple ): snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , __A ) self.assertIsInstance(encoding.boxes , __A ) # Test batched snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case__ : List[str] = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case__ : Any = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _lowercase ( self : int ): snake_case__ : str = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case__ : Any = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) snake_case__ : Union[str, Any] = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case__ : Union[str, Any] = image_processing(__A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case__ : List[str] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """โ€œIntroductory""", """Remarksโ€""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case__ : Dict = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __A ) self.assertListEqual(encoding.boxes , __A ) # with apply_OCR = False snake_case__ : Tuple = LayoutLMvaImageProcessor(apply_ocr=__A ) snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
713
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : Tuple , __A : Tuple=None , __A : str=None , __A : List[str]=None , __A : Dict="resnet50" , __A : Tuple=3 , __A : Optional[int]=3_2 , __A : List[str]=3 , __A : Dict=True , __A : List[str]=True , ): snake_case__ : List[Any] = parent snake_case__ : Any = out_indices if out_indices is not None else [4] snake_case__ : Union[str, Any] = stage_names snake_case__ : Dict = out_features snake_case__ : Optional[Any] = backbone snake_case__ : Optional[Any] = batch_size snake_case__ : Tuple = image_size snake_case__ : int = num_channels snake_case__ : Tuple = use_pretrained_backbone snake_case__ : Dict = is_training def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Tuple = self.get_config() return config, pixel_values def _lowercase ( self : int ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _lowercase ( self : str , __A : Dict , __A : Tuple ): snake_case__ : Optional[Any] = TimmBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): snake_case__ : Optional[Any] = model(__lowercase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__, snake_case__ : str = config_and_inputs snake_case__ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : List[Any] ): snake_case__ : Dict = TimmBackboneModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def _lowercase ( self : Union[str, Any] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Optional[int] ): snake_case__ : Union[str, Any] = "resnet18" snake_case__ : Any = "microsoft/resnet-18" snake_case__ : List[str] = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase ) snake_case__ : List[str] = AutoBackbone.from_pretrained(__lowercase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) snake_case__ : str = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase , out_indices=[1, 2, 3] ) snake_case__ : Union[str, Any] = AutoBackbone.from_pretrained(__lowercase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def _lowercase ( self : Optional[Any] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def _lowercase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def _lowercase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _lowercase ( self : Optional[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _lowercase ( self : Dict ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def _lowercase ( self : Optional[int] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _lowercase ( self : Dict ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _lowercase ( self : Union[str, Any] ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _lowercase ( self : List[Any] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _lowercase ( self : str ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _lowercase ( self : List[str] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def _lowercase ( self : Any ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def _lowercase ( self : Dict ): pass @unittest.skip("Safetensors is not supported by timm." ) def _lowercase ( self : Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self : Dict ): pass def _lowercase ( self : Tuple ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(__lowercase ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowercase ) def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = True snake_case__ : str = self.has_attentions # no need to test all models as different heads yield the same functionality snake_case__ : Any = self.all_model_classes[0] snake_case__ : Optional[Any] = model_class(__lowercase ) model.to(__lowercase ) snake_case__ : Optional[Any] = self._prepare_for_class(__lowercase , __lowercase ) snake_case__ : Optional[Any] = model(**__lowercase ) snake_case__ : Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models snake_case__ : List[str] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: snake_case__ : List[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__lowercase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : int = model_class(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Tuple = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None snake_case__ : List[str] = copy.deepcopy(__lowercase ) snake_case__ : Union[str, Any] = None snake_case__ : Union[str, Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : List[Any] = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights snake_case__ : Union[str, Any] = copy.deepcopy(__lowercase ) snake_case__ : Any = False snake_case__ : Union[str, Any] = model_class(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : int = model(**__lowercase )
714
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"โ€œ%โ€˜โ€๏ฟฝโ€”โ€™โ€ฆโ€“]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with ๐Ÿค— Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with ๐Ÿค— Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : Any = 16 __lowerCamelCase : str = 32 def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : List[str] = 16 ): snake_case__ : int = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case__ : Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(snake_case_ : List[str] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Any = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Dict = 16 elif accelerator.mixed_precision != "no": snake_case__ : List[Any] = 8 else: snake_case__ : Any = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. snake_case__ : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) snake_case__ : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase : str = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Optional[Any] ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": snake_case__ : List[Any] = 2 # Initialize accelerator snake_case__ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Tuple = config["lr"] snake_case__ : Optional[int] = int(config["num_epochs"] ) snake_case__ : Any = int(config["seed"] ) snake_case__ : Dict = int(config["batch_size"] ) snake_case__ : Tuple = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation snake_case__ : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : int = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) snake_case__ : Optional[Any] = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : List[str] = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler snake_case__ : Any = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ : Optional[Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : Any = model(**_lowerCAmelCase ) snake_case__ : Optional[Any] = outputs.loss snake_case__ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() snake_case__ : List[str] = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : str = model(**_lowerCAmelCase ) snake_case__ : List[str] = outputs.logits.argmax(dim=-1 ) snake_case__ : Union[str, Any] = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_lowerCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples snake_case__ : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ : Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) snake_case__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) snake_case__ : Dict = parser.parse_args() snake_case__ : Any = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
715
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __lowerCamelCase : List[str] = logging.getLogger(__name__) __lowerCamelCase : str = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __lowerCamelCase : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default=UpperCamelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) a_ = field( default=UpperCamelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase__ )} , ) a_ = field( default=UpperCamelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) a_ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a_ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a_ = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a_ = field( default=UpperCamelCase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a_ = field( default=UpperCamelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def _lowercase ( self : Any ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( default=UpperCamelCase__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) a_ = field( default=UpperCamelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a_ = field(default=UpperCamelCase__ , metadata={"help": "The input training data file (a text file)."} ) a_ = field( default=UpperCamelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a_ = field( default=UpperCamelCase__ , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) a_ = field( default=UpperCamelCase__ , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) a_ = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a_ = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) a_ = field( default=UpperCamelCase__ , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) a_ = field( default=UpperCamelCase__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) a_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a_ = field( default=UpperCamelCase__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def _lowercase ( self : List[Any] ): if self.train_file is not None: snake_case__ : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case__ : Tuple = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : str ): with open(snake_case_ , "r" , encoding="utf-8" ) as f: snake_case__ : List[Any] = [json.loads(snake_case_ ) for line in f.read().splitlines() if (len(snake_case_ ) > 0 and not line.isspace())] assert len(snake_case_ ) == len(snake_case_ ) snake_case__ : List[Any] = {c: dataset[c] for c in dataset.column_names} snake_case__ : int = refs return Dataset.from_dict(snake_case_ ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__, snake_case__, snake_case__ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__, snake_case__, snake_case__ : Optional[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case__ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case__ : Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case__ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , ) snake_case__ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , ) else: snake_case__ : List[str] = {} if data_args.train_file is not None: snake_case__ : Any = data_args.train_file if data_args.validation_file is not None: snake_case__ : List[str] = data_args.validation_file snake_case__ : Union[str, Any] = data_args.train_file.split("." )[-1] if extension == "txt": snake_case__ : List[Any] = "text" snake_case__ : Any = load_dataset(snake_case_ , data_files=snake_case_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Optional[Any] = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.config_name , **snake_case_ ) elif model_args.model_name_or_path: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: snake_case__ : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) snake_case__ : int = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case__ : Tuple = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **snake_case_ ) elif model_args.model_name_or_path: snake_case__ : str = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: snake_case__ : int = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) snake_case__ : Optional[Any] = AutoModelForMaskedLM.from_config(snake_case_ ) model.resize_token_embeddings(len(snake_case_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case__ : Optional[int] = datasets["train"].column_names else: snake_case__ : Tuple = datasets["validation"].column_names snake_case__ : Optional[Any] = "text" if "text" in column_names else column_names[0] snake_case__ : Dict = "max_length" if data_args.pad_to_max_length else False def tokenize_function(snake_case_ : str ): # Remove empty lines snake_case__ : Optional[Any] = [line for line in examples["text"] if len(snake_case_ ) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=snake_case_ , truncation=snake_case_ , max_length=data_args.max_seq_length ) snake_case__ : Any = datasets.map( snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case__ : List[Any] = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case__ : List[Any] = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case__ : int = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case__ : Tuple = False # Data collator # This one will take care of randomly masking the tokens. snake_case__ : Any = DataCollatorForWholeWordMask(tokenizer=snake_case_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case__ : Union[str, Any] = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case__ : Optional[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case__ : str = model_args.model_name_or_path else: snake_case__ : Union[str, Any] = None snake_case__ : Tuple = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case__ : Any = os.path.join(training_args.output_dir , "train_results.txt" ) if trainer.is_world_process_zero(): with open(snake_case_ , "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # Evaluation snake_case__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case__ : Optional[Any] = trainer.evaluate() snake_case__ : Any = math.exp(eval_output["eval_loss"] ) snake_case__ : Dict = perplexity snake_case__ : Tuple = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(snake_case_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): main() if __name__ == "__main__": main()
716
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
0
from __future__ import annotations from typing import Generic, TypeVar __lowerCamelCase : int = TypeVar("""T""") class SCREAMING_SNAKE_CASE__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] , __A : T ): snake_case__ : int = data snake_case__ : str = self snake_case__ : str = 0 class SCREAMING_SNAKE_CASE__ ( Generic[T] ): """simple docstring""" def __init__( self : Any ): snake_case__ : dict[T, DisjointSetTreeNode[T]] = {} def _lowercase ( self : Union[str, Any] , __A : T ): snake_case__ : List[Any] = DisjointSetTreeNode(lowerCamelCase__ ) def _lowercase ( self : int , __A : T ): snake_case__ : Any = self.map[data] if elem_ref != elem_ref.parent: snake_case__ : List[str] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _lowercase ( self : List[str] , __A : DisjointSetTreeNode[T] , __A : DisjointSetTreeNode[T] ): if nodea.rank > nodea.rank: snake_case__ : Dict = nodea else: snake_case__ : Union[str, Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _lowercase ( self : Optional[Any] , __A : T , __A : T ): self.link(self.find_set(lowerCamelCase__ ) , self.find_set(lowerCamelCase__ ) ) class SCREAMING_SNAKE_CASE__ ( Generic[T] ): """simple docstring""" def __init__( self : int ): snake_case__ : dict[T, dict[T, int]] = {} def _lowercase ( self : Union[str, Any] , __A : T ): if node not in self.connections: snake_case__ : List[str] = {} def _lowercase ( self : List[str] , __A : T , __A : T , __A : int ): self.add_node(lowerCamelCase__ ) self.add_node(lowerCamelCase__ ) snake_case__ : Dict = weight snake_case__ : str = weight def _lowercase ( self : List[Any] ): snake_case__ : str = [] snake_case__ : Any = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __A : x[2] ) # creating the disjoint set snake_case__ : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowerCamelCase__ ) # MST generation snake_case__ : List[Any] = 0 snake_case__ : Tuple = 0 snake_case__ : str = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case__ : Union[str, Any] = edges[index] index += 1 snake_case__ : Union[str, Any] = disjoint_set.find_set(lowerCamelCase__ ) snake_case__ : int = disjoint_set.find_set(lowerCamelCase__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) disjoint_set.union(lowerCamelCase__ , lowerCamelCase__ ) return graph
717
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
0
import os from math import logaa def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] = "base_exp.txt" ): snake_case__ : Tuple = 0 snake_case__ : str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): snake_case__, snake_case__ : Tuple = list(map(lowercase__ , line.split("," ) ) ) if x * logaa(lowercase__ ) > largest: snake_case__ : int = x * logaa(lowercase__ ) snake_case__ : Union[str, Any] = i + 1 return result if __name__ == "__main__": print(solution())
718
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
0
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __lowerCamelCase : str = 5_0003 __lowerCamelCase : int = 5_0002 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( __lowercase , unittest.TestCase ): """simple docstring""" a_ = PLBartTokenizer a_ = None a_ = False def _lowercase ( self : int ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : List[Any] = PLBartTokenizer(__a , language_codes="base" , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : int ): snake_case__ : Optional[Any] = PLBartTokenizer(__a , language_codes="base" , keep_accents=__a ) snake_case__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["โ–This", "โ–is", "โ–a", "โ–t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsรฉ." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "รฉ", ".", ] , ) snake_case__ : str = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case__ : Dict = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) snake_case__ : List[Any] = tokenizer.vocab_size snake_case__ : str = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 4 , __a )] self.assertListEqual(__a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) snake_case__ : Optional[Any] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" snake_case__ : Optional[int] = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) def _lowercase ( self : Optional[int] ): snake_case__ : Optional[Any] = PLBartTokenizer(__a , language_codes="multi" , keep_accents=__a ) snake_case__ : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["โ–This", "โ–is", "โ–a", "โ–t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : int = tokenizer.tokenize("I was born in 92000, and this is falsรฉ." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "รฉ", ".", ] , ) snake_case__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case__ : str = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) snake_case__ : Tuple = tokenizer.vocab_size snake_case__ : int = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 7 , __a )] self.assertListEqual( __a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) snake_case__ : Tuple = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" snake_case__ : List[Any] = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = '''uclanlp/plbart-python-en_XX''' a_ = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] a_ = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] a_ = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _lowercase ( cls : Any ): snake_case__ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) snake_case__ : int = 1 return cls def _lowercase ( self : Tuple ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def _lowercase ( self : List[str] ): snake_case__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def _lowercase ( self : Optional[int] ): self.assertIn(__a , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] snake_case__ : int = self.tokenizer.decode(__a , skip_special_tokens=__a ) snake_case__ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def _lowercase ( self : Union[str, Any] ): snake_case__ : List[Any] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 2_0] self.assertIsInstance(src_text[0] , __a ) snake_case__ : Dict = 1_0 snake_case__ : str = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __a ) self.assertEqual(len(__a ) , __a ) def _lowercase ( self : Optional[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def _lowercase ( self : int ): snake_case__ : Optional[Any] = tempfile.mkdtemp() snake_case__ : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) snake_case__ : str = PLBartTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="pt" ) snake_case__ : int = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) snake_case__ : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) snake_case__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _lowercase ( self : Optional[int] ): snake_case__ : Dict = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="pt" ) snake_case__ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=1_0 , return_tensors="pt" ) snake_case__ : Optional[int] = targets["""input_ids"""] snake_case__ : int = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _lowercase ( self : List[Any] ): snake_case__ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
719
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
import functools def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): snake_case__ : Any = len(_UpperCamelCase ) snake_case__ : Any = len(_UpperCamelCase ) @functools.cache def min_distance(snake_case_ : int , snake_case_ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case__ : str = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _UpperCamelCase ) , 1 + min_distance(_UpperCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
720
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullbackโ€“Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
0
import functools def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ): # Validation if not isinstance(snake_case_ , snake_case_ ) or not all(isinstance(snake_case_ , snake_case_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(snake_case_ ) != 3 or not all(isinstance(snake_case_ , snake_case_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(snake_case_ ) == 0: return 0 if min(snake_case_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(snake_case_ ) >= 366: raise ValueError("All days elements should be less than 366" ) snake_case__ : List[Any] = set(snake_case_ ) @functools.cache def dynamic_programming(snake_case_ : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
721
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : str = torch.device("""cpu""") def SCREAMING_SNAKE_CASE ( ): snake_case__ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ : Optional[int] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : str ): snake_case__ : Any = dct.pop(_SCREAMING_SNAKE_CASE ) snake_case__ : Dict = val def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): snake_case__ : int = [] for k in state_dict.keys(): snake_case__ : Dict = k if ".pwconv" in k: snake_case__ : Union[str, Any] = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: snake_case__ : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: snake_case__ : Union[str, Any] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: snake_case__ : Union[str, Any] = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: snake_case__ : Any = k_new.split("." ) if ls[2].isdigit(): snake_case__ : List[str] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: snake_case__ : List[Any] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : int , snake_case_ : List[str] ): snake_case__ : int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Optional[Any] = 1000 snake_case__ : Optional[Any] = "huggingface/label-files" snake_case__ : int = "imagenet-1k-id2label.json" snake_case__ : List[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) snake_case__ : int = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case__ : Dict = idalabel snake_case__ : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case__ : List[str] = [3, 3, 6, 4] snake_case__ : Optional[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": snake_case__ : Union[str, Any] = [3, 3, 9, 6] snake_case__ : Any = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": snake_case__ : Optional[Any] = [4, 3, 10, 5] snake_case__ : Any = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": snake_case__ : str = [4, 4, 12, 6] snake_case__ : str = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): snake_case__ : Tuple = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" , check_hash=_SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) snake_case__ : List[str] = checkpoint snake_case__ : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model snake_case__ : str = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs snake_case__ : Optional[Any] = prepare_img() snake_case__ : List[Any] = ViTImageProcessor.from_pretrained("preprocessor_config" ) snake_case__ : List[str] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # compare outputs from both models snake_case__ : Dict = get_expected_output(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __lowerCamelCase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
700
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __lowerCamelCase : List[Any] = _symbol_database.Default() __lowerCamelCase : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) __lowerCamelCase : Any = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : Optional[Any] = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __lowerCamelCase : str = 45 __lowerCamelCase : Optional[Any] = 1581 __lowerCamelCase : List[str] = 1517 __lowerCamelCase : Dict = 1570 __lowerCamelCase : List[str] = 1584 __lowerCamelCase : Any = 1793 __lowerCamelCase : Dict = 1795 __lowerCamelCase : Tuple = 1916 __lowerCamelCase : List[Any] = 1864 __lowerCamelCase : Tuple = 1905 __lowerCamelCase : Optional[int] = 1919 __lowerCamelCase : Optional[int] = 2429 __lowerCamelCase : Any = 2208 __lowerCamelCase : int = 2418 __lowerCamelCase : Union[str, Any] = 2323 __lowerCamelCase : Any = 2407 # @@protoc_insertion_point(module_scope)
702
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("ยก" ) , ord("ยฌ" ) + 1 ) ) + list(range(ord("ยฎ" ) , ord("รฟ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , __A : Tuple ): snake_case__ : Any = data snake_case__ : Node | None = None class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple ): snake_case__ : Union[str, Any] = None snake_case__ : int = None def __iter__( self : List[Any] ): snake_case__ : Tuple = self.head while self.head: yield node.data snake_case__ : Union[str, Any] = node.next if node == self.head: break def __len__( self : Union[str, Any] ): return sum(1 for _ in self ) def __repr__( self : Optional[int] ): return "->".join(str(lowercase__ ) for item in iter(self ) ) def _lowercase ( self : List[Any] , __A : Optional[int] ): self.insert_nth(len(self ) , lowercase__ ) def _lowercase ( self : Union[str, Any] , __A : Dict ): self.insert_nth(0 , lowercase__ ) def _lowercase ( self : List[Any] , __A : List[Any] , __A : Tuple ): if index < 0 or index > len(self ): raise IndexError("list index out of range." ) snake_case__ : Union[str, Any] = Node(lowercase__ ) if self.head is None: snake_case__ : List[Any] = new_node # first node points itself snake_case__ : Union[str, Any] = new_node elif index == 0: # insert at head snake_case__ : int = self.head snake_case__ : str = new_node else: snake_case__ : Any = self.head for _ in range(index - 1 ): snake_case__ : Union[str, Any] = temp.next snake_case__ : Dict = temp.next snake_case__ : List[str] = new_node if index == len(self ) - 1: # insert at tail snake_case__ : Tuple = new_node def _lowercase ( self : Optional[Any] ): return self.delete_nth(0 ) def _lowercase ( self : Union[str, Any] ): return self.delete_nth(len(self ) - 1 ) def _lowercase ( self : Optional[int] , __A : str = 0 ): if not 0 <= index < len(self ): raise IndexError("list index out of range." ) snake_case__ : Union[str, Any] = self.head if self.head == self.tail: # just one node snake_case__ : Tuple = None elif index == 0: # delete head node snake_case__ : List[str] = self.tail.next.next snake_case__ : Optional[Any] = self.head.next else: snake_case__ : Union[str, Any] = self.head for _ in range(index - 1 ): snake_case__ : Tuple = temp.next snake_case__ : str = temp.next snake_case__ : Optional[Any] = temp.next.next if index == len(self ) - 1: # delete at tail snake_case__ : List[str] = temp return delete_node.data def _lowercase ( self : Dict ): return len(self ) == 0 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[Any] = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE__ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE__ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
703
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ = 1 @register_to_config def __init__( self : str , __A : Dict=2_0_0_0 , __A : Union[str, Any]=0.1 , __A : Union[str, Any]=2_0 , __A : Optional[int]=1e-3 ): snake_case__ : Any = None snake_case__ : Union[str, Any] = None snake_case__ : Optional[Any] = None def _lowercase ( self : Optional[Any] , __A : Optional[Any] , __A : Union[str, torch.device] = None ): snake_case__ : List[Any] = torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def _lowercase ( self : Any , __A : str , __A : Any , __A : Dict , __A : int=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case__ : Any = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case__ : str = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case__ : Optional[Any] = std.flatten() while len(std.shape ) < len(score.shape ): snake_case__ : Any = std.unsqueeze(-1 ) snake_case__ : Optional[int] = -score / std # compute snake_case__ : List[str] = -1.0 / len(self.timesteps ) snake_case__ : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case__ : int = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case__ : Any = beta_t.unsqueeze(-1 ) snake_case__ : List[Any] = -0.5 * beta_t * x snake_case__ : List[Any] = torch.sqrt(__snake_case ) snake_case__ : Union[str, Any] = drift - diffusion**2 * score snake_case__ : Optional[int] = x + drift * dt # add noise snake_case__ : Tuple = randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) snake_case__ : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ): return self.config.num_train_timesteps
704
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") __lowerCamelCase : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") __lowerCamelCase : Union[str, Any] = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = CamembertTokenizer a_ = CamembertTokenizerFast a_ = True a_ = True def _lowercase ( self : Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Optional[Any] = CamembertTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Dict ): snake_case__ : Union[str, Any] = "<pad>" snake_case__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def _lowercase ( self : Any ): snake_case__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__A ) , 1_0_0_4 ) def _lowercase ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = CamembertTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) snake_case__ : Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case__ : int = "I was born in 92000, and this is falsรฉ." snake_case__ : Union[str, Any] = tokenizer.encode(__A ) snake_case__ : Tuple = rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) snake_case__ : int = tokenizer.encode(__A , add_special_tokens=__A ) snake_case__ : List[str] = rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__A ) snake_case__ : Optional[int] = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) def _lowercase ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : Dict = self.get_rust_tokenizer() snake_case__ : Union[str, Any] = "I was born in 92000, and this is falsรฉ." snake_case__ : List[Any] = tokenizer.tokenize(__A ) snake_case__ : List[Any] = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) snake_case__ : Union[str, Any] = tokenizer.encode(__A , add_special_tokens=__A ) snake_case__ : Union[str, Any] = rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) snake_case__ : int = self.get_rust_tokenizer() snake_case__ : List[str] = tokenizer.encode(__A ) snake_case__ : Any = rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) @slow def _lowercase ( self : int ): snake_case__ : Tuple = {"input_ids": [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case__ : List[Any] = [ "Le transformeur est un modรจle d\'apprentissage profond introduit en 2017, " "utilisรฉ principalement dans le domaine du traitement automatique des langues (TAL).", "ร€ l\'instar des rรฉseaux de neurones rรฉcurrents (RNN), les transformeurs sont conรงus " "pour gรฉrer des donnรฉes sรฉquentielles, telles que le langage naturel, pour des tรขches " "telles que la traduction et la synthรจse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__A , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=__A , )
705
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Any , snake_case_ : str ): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Dict="attention" ): snake_case__ : List[Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) snake_case__ : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) snake_case__ : Optional[Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) snake_case__ : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) snake_case__ : str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) snake_case__ : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) snake_case__ : Dict = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) snake_case__ : Optional[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Optional[Any]=False ): if split_mlp_wi: snake_case__ : Dict = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] snake_case__ : Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] snake_case__ : Union[str, Any] = (wi_a, wi_a) else: snake_case__ : Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] snake_case__ : int = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : str ): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , *, snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : int = False ): snake_case__ : int = traverse_util.flatten_dict(variables["target"] ) snake_case__ : str = {"/".join(lowercase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case__ : Union[str, Any] = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , lowercase_ ) snake_case__ : List[Any] = collections.OrderedDict() # Shared embeddings. snake_case__ : str = old["token_embedder/embedding"] # Encoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). snake_case__ : int = tax_layer_norm_lookup(lowercase_ , lowercase_ , "encoder" , "pre_attention_layer_norm" ) snake_case__ : str = tax_attention_lookup(lowercase_ , lowercase_ , "encoder" , "attention" ) snake_case__ : List[Any] = layer_norm snake_case__ : str = k.T snake_case__ : Optional[Any] = o.T snake_case__ : List[str] = q.T snake_case__ : int = v.T # Block i, layer 1 (MLP). snake_case__ : Dict = tax_layer_norm_lookup(lowercase_ , lowercase_ , "encoder" , "pre_mlp_layer_norm" ) snake_case__ : int = tax_mlp_lookup(lowercase_ , lowercase_ , "encoder" , lowercase_ ) snake_case__ : int = layer_norm if split_mlp_wi: snake_case__ : Optional[int] = wi[0].T snake_case__ : Optional[Any] = wi[1].T else: snake_case__ : Any = wi.T snake_case__ : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case__ : Optional[int] = tax_relpos_bias_lookup( lowercase_ , lowercase_ , "encoder" ).T snake_case__ : str = old["encoder/encoder_norm/scale"] if not scalable_attention: snake_case__ : Any = tax_relpos_bias_lookup( lowercase_ , 0 , "encoder" ).T snake_case__ : str = tax_relpos_bias_lookup( lowercase_ , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(lowercase_ ): # Block i, layer 0 (Self Attention). snake_case__ : List[Any] = tax_layer_norm_lookup(lowercase_ , lowercase_ , "decoder" , "pre_self_attention_layer_norm" ) snake_case__ : Any = tax_attention_lookup(lowercase_ , lowercase_ , "decoder" , "self_attention" ) snake_case__ : List[str] = layer_norm snake_case__ : Union[str, Any] = k.T snake_case__ : str = o.T snake_case__ : List[str] = q.T snake_case__ : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). snake_case__ : Dict = tax_layer_norm_lookup(lowercase_ , lowercase_ , "decoder" , "pre_cross_attention_layer_norm" ) snake_case__ : int = tax_attention_lookup(lowercase_ , lowercase_ , "decoder" , "encoder_decoder_attention" ) snake_case__ : List[str] = layer_norm snake_case__ : str = k.T snake_case__ : List[Any] = o.T snake_case__ : int = q.T snake_case__ : List[Any] = v.T # Block i, layer 2 (MLP). snake_case__ : Tuple = tax_layer_norm_lookup(lowercase_ , lowercase_ , "decoder" , "pre_mlp_layer_norm" ) snake_case__ : Tuple = tax_mlp_lookup(lowercase_ , lowercase_ , "decoder" , lowercase_ ) snake_case__ : Optional[int] = layer_norm if split_mlp_wi: snake_case__ : List[Any] = wi[0].T snake_case__ : Optional[int] = wi[1].T else: snake_case__ : str = wi.T snake_case__ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case__ : Optional[int] = tax_relpos_bias_lookup(lowercase_ , lowercase_ , "decoder" ).T snake_case__ : Tuple = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case__ : Any = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Dict ): snake_case__ : Dict = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case__ : str = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case__ : Optional[int] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) snake_case__ : int = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int ): snake_case__ : int = checkpoints.load_tax_checkpoint(lowercase_ ) snake_case__ : List[str] = convert_tax_to_pytorch( lowercase_ , num_layers=config.num_layers , is_encoder_only=lowercase_ , scalable_attention=lowercase_ ) snake_case__ : Union[str, Any] = make_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ , strict=lowercase_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[Any] = False , snake_case_ : Tuple = False , ): snake_case__ : int = MTaConfig.from_json_file(lowercase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case__ : Optional[int] = UMTaEncoderModel(lowercase_ ) else: snake_case__ : Optional[int] = UMTaForConditionalGeneration(lowercase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase_ ) print("Done" ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __lowerCamelCase : List[str] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __A : Optional[int] , __A : Optional[int]=1_3 , __A : Optional[Any]=7 , __A : List[str]=True , __A : int=True , __A : int=True , __A : Union[str, Any]=True , __A : Union[str, Any]=9_9 , __A : List[Any]=3_2 , __A : Optional[Any]=5 , __A : int=4 , __A : List[str]=3_7 , __A : Any="gelu" , __A : Tuple=0.1 , __A : Tuple=0.1 , __A : Union[str, Any]=5_1_2 , __A : Tuple=1_6 , __A : List[Any]=2 , __A : List[str]=0.0_2 , __A : List[str]=4 , ): snake_case__ : Union[str, Any] = parent snake_case__ : Any = batch_size snake_case__ : Optional[int] = seq_length snake_case__ : List[str] = is_training snake_case__ : Optional[int] = use_attention_mask snake_case__ : Dict = use_token_type_ids snake_case__ : Optional[int] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : Optional[int] = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : str = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Union[str, Any] = num_choices def _lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[Any] = None if self.use_attention_mask: snake_case__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Optional[int] = None if self.use_token_type_ids: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[int] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : int ): snake_case__ : Any = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__, snake_case__ : Optional[Any] = config_and_inputs snake_case__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowercase ( self : str ): snake_case__ : str = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__, snake_case__ : List[str] = config_and_inputs snake_case__ : Tuple = True snake_case__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a_ = True a_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : Any ): snake_case__ : Optional[int] = FlaxBertModelTester(self ) @slow def _lowercase ( self : int ): snake_case__ : List[Any] = FlaxBertModel.from_pretrained("bert-base-cased" ) snake_case__ : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
707
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __lowerCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : List[Any] ): return max(metric_fn(snake_case_ , snake_case_ ) for gt in ground_truths ) def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Any ): snake_case__ : List[str] = [line.strip() for line in open(snake_case_ , "r" ).readlines()] snake_case__ : Optional[Any] = [] if args.gold_data_mode == "qa": snake_case__ : Optional[int] = pd.read_csv(snake_case_ , sep="\t" , header=snake_case_ ) for answer_list in data[1]: snake_case__ : Union[str, Any] = ast.literal_eval(snake_case_ ) answers.append(snake_case_ ) else: snake_case__ : Optional[Any] = [line.strip() for line in open(snake_case_ , "r" ).readlines()] snake_case__ : Optional[int] = [[reference] for reference in references] snake_case__ : Dict = 0 for prediction, ground_truths in zip(snake_case_ , snake_case_ ): total += 1 em += metric_max_over_ground_truths(snake_case_ , snake_case_ , snake_case_ ) fa += metric_max_over_ground_truths(snake_case_ , snake_case_ , snake_case_ ) snake_case__ : Any = 1_00.0 * em / total snake_case__ : Optional[Any] = 1_00.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : int ): snake_case__ : Any = args.k snake_case__ : Tuple = [line.strip() for line in open(snake_case_ , "r" ).readlines()] snake_case__ : int = [line.strip() for line in open(snake_case_ , "r" ).readlines()] snake_case__ : Dict = 0 for hypo, reference in zip(snake_case_ , snake_case_ ): snake_case__ : List[str] = set(hypo.split("\t" )[:k] ) snake_case__ : str = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case__ : Any = 1_00.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): def strip_title(snake_case_ : Union[str, Any] ): if title.startswith("\"" ): snake_case__ : List[Any] = title[1:] if title.endswith("\"" ): snake_case__ : Union[str, Any] = title[:-1] return title snake_case__ : List[str] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case_ , return_tensors="pt" , padding=snake_case_ , truncation=snake_case_ , )["input_ids"].to(args.device ) snake_case__ : int = rag_model.rag.question_encoder(snake_case_ ) snake_case__ : Optional[Any] = question_enc_outputs[0] snake_case__ : Tuple = rag_model.retriever( snake_case_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) snake_case__ : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case__ : Dict = [] for docs in all_docs: snake_case__ : Optional[Any] = [strip_title(snake_case_ ) for title in docs["title"]] provenance_strings.append("\t".join(snake_case_ ) ) return provenance_strings def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): with torch.no_grad(): snake_case__ : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case_ , return_tensors="pt" , padding=snake_case_ , truncation=snake_case_ ) snake_case__ : str = inputs_dict.input_ids.to(args.device ) snake_case__ : Any = inputs_dict.attention_mask.to(args.device ) snake_case__ : Any = rag_model.generate( # rag_model overwrites generate snake_case_ , attention_mask=snake_case_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=snake_case_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case__ : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) if args.print_predictions: for q, a in zip(snake_case_ , snake_case_ ): logger.info("Q: {} - A: {}".format(snake_case_ , snake_case_ ) ) return answers def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=snake_case_ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=snake_case_ , choices=["exact", "compressed", "legacy"] , type=snake_case_ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=snake_case_ , type=snake_case_ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=snake_case_ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=snake_case_ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=snake_case_ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=snake_case_ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=snake_case_ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=snake_case_ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=snake_case_ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=snake_case_ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=snake_case_ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) snake_case__ : Union[str, Any] = parser.parse_args() snake_case__ : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): snake_case__ : List[Any] = {} if args.model_type is None: snake_case__ : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): snake_case__ : Any = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration snake_case__ : Tuple = args.n_docs if args.index_name is not None: snake_case__ : Tuple = args.index_name if args.index_path is not None: snake_case__ : Optional[Any] = args.index_path else: snake_case__ : List[Any] = BartForConditionalGeneration snake_case__ : List[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , snake_case_ ) snake_case__ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k snake_case__ : List[Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(snake_case_ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(snake_case_ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): snake_case__ : Dict = RagRetriever.from_pretrained(snake_case_ , **snake_case_ ) snake_case__ : int = model_class.from_pretrained(snake_case_ , retriever=snake_case_ , **snake_case_ ) model.retriever.init_retrieval() else: snake_case__ : Optional[int] = model_class.from_pretrained(snake_case_ , **snake_case_ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: snake_case__ : Union[str, Any] = [] for line in tqdm(snake_case_ ): questions.append(line.strip() ) if len(snake_case_ ) == args.eval_batch_size: snake_case__ : Dict = evaluate_batch_fn(snake_case_ , snake_case_ , snake_case_ ) preds_file.write("\n".join(snake_case_ ) + "\n" ) preds_file.flush() snake_case__ : Optional[int] = [] if len(snake_case_ ) > 0: snake_case__ : Union[str, Any] = evaluate_batch_fn(snake_case_ , snake_case_ , snake_case_ ) preds_file.write("\n".join(snake_case_ ) ) preds_file.flush() score_fn(snake_case_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __lowerCamelCase : Dict = get_args() main(args)
708
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" a_ = MgpstrTokenizer a_ = False a_ = {} a_ = False def _lowercase ( self : Optional[int] ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case__ : List[str] = dict(zip(_a , range(len(_a ) ) ) ) snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_a ) + "\n" ) def _lowercase ( self : Tuple , **__A : Tuple ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowercase ( self : Optional[int] , __A : Union[str, Any] ): snake_case__ : str = """tester""" snake_case__ : Union[str, Any] = """tester""" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self : Optional[Any] ): pass def _lowercase ( self : Optional[Any] ): snake_case__ : Optional[Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): snake_case__ : int = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case__ : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) snake_case__ : Optional[int] = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def _lowercase ( self : Tuple ): snake_case__ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): snake_case__ : Any = self.get_input_output_texts(_a ) snake_case__ : str = tokenizer.tokenize(_a ) snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(_a ) snake_case__ : Union[str, Any] = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) snake_case__ : Optional[Any] = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(" " , "" ) , _a ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self : Tuple ): pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self : int ): pass
709
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de dรฉbat sur le renseignement", "Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.", "Lorsque Franรงois Hollande tรฉlรฉphone ร  Barack Obama ou quand le ministre des affaires รฉtrangรจres Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils rรฉagissent ร  une vraie dรฉcouverte, qui est celle de" " l'ampleur de la surveillance amรฉricaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When Franรงois Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ = (UniPCMultistepScheduler,) a_ = (("num_inference_steps", 2_5),) def _lowercase ( self : Tuple , **__A : Dict ): snake_case__ : Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**UpperCamelCase__ ) return config def _lowercase ( self : Tuple , __A : Tuple=0 , **__A : Any ): snake_case__ : List[Any] = dict(self.forward_default_kwargs ) snake_case__ : List[Any] = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) snake_case__ : Optional[int] = self.dummy_sample snake_case__ : Tuple = 0.1 * sample snake_case__ : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: snake_case__ : int = self.get_scheduler_config(**UpperCamelCase__ ) snake_case__ : Optional[int] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals snake_case__ : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) snake_case__ : Optional[int] = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals snake_case__ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case__ : Union[str, Any] = sample, sample for t in range(UpperCamelCase__ , time_step + scheduler.config.solver_order + 1 ): snake_case__ : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample snake_case__ : Dict = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self : Dict , __A : Optional[Any]=0 , **__A : Dict ): snake_case__ : int = dict(self.forward_default_kwargs ) snake_case__ : List[Any] = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) snake_case__ : int = self.dummy_sample snake_case__ : Optional[int] = 0.1 * sample snake_case__ : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: snake_case__ : Optional[int] = self.get_scheduler_config() snake_case__ : Union[str, Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) snake_case__ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) snake_case__ : Dict = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) snake_case__ : int = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case__ : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample snake_case__ : Any = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase ( self : int , __A : List[Any]=None , **__A : Optional[int] ): if scheduler is None: snake_case__ : List[str] = self.scheduler_classes[0] snake_case__ : str = self.get_scheduler_config(**UpperCamelCase__ ) snake_case__ : Dict = scheduler_class(**UpperCamelCase__ ) snake_case__ : Dict = self.scheduler_classes[0] snake_case__ : Tuple = self.get_scheduler_config(**UpperCamelCase__ ) snake_case__ : List[str] = scheduler_class(**UpperCamelCase__ ) snake_case__ : Tuple = 1_0 snake_case__ : Tuple = self.dummy_model() snake_case__ : int = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : Optional[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def _lowercase ( self : Dict ): snake_case__ : int = dict(self.forward_default_kwargs ) snake_case__ : Dict = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: snake_case__ : Dict = self.get_scheduler_config() snake_case__ : List[Any] = scheduler_class(**UpperCamelCase__ ) snake_case__ : List[str] = self.dummy_sample snake_case__ : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , "set_timesteps" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , "set_timesteps" ): snake_case__ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case__ : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] snake_case__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] snake_case__ : Union[str, Any] = scheduler.timesteps[5] snake_case__ : Optional[int] = scheduler.timesteps[6] snake_case__ : Dict = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample snake_case__ : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self : Tuple ): # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case__ : Optional[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) snake_case__ : int = self.full_loop(scheduler=UpperCamelCase__ ) snake_case__ : List[Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 snake_case__ : Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case__ : Any = DEISMultistepScheduler.from_config(scheduler.config ) snake_case__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case__ : str = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case__ : Union[str, Any] = self.full_loop(scheduler=UpperCamelCase__ ) snake_case__ : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _lowercase ( self : Tuple ): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def _lowercase ( self : int ): self.check_over_configs(thresholding=UpperCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , ) def _lowercase ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def _lowercase ( self : Any ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , ) snake_case__ : List[str] = self.full_loop( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , ) assert not torch.isnan(UpperCamelCase__ ).any(), "Samples have nan numbers" def _lowercase ( self : int ): self.check_over_configs(lower_order_final=UpperCamelCase__ ) self.check_over_configs(lower_order_final=UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=0 ) def _lowercase ( self : Dict ): snake_case__ : Optional[int] = self.full_loop() snake_case__ : Optional[int] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _lowercase ( self : List[Any] ): snake_case__ : str = self.full_loop(prediction_type="v_prediction" ) snake_case__ : str = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def _lowercase ( self : Optional[Any] ): snake_case__ : Tuple = self.scheduler_classes[0] snake_case__ : Any = self.get_scheduler_config(thresholding=UpperCamelCase__ , dynamic_thresholding_ratio=0 ) snake_case__ : Optional[Any] = scheduler_class(**UpperCamelCase__ ) snake_case__ : int = 1_0 snake_case__ : str = self.dummy_model() snake_case__ : str = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): snake_case__ : List[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample assert sample.dtype == torch.floataa def _lowercase ( self : Optional[Any] , **__A : Dict ): for scheduler_class in self.scheduler_classes: snake_case__ : List[Any] = self.get_scheduler_config(**UpperCamelCase__ ) snake_case__ : Optional[Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
710
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
0
from __future__ import annotations __lowerCamelCase : List[str] = list[tuple[int, int]] __lowerCamelCase : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Optional[Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , __A : List[Any] , __A : List[Any] , __A : List[Any] , __A : Tuple , __A : Optional[int] , __A : Tuple , ): snake_case__ : Optional[Any] = pos_x snake_case__ : List[str] = pos_y snake_case__ : Any = (pos_y, pos_x) snake_case__ : Any = goal_x snake_case__ : str = goal_y snake_case__ : int = g_cost snake_case__ : Tuple = parent snake_case__ : Optional[int] = self.calculate_heuristic() def _lowercase ( self : List[Any] ): snake_case__ : Union[str, Any] = abs(self.pos_x - self.goal_x ) snake_case__ : Tuple = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , __A : Union[str, Any] ): return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str , __A : Any , __A : List[Any] ): snake_case__ : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _lowerCamelCase ) snake_case__ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , _lowerCamelCase ) snake_case__ : Tuple = [self.start] snake_case__ : str = [] snake_case__ : Optional[Any] = False def _lowercase ( self : List[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case__ : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : str = True return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) snake_case__ : Union[str, Any] = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path snake_case__ : str = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[Any] , __A : int ): snake_case__ : Optional[int] = [] for action in delta: snake_case__ : Optional[Any] = parent.pos_x + action[1] snake_case__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase , _lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _lowerCamelCase , ) ) return successors def _lowercase ( self : Tuple , __A : List[str] ): snake_case__ : Any = node snake_case__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : int = current_node.parent path.reverse() return path if __name__ == "__main__": __lowerCamelCase : int = (0, 0) __lowerCamelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") __lowerCamelCase : Optional[int] = GreedyBestFirst(init, goal) __lowerCamelCase : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __lowerCamelCase : List[Any] = 2 for elem in grid: print(elem)
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[int] ): snake_case__ : List[Any] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) snake_case__ : List[Any] = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case__ : Optional[int] = model(__A )["last_hidden_state"] snake_case__ : Optional[Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __A ) # compare the actual values for a slice. snake_case__ : Optional[int] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
712
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a_ = 42 a_ = 42 a_ = 0.0 a_ = 1 a_ = 1 a_ = True a_ = False a_ = False a_ = False a_ = jnp.floataa def _lowercase ( self : List[str] ): snake_case__ : int = [] snake_case__ : List[Any] = [] for i in range(self.num_layers ): snake_case__ : str = self.in_channels if i == 0 else self.out_channels snake_case__ : str = FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) snake_case__ : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) snake_case__ : Any = resnets snake_case__ : int = attentions if self.add_downsample: snake_case__ : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , __A : Optional[Any] , __A : Any , __A : List[Any] , __A : Optional[Any]=True ): snake_case__ : int = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case__ : str = resnet(__A , __A , deterministic=__A ) snake_case__ : Tuple = attn(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: snake_case__ : Optional[int] = self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a_ = 42 a_ = 42 a_ = 0.0 a_ = 1 a_ = True a_ = jnp.floataa def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = [] for i in range(self.num_layers ): snake_case__ : int = self.in_channels if i == 0 else self.out_channels snake_case__ : int = FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) snake_case__ : Any = resnets if self.add_downsample: snake_case__ : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , __A : str , __A : Tuple , __A : Optional[Any]=True ): snake_case__ : List[Any] = () for resnet in self.resnets: snake_case__ : Optional[int] = resnet(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: snake_case__ : List[str] = self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a_ = 42 a_ = 42 a_ = 42 a_ = 0.0 a_ = 1 a_ = 1 a_ = True a_ = False a_ = False a_ = False a_ = jnp.floataa def _lowercase ( self : Tuple ): snake_case__ : Any = [] snake_case__ : List[str] = [] for i in range(self.num_layers ): snake_case__ : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case__ : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels snake_case__ : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) snake_case__ : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) snake_case__ : Optional[int] = resnets snake_case__ : Dict = attentions if self.add_upsample: snake_case__ : str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , __A : Union[str, Any] , __A : Dict , __A : int , __A : str , __A : int=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case__ : str = res_hidden_states_tuple[-1] snake_case__ : str = res_hidden_states_tuple[:-1] snake_case__ : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case__ : Union[str, Any] = resnet(__A , __A , deterministic=__A ) snake_case__ : Union[str, Any] = attn(__A , __A , deterministic=__A ) if self.add_upsample: snake_case__ : Optional[int] = self.upsamplers_a(__A ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a_ = 42 a_ = 42 a_ = 42 a_ = 0.0 a_ = 1 a_ = True a_ = jnp.floataa def _lowercase ( self : str ): snake_case__ : Union[str, Any] = [] for i in range(self.num_layers ): snake_case__ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case__ : Dict = self.prev_output_channel if i == 0 else self.out_channels snake_case__ : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) snake_case__ : Any = resnets if self.add_upsample: snake_case__ : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , __A : Optional[int] , __A : Optional[Any] , __A : List[Any] , __A : int=True ): for resnet in self.resnets: # pop res hidden states snake_case__ : Optional[int] = res_hidden_states_tuple[-1] snake_case__ : Optional[int] = res_hidden_states_tuple[:-1] snake_case__ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case__ : List[str] = resnet(__A , __A , deterministic=__A ) if self.add_upsample: snake_case__ : Tuple = self.upsamplers_a(__A ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a_ = 42 a_ = 0.0 a_ = 1 a_ = 1 a_ = False a_ = False a_ = jnp.floataa def _lowercase ( self : int ): # there is always at least one resnet snake_case__ : Dict = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case__ : Tuple = [] for _ in range(self.num_layers ): snake_case__ : str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) snake_case__ : int = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) snake_case__ : str = resnets snake_case__ : str = attentions def __call__( self : Optional[Any] , __A : int , __A : Optional[int] , __A : Optional[int] , __A : Optional[Any]=True ): snake_case__ : Optional[Any] = self.resnets[0](__A , __A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case__ : List[Any] = attn(__A , __A , deterministic=__A ) snake_case__ : int = resnet(__A , __A , deterministic=__A ) return hidden_states
713
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): """simple docstring""" a_ = "Salesforce/blip-image-captioning-base" a_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) a_ = "image_captioner" a_ = AutoModelForVisionaSeq a_ = ["image"] a_ = ["text"] def __init__( self : Tuple , *__A : str , **__A : Tuple ): requires_backends(self , ["vision"] ) super().__init__(*__A , **__A ) def _lowercase ( self : Optional[int] , __A : "Image" ): return self.pre_processor(images=__A , return_tensors="pt" ) def _lowercase ( self : List[Any] , __A : Optional[Any] ): return self.model.generate(**__A ) def _lowercase ( self : Tuple , __A : List[str] ): return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0].strip()
714
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"โ€œ%โ€˜โ€๏ฟฝโ€”โ€™โ€ฆโ€“]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with ๐Ÿค— Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with ๐Ÿค— Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): # This function is recursive snake_case__ : List[str] = len(_UpperCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else snake_case__ : str = array[0] snake_case__ : int = False snake_case__ : Dict = 1 snake_case__ : List[Any] = [] while not is_found and i < array_length: if array[i] < pivot: snake_case__ : List[Any] = True snake_case__ : Optional[int] = [element for element in array[i:] if element >= array[i]] snake_case__ : Dict = longest_subsequence(_UpperCAmelCase ) if len(_UpperCAmelCase ) > len(_UpperCAmelCase ): snake_case__ : Optional[Any] = temp_array else: i += 1 snake_case__ : Dict = [element for element in array[1:] if element >= pivot] snake_case__ : List[str] = [pivot, *longest_subsequence(_UpperCAmelCase )] if len(_UpperCAmelCase ) > len(_UpperCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
715
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"text": Value("string" )} ) a_ = Features({"labels": ClassLabel} ) a_ = "text" a_ = "labels" def _lowercase ( self : Tuple , __A : List[Any] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) snake_case__ : Any = copy.deepcopy(self ) snake_case__ : Optional[Any] = self.label_schema.copy() snake_case__ : List[str] = features[self.label_column] snake_case__ : Dict = label_schema return task_template @property def _lowercase ( self : Tuple ): return { self.text_column: "text", self.label_column: "labels", }
25
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : List[str]=2 , __A : Dict=3 , __A : List[Any]=6_4 , __A : Dict=None ): snake_case__ : List[Any] = np.random.default_rng(__a ) snake_case__ : Dict = length snake_case__ : str = rng.normal(size=(length,) ).astype(np.floataa ) snake_case__ : int = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ): return self.length def __getitem__( self : Optional[int] , __A : int ): return {"x": self.x[i], "y": self.y[i]} class SCREAMING_SNAKE_CASE__ ( torch.nn.Module ): """simple docstring""" def __init__( self : List[str] , __A : int=0 , __A : Union[str, Any]=0 , __A : List[Any]=False ): super().__init__() snake_case__ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : str = True def _lowercase ( self : List[Any] , __A : Optional[Any]=None ): if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) snake_case__ : Optional[Any] = False return x * self.a[0] + self.b[0] class SCREAMING_SNAKE_CASE__ ( torch.nn.Module ): """simple docstring""" def __init__( self : Any , __A : List[Any]=0 , __A : List[str]=0 , __A : Union[str, Any]=False ): super().__init__() snake_case__ : int = torch.nn.Parameter(torch.tensor(__a ).float() ) snake_case__ : Tuple = torch.nn.Parameter(torch.tensor(__a ).float() ) snake_case__ : List[str] = True def _lowercase ( self : Any , __A : List[str]=None ): if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) snake_case__ : Dict = False return x * self.a + self.b def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : int = 16 ): from datasets import load_dataset from transformers import AutoTokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case__ : Optional[Any] = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} snake_case__ : Tuple = load_dataset("csv" , data_files=snake_case_ ) snake_case__ : Optional[int] = datasets['train'].unique("label" ) snake_case__ : Optional[Any] = {v: i for i, v in enumerate(snake_case_ )} def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Tuple = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=snake_case_ , max_length=snake_case_ , padding="max_length" ) if "label" in examples: snake_case__ : Tuple = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : List[str] = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(snake_case_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(snake_case_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ : Tuple = DataLoader(tokenized_datasets["train"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=2 ) snake_case__ : Union[str, Any] = DataLoader(tokenized_datasets["validation"] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1 ) return train_dataloader, eval_dataloader
716
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_vision_model" def __init__( self : List[Any] , __A : Dict=1_4_0_8 , __A : Tuple=6_1_4_4 , __A : str=3_9 , __A : int=1_6 , __A : str=2_2_4 , __A : Any=1_4 , __A : Dict="gelu" , __A : List[Any]=1e-6 , __A : Any=0.0 , __A : List[Any]=1e-1_0 , __A : Union[str, Any]=True , **__A : Tuple , ): super().__init__(**__A ) snake_case__ : List[str] = hidden_size snake_case__ : Optional[int] = intermediate_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = patch_size snake_case__ : int = image_size snake_case__ : int = initializer_range snake_case__ : Optional[int] = attention_dropout snake_case__ : str = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = qkv_bias @classmethod def _lowercase ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[Any] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip_qformer" def __init__( self : Any , __A : Union[str, Any]=3_0_5_2_2 , __A : Union[str, Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Dict=1_2 , __A : Dict=3_0_7_2 , __A : List[str]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Any=5_1_2 , __A : Optional[int]=0.0_2 , __A : List[str]=1e-1_2 , __A : Any=0 , __A : Optional[Any]="absolute" , __A : str=2 , __A : Any=1_4_0_8 , **__A : List[str] , ): super().__init__(pad_token_id=__A , **__A ) snake_case__ : Dict = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Dict = cross_attention_frequency snake_case__ : List[str] = encoder_hidden_size @classmethod def _lowercase ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): cls._set_token_in_kwargs(__A ) snake_case__, snake_case__ : Tuple = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": snake_case__ : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "instructblip" a_ = True def __init__( self : List[str] , __A : Optional[Any]=None , __A : Tuple=None , __A : Optional[int]=None , __A : Optional[Any]=3_2 , **__A : Optional[int] ): super().__init__(**__A ) if vision_config is None: snake_case__ : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: snake_case__ : Optional[Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: snake_case__ : Optional[int] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) snake_case__ : List[Any] = InstructBlipVisionConfig(**__A ) snake_case__ : Union[str, Any] = InstructBlipQFormerConfig(**__A ) snake_case__ : Dict = text_config["model_type"] if "model_type" in text_config else "opt" snake_case__ : List[Any] = CONFIG_MAPPING[text_model_type](**__A ) snake_case__ : Union[str, Any] = self.text_config.tie_word_embeddings snake_case__ : Tuple = self.text_config.is_encoder_decoder snake_case__ : str = num_query_tokens snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case__ : int = 1.0 snake_case__ : Optional[int] = 0.0_2 @classmethod def _lowercase ( cls : List[str] , __A : InstructBlipVisionConfig , __A : InstructBlipQFormerConfig , __A : PretrainedConfig , **__A : int , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def _lowercase ( self : Optional[int] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : Optional[Any] = self.vision_config.to_dict() snake_case__ : List[str] = self.qformer_config.to_dict() snake_case__ : List[Any] = self.text_config.to_dict() snake_case__ : List[Any] = self.__class__.model_type return output
25
0
from __future__ import annotations __lowerCamelCase : Optional[Any] = 1.60_21e-19 # units = C def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
717
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
0
class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] ): snake_case__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode snake_case__ : List[Any] = False def _lowercase ( self : str , __A : List[Any] ): for word in words: self.insert(_lowercase ) def _lowercase ( self : Tuple , __A : Optional[Any] ): snake_case__ : Any = self for char in word: if char not in curr.nodes: snake_case__ : Optional[int] = TrieNode() snake_case__ : List[str] = curr.nodes[char] snake_case__ : List[Any] = True def _lowercase ( self : List[Any] , __A : int ): snake_case__ : Tuple = self for char in word: if char not in curr.nodes: return False snake_case__ : Optional[int] = curr.nodes[char] return curr.is_leaf def _lowercase ( self : Dict , __A : List[Any] ): def _delete(__A : Dict , __A : List[str] , __A : List[Any] ) -> bool: if index == len(_lowercase ): # If word does not exist if not curr.is_leaf: return False snake_case__ : Optional[Any] = False return len(curr.nodes ) == 0 snake_case__ : Optional[int] = word[index] snake_case__ : Any = curr.nodes.get(_lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case__ : Union[str, Any] = _delete(_lowercase , _lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowercase , 0 ) def SCREAMING_SNAKE_CASE ( snake_case_ : TrieNode , snake_case_ : str ): if node.is_leaf: print(_lowerCamelCase , end=" " ) for key, value in node.nodes.items(): print_words(_lowerCamelCase , word + key ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Union[str, Any] = """banana bananas bandana band apple all beast""".split() snake_case__ : List[Any] = TrieNode() root.insert_many(_lowerCamelCase ) # print_words(root, "") assert all(root.find(_lowerCamelCase ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : bool ): print(str(_lowerCamelCase ) , "works!" if passes else "doesn't work :(" ) def SCREAMING_SNAKE_CASE ( ): assert test_trie() def SCREAMING_SNAKE_CASE ( ): print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
718
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ): snake_case__ : str = tempfile.mkdtemp() # fmt: off snake_case__ : Tuple = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case__ : Optional[int] = dict(zip(A__ , range(len(A__ ) ) ) ) snake_case__ : Union[str, Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] snake_case__ : Tuple = {"""unk_token""": """<unk>"""} snake_case__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A__ ) ) snake_case__ : Dict = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } snake_case__ : Tuple = os.path.join(self.tmpdirname , A__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A__ , A__ ) def _lowercase ( self : Dict , **__A : Union[str, Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__ ) def _lowercase ( self : List[str] , **__A : int ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def _lowercase ( self : Union[str, Any] , **__A : Optional[Any] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **A__ ) def _lowercase ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Optional[int] ): snake_case__ : Dict = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case__ : int = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Optional[int] ): snake_case__ : int = self.get_tokenizer() snake_case__ : int = self.get_rust_tokenizer() snake_case__ : Any = self.get_image_processor() snake_case__ : List[Any] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case__ : int = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A__ ) snake_case__ : int = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case__ : Optional[int] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A__ ) self.assertIsInstance(processor_fast.tokenizer , A__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A__ ) self.assertIsInstance(processor_fast.image_processor , A__ ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case__ : Optional[Any] = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) snake_case__ : Dict = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def _lowercase ( self : int ): snake_case__ : Dict = self.get_image_processor() snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : int = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : str = image_processor(A__ , return_tensors="np" ) snake_case__ : Optional[int] = processor(images=A__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self : List[Any] ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Optional[int] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) snake_case__ : Dict = """lower newer""" snake_case__ : Dict = processor(text=A__ ) snake_case__ : Union[str, Any] = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : Tuple ): snake_case__ : List[str] = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Union[str, Any] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) snake_case__ : List[Any] = """lower newer""" snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : Dict = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def _lowercase ( self : Tuple ): snake_case__ : int = self.get_image_processor() snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[Any] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) snake_case__ : List[Any] = self.prepare_image_inputs() snake_case__ : int = self.prepare_image_inputs() snake_case__ : Union[str, Any] = processor(images=A__ , visual_prompt=A__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : str = self.get_tokenizer() snake_case__ : Tuple = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) snake_case__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : List[Any] = processor.batch_decode(A__ ) snake_case__ : int = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ )
719
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : int=7 , __A : Optional[Any]=3 , __A : List[str]=3_0 , __A : List[Any]=4_0_0 , __A : Union[str, Any]=True , __A : List[Any]=None , __A : Optional[Any]=True , __A : Tuple=[0.5, 0.5, 0.5] , __A : Union[str, Any]=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Any=1 / 2_5_5 , __A : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : str = min_resolution snake_case__ : Tuple = max_resolution snake_case__ : List[Any] = do_resize snake_case__ : Dict = size snake_case__ : List[str] = do_normalize snake_case__ : Optional[int] = image_mean snake_case__ : Optional[int] = image_std snake_case__ : Any = do_rescale snake_case__ : Optional[int] = rescale_factor snake_case__ : int = do_pad def _lowercase ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[int] , __A : Dict , __A : List[Any]=False ): if not batched: snake_case__ : List[str] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : Tuple = image.size else: snake_case__, snake_case__ : List[str] = image.shape[1], image.shape[2] if w < h: snake_case__ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case__ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case__ : List[Any] = self.size["shortest_edge"] snake_case__ : Union[str, Any] = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Dict = self.size["shortest_edge"] snake_case__ : Dict = self.size["shortest_edge"] else: snake_case__ : str = [] for image in image_inputs: snake_case__, snake_case__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : Dict = max(__A , key=lambda __A : item[0] )[0] snake_case__ : Tuple = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : int ): snake_case__ : Tuple = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Dict = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Optional[Any] = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : str = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Tuple ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Dict = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ): # prepare image and target snake_case__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case__ : int = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : str ): # prepare image, target and masks_path snake_case__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : int = json.loads(f.read() ) snake_case__ : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : Optional[int] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case__ : Tuple = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : str = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Tuple = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def SCREAMING_SNAKE_CASE ( snake_case_ : int = 5000 ): snake_case__ : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase__ )] for i, pentagonal_i in enumerate(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): snake_case__ : Any = pentagonal_nums[j] snake_case__ : Tuple = pentagonal_i + pentagonal_j snake_case__ : Tuple = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase__ ) and is_pentagonal(lowerCAmelCase__ ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
720
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __lowerCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __lowerCamelCase : str = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullbackโ€“Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __lowerCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _lowercase ( self : Union[str, Any] , __A : Dict , __A : List[str] , __A : int=None , __A : List[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : Union[str, Any]="auto" , __A : Optional[Any]=-1 , __A : Optional[Any]=0.9 , __A : Any=5 , __A : List[Any]=5_0_0 , __A : Tuple="gpt2-large" , __A : Optional[Any]=-1 , __A : str=1_0_2_4 , __A : Tuple=2_5 , __A : str=5 , __A : Optional[int]=True , __A : Any=2_5 , ): snake_case__ : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
25
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = ViTImageProcessor if is_vision_available() else None @property def _lowercase ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : List[str] ): snake_case__ : Any = (3, 3_2, 1_2_8) snake_case__ : str = tempfile.mkdtemp() # fmt: off snake_case__ : Union[str, Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case__ : Dict = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) snake_case__ : str = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 3_2, "width": 1_2_8}, } snake_case__ : Tuple = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] , **__A : int ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : int , **__A : Optional[int] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) snake_case__ : List[str] = Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) return image_input def _lowercase ( self : Optional[int] ): snake_case__ : int = self.get_tokenizer() snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : str = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) snake_case__ : List[str] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def _lowercase ( self : int ): snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : Tuple = self.get_image_processor() snake_case__ : Union[str, Any] = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case__ : Union[str, Any] = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) snake_case__ : Any = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : int = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) snake_case__ : Tuple = self.prepare_image_inputs() snake_case__ : Union[str, Any] = image_processor(UpperCamelCase__ , return_tensors="np" ) snake_case__ : Union[str, Any] = processor(images=UpperCamelCase__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self : Tuple ): snake_case__ : str = self.get_image_processor() snake_case__ : Tuple = self.get_tokenizer() snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) snake_case__ : int = "test" snake_case__ : List[str] = processor(text=UpperCamelCase__ ) snake_case__ : int = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : int ): snake_case__ : str = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : Any = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) snake_case__ : List[Any] = "test" snake_case__ : int = self.prepare_image_inputs() snake_case__ : Optional[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _lowercase ( self : Any ): snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : str = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) snake_case__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : Optional[int] = processor.char_decode(UpperCamelCase__ ) snake_case__ : Dict = tokenizer.batch_decode(UpperCamelCase__ ) snake_case__ : Optional[int] = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : int ): snake_case__ : List[str] = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Optional[Any] = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) snake_case__ : str = None snake_case__ : Any = self.prepare_image_inputs() snake_case__ : int = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) snake_case__ : Optional[Any] = torch.randn(1 , 2_7 , 3_8 ) snake_case__ : Union[str, Any] = torch.randn(1 , 2_7 , 5_0_2_5_7 ) snake_case__ : Any = torch.randn(1 , 2_7 , 3_0_5_2_2 ) snake_case__ : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
721
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : Union[str, Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : List[Any] = concatenate_datasets __lowerCamelCase : List[str] = DownloadConfig __lowerCamelCase : Union[str, Any] = DownloadManager __lowerCamelCase : str = DownloadMode __lowerCamelCase : Union[str, Any] = DownloadConfig __lowerCamelCase : List[str] = DownloadMode __lowerCamelCase : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : str = [True] * limit snake_case__ : str = False snake_case__ : str = False snake_case__ : str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case__ : Optional[Any] = i * 2 while index < limit: snake_case__ : Union[str, Any] = False snake_case__ : Any = index + i snake_case__ : Optional[Any] = [2] for i in range(3 , snake_case_ , 2 ): if is_prime[i]: primes.append(snake_case_ ) return primes def SCREAMING_SNAKE_CASE ( snake_case_ : int = 1000000 ): snake_case__ : Optional[int] = prime_sieve(snake_case_ ) snake_case__ : List[Any] = 0 snake_case__ : List[str] = 0 for i in range(len(snake_case_ ) ): for j in range(i + length , len(snake_case_ ) ): snake_case__ : Dict = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case__ : Tuple = j - i snake_case__ : str = sol return largest if __name__ == "__main__": print(f"{solution() = }")
25
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : int = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : str = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } __lowerCamelCase : Dict = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = ["input_ids", "attention_mask"] a_ = DistilBertTokenizer def __init__( self : int , __A : Any=None , __A : Union[str, Any]=None , __A : str=True , __A : Union[str, Any]="[UNK]" , __A : Tuple="[SEP]" , __A : List[Any]="[PAD]" , __A : List[Any]="[CLS]" , __A : Tuple="[MASK]" , __A : str=True , __A : List[str]=None , **__A : Optional[Any] , ): super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) snake_case__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase__ ) != tokenize_chinese_chars ): snake_case__ : Dict = getattr(lowercase__ , normalizer_state.pop("type" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : List[Any] = tokenize_chinese_chars snake_case__ : int = normalizer_class(**lowercase__ ) snake_case__ : Optional[int] = do_lower_case def _lowercase ( self : str , __A : Dict , __A : str=None ): snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self : List[Any] , __A : Union[str, Any] , __A : Any = None ): snake_case__ : Tuple = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : str , __A : Any , __A : str = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ )
701
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCamelCase : Any = open # noqa: we just need to have a builtin inside this module to test it properly
702
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase : Tuple = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __lowerCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("ยก" ) , ord("ยฌ" ) + 1 ) ) + list(range(ord("ยฎ" ) , ord("รฟ" ) + 1 ) ) ) snake_case__ : Optional[int] = bs[:] snake_case__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 snake_case__ : Dict = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_ , snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Dict = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : List[Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , __A : Any , __A : List[str] , __A : Optional[Any]="replace" , __A : Optional[int]="<s>" , __A : Union[str, Any]="</s>" , __A : Tuple="</s>" , __A : List[Any]="<s>" , __A : Dict="<unk>" , __A : Any="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=False , **__A : Union[str, Any] , ): snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token snake_case__ : Any = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token snake_case__ : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token snake_case__ : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: snake_case__ : Any = json.load(__A ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : Union[str, Any] = errors # how to handle errors in decoding snake_case__ : Any = bytes_to_unicode() snake_case__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: snake_case__ : str = merges_handle.read().split("\n" )[1:-1] snake_case__ : int = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : str = dict(zip(__A , range(len(__A ) ) ) ) snake_case__ : Optional[int] = {} snake_case__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : Union[str, Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowercase ( self : List[Any] ): return len(self.encoder ) def _lowercase ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Optional[Any] , __A : Optional[int] ): if token in self.cache: return self.cache[token] snake_case__ : Union[str, Any] = tuple(__A ) snake_case__ : List[Any] = get_pairs(__A ) if not pairs: return token while True: snake_case__ : Tuple = min(__A , key=lambda __A : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Dict = bigram snake_case__ : str = [] snake_case__ : Union[str, Any] = 0 while i < len(__A ): try: snake_case__ : Dict = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : str = tuple(__A ) snake_case__ : int = new_word if len(__A ) == 1: break else: snake_case__ : List[str] = get_pairs(__A ) snake_case__ : List[Any] = " ".join(__A ) snake_case__ : Optional[int] = word return word def _lowercase ( self : Optional[Any] , __A : Optional[Any] ): snake_case__ : List[str] = [] for token in re.findall(self.pat , __A ): snake_case__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , __A : Optional[Any] ): return self.decoder.get(__A ) def _lowercase ( self : Union[str, Any] , __A : Dict ): snake_case__ : Optional[Any] = "".join(__A ) snake_case__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self : Optional[int] , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : str = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) snake_case__ : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case__ : int = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self : int , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowercase ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , __A : int , __A : int=False , **__A : Dict ): snake_case__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): snake_case__ : Optional[int] = " " + text return (text, kwargs) def _lowercase ( self : Any , __A : Union[Dict[str, EncodedInput], BatchEncoding] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ): snake_case__ : Optional[Any] = super()._pad( encoded_inputs=__A , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) # Load from model defaults if return_attention_mask is None: snake_case__ : Union[str, Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case__ : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case__ : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: snake_case__ : int = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case__ : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": snake_case__ : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
25
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( __A , __A , __A ): """simple docstring""" a_ = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Tuple , __A : Tuple , __A : str , __A : Union[str, Any] = None , __A : Union[str, Any] = 5_0_2_5_7 , __A : int = 1_0_2_4 , __A : Optional[int] = 7_6_8 , __A : str = 1_2 , __A : List[Any] = 1_2 , __A : List[Any] = None , __A : Union[str, Any] = "gelu_new" , __A : str = 0.1 , __A : List[str] = 0.1 , __A : Any = 0.1 , __A : Any = 1e-5 , __A : int = 0.0_2 , __A : str = True , __A : int = True , __A : Optional[int] = False , __A : Any = False , ): super().__init__() snake_case__ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) snake_case__ : Optional[Any] = prefix_inner_dim snake_case__ : Any = prefix_hidden_dim snake_case__ : Any = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , __A ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ : str = GPTaConfig( vocab_size=__A , n_positions=__A , n_embd=__A , n_layer=__A , n_head=__A , n_inner=__A , activation_function=__A , resid_pdrop=__A , embd_pdrop=__A , attn_pdrop=__A , layer_norm_epsilon=__A , initializer_range=__A , scale_attn_weights=__A , use_cache=__A , scale_attn_by_inverse_layer_idx=__A , reorder_and_upcast_attn=__A , ) snake_case__ : List[Any] = GPTaLMHeadModel(__A ) def _lowercase ( self : Optional[Any] , __A : Union[str, Any] , __A : int , __A : int = None , __A : str = None , ): snake_case__ : Tuple = self.transformer.transformer.wte(__A ) snake_case__ : Optional[int] = self.encode_prefix(__A ) snake_case__ : str = self.decode_prefix(__A ) snake_case__ : Tuple = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case__ : Tuple = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case__ : Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case__ : List[str] = self.transformer(inputs_embeds=__A , labels=__A , attention_mask=__A ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _lowercase ( self : List[Any] , __A : Optional[Any] , __A : str ): return torch.zeros(__A , self.prefix_length , dtype=torch.intaa , device=__A ) def _lowercase ( self : Optional[int] , __A : List[str] ): return self.encode_prefix(__A ) @torch.no_grad() def _lowercase ( self : Optional[Any] , __A : List[str] , __A : Dict , __A : List[Any] ): snake_case__ : Any = torch.split(__A , 1 , dim=0 ) snake_case__ : Union[str, Any] = [] snake_case__ : Optional[Any] = [] for feature in features: snake_case__ : Optional[int] = self.decode_prefix(feature.to(__A ) ) # back to the clip feature # Only support beam search for now snake_case__ : Dict = self.generate_beam( input_embeds=__A , device=__A , eos_token_id=__A ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case__ : Any = torch.stack(__A ) snake_case__ : int = torch.stack(__A ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _lowercase ( self : Optional[Any] , __A : List[str]=None , __A : Dict=None , __A : Optional[Any]=None , __A : Union[str, Any] = 5 , __A : List[str] = 6_7 , __A : str = 1.0 , __A : Optional[int] = None , ): snake_case__ : Optional[Any] = eos_token_id snake_case__ : Optional[Any] = None snake_case__ : Dict = None snake_case__ : Union[str, Any] = torch.ones(__A , device=__A , dtype=torch.int ) snake_case__ : int = torch.zeros(__A , device=__A , dtype=torch.bool ) if input_embeds is not None: snake_case__ : Optional[Any] = input_embeds else: snake_case__ : Dict = self.transformer.transformer.wte(__A ) for i in range(__A ): snake_case__ : Dict = self.transformer(inputs_embeds=__A ) snake_case__ : Optional[Any] = outputs.logits snake_case__ : List[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case__ : List[str] = logits.softmax(-1 ).log() if scores is None: snake_case__ : int = logits.topk(__A , -1 ) snake_case__ : Any = generated.expand(__A , *generated.shape[1:] ) snake_case__ : Tuple = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case__ : Tuple = next_tokens else: snake_case__ : int = tokens.expand(__A , *tokens.shape[1:] ) snake_case__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case__ : Tuple = -float(np.inf ) snake_case__ : int = 0 snake_case__ : Any = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case__ : Union[str, Any] = scores_sum / seq_lengths[:, None] snake_case__ : List[Any] = scores_sum_average.view(-1 ).topk(__A , -1 ) snake_case__ : Optional[Any] = next_tokens // scores_sum.shape[1] snake_case__ : str = seq_lengths[next_tokens_source] snake_case__ : List[str] = next_tokens % scores_sum.shape[1] snake_case__ : Dict = next_tokens.unsqueeze(1 ) snake_case__ : Dict = tokens[next_tokens_source] snake_case__ : int = torch.cat((tokens, next_tokens) , dim=1 ) snake_case__ : Dict = generated[next_tokens_source] snake_case__ : Dict = scores_sum_average * seq_lengths snake_case__ : str = is_stopped[next_tokens_source] snake_case__ : Optional[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case__ : Dict = torch.cat((generated, next_token_embed) , dim=1 ) snake_case__ : Optional[int] = is_stopped + next_tokens.eq(__A ).squeeze() if is_stopped.all(): break snake_case__ : List[str] = scores / seq_lengths snake_case__ : List[str] = scores.argsort(descending=__A ) # tokens tensors are already padded to max_seq_length snake_case__ : Union[str, Any] = [tokens[i] for i in order] snake_case__ : Union[str, Any] = torch.stack(__A , dim=0 ) snake_case__ : Any = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
703
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCamelCase : List[Any] = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): inspect_dataset(__snake_case , __snake_case ) snake_case__ : int = path + ".py" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Dict ): inspect_metric(__snake_case , __snake_case ) snake_case__ : Union[str, Any] = path + ".py" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Optional[int] ): snake_case__ : Tuple = get_dataset_config_info(__snake_case , config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case , config_name=__snake_case ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : str ): snake_case__ : str = get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): snake_case__ : Union[str, Any] = get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs snake_case__ : Any = expected_configs[0] assert expected_config in infos snake_case__ : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Tuple ): snake_case__ : Dict = get_dataset_infos(__snake_case ) assert expected_config in infos snake_case__ : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case , config_name=__snake_case )
704
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = [0] * len(snake_case_ ) for i in range(1 , len(snake_case_ ) ): # use last results for better performance - dynamic programming snake_case__ : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: snake_case__ : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 snake_case__ : int = j return prefix_result def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return max(prefix_function(snake_case_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
25
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowerCamelCase : Optional[Any] = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : List[Any] = {} state_dict.pop("pixel_mean" , lowerCAmelCase__ ) state_dict.pop("pixel_std" , lowerCAmelCase__ ) snake_case__ : List[Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : Union[str, Any] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case__ : Optional[int] = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(2 ) ) if layer_nb == 0: snake_case__ : Union[str, Any] = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: snake_case__ : str = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: snake_case__ : List[str] = key.replace("layers.2" , "proj_out" ) snake_case__ : Any = value snake_case__ : str = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict="ybelkada/segment-anything" ): snake_case__ : Dict = hf_hub_download(lowerCAmelCase__ , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: snake_case__ : Tuple = SamConfig() elif "sam_vit_l" in model_name: snake_case__ : List[Any] = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case__ : int = SamConfig( vision_config=lowerCAmelCase__ , ) elif "sam_vit_h" in model_name: snake_case__ : List[Any] = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case__ : Optional[int] = SamConfig( vision_config=lowerCAmelCase__ , ) snake_case__ : Optional[int] = torch.load(lowerCAmelCase__ , map_location="cpu" ) snake_case__ : Union[str, Any] = replace_keys(lowerCAmelCase__ ) snake_case__ : Dict = SamImageProcessor() snake_case__ : List[str] = SamProcessor(image_processor=lowerCAmelCase__ ) snake_case__ : Optional[int] = SamModel(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) snake_case__ : Optional[Any] = hf_model.to("cuda" ) snake_case__ : int = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" snake_case__ : int = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) snake_case__ : List[Any] = [[[400, 650]]] snake_case__ : str = [[1]] snake_case__ : Union[str, Any] = processor(images=np.array(lowerCAmelCase__ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : Any = hf_model(**lowerCAmelCase__ ) snake_case__ : Optional[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 snake_case__ : List[str] = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : int = hf_model(**lowerCAmelCase__ ) snake_case__ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 snake_case__ : List[Any] = ((75, 275, 1725, 850),) snake_case__ : Dict = processor(images=np.array(lowerCAmelCase__ ) , input_boxes=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : Dict = hf_model(**lowerCAmelCase__ ) snake_case__ : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. snake_case__ : Any = [[[400, 650], [800, 650]]] snake_case__ : Any = [[1, 1]] snake_case__ : Any = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : List[Any] = hf_model(**lowerCAmelCase__ ) snake_case__ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() __lowerCamelCase : List[Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowerCamelCase : int = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
705
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCamelCase : Optional[int] = get_logger() __lowerCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Optional[Any] , __A : Dict=None , __A : List[str]=None , **__A : str ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'''Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) snake_case__ : List[Any] = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) snake_case__ : str = str(jax.devices()[0] ) snake_case__ : str = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(__A ): device for device in jax.devices()} def _lowercase ( self : Optional[Any] , __A : str ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def _lowercase ( self : int , __A : Tuple ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ : Optional[int] = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: snake_case__ : Any = {"dtype": jnp.intaa} else: snake_case__ : Tuple = {"dtype": jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): snake_case__ : Optional[Any] = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: snake_case__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , "__array__" ) and not isinstance(__A , jax.Array ): snake_case__ : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def _lowercase ( self : Tuple , __A : dict ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def _lowercase ( self : Optional[int] , __A : pa.Table ): snake_case__ : int = self.numpy_arrow_extractor().extract_row(__A ) snake_case__ : Tuple = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def _lowercase ( self : Optional[Any] , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_column(__A ) snake_case__ : Optional[int] = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) snake_case__ : Dict = self._consolidate(__A ) return column def _lowercase ( self : str , __A : pa.Table ): snake_case__ : Any = self.numpy_arrow_extractor().extract_batch(__A ) snake_case__ : int = self.python_features_decoder.decode_batch(__A ) snake_case__ : List[Any] = self.recursive_tensorize(__A ) for column_name in batch: snake_case__ : Any = self._consolidate(batch[column_name] ) return batch
25
0
from typing import Any def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : str , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : List[str] , ): _validation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Creates data structures and fill initial step snake_case__ : dict = {} snake_case__ : dict = {} for state in states_space: snake_case__ : Union[str, Any] = observations_space[0] snake_case__ : List[Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ : Any = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase_ ) ): snake_case__ : Optional[Any] = observations_space[o] snake_case__ : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ : List[str] = "" snake_case__ : Dict = -1 for k_state in states_space: snake_case__ : List[str] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ : List[Any] = probability snake_case__ : List[str] = k_state # Update probabilities and pointers dicts snake_case__ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ : Optional[Any] = arg_max # The final observation snake_case__ : Dict = observations_space[len(lowerCAmelCase_ ) - 1] # argmax for given final observation snake_case__ : Optional[Any] = "" snake_case__ : Tuple = -1 for k_state in states_space: snake_case__ : Optional[Any] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ : Optional[Any] = probability snake_case__ : Tuple = k_state snake_case__ : List[str] = arg_max # Process pointers backwards snake_case__ : Union[str, Any] = last_state snake_case__ : Optional[Any] = [] for o in range(len(lowerCAmelCase_ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase_ ) snake_case__ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : str , snake_case_ : int , snake_case_ : List[str] , ): _validate_not_empty( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) _validate_lists(lowerCAmelCase_ , lowerCAmelCase_ ) _validate_dicts( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[Any] ): _validate_list(lowerCAmelCase_ , "observations_space" ) _validate_list(lowerCAmelCase_ , "states_space" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Dict ): if not isinstance(_object , lowerCAmelCase_ ): snake_case__ : Union[str, Any] = F'''{var_name} must be a list''' raise ValueError(lowerCAmelCase_ ) else: for x in _object: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case__ : List[Any] = F'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Dict , ): _validate_dict(lowerCAmelCase_ , "initial_probabilities" , lowerCAmelCase_ ) _validate_nested_dict(lowerCAmelCase_ , "transition_probabilities" ) _validate_nested_dict(lowerCAmelCase_ , "emission_probabilities" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[str] ): _validate_dict(_object , lowerCAmelCase_ , lowerCAmelCase_ ) for x in _object.values(): _validate_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] = False ): if not isinstance(_object , lowerCAmelCase_ ): snake_case__ : List[str] = F'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase_ ) if not all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for x in _object ): snake_case__ : List[str] = F'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase_ ) if not all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for x in _object.values() ): snake_case__ : Union[str, Any] = "nested dictionary " if nested else "" snake_case__ : str = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : int = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "data2vec-vision" def __init__( self : Any , __A : Optional[Any]=7_6_8 , __A : Dict=1_2 , __A : List[Any]=1_2 , __A : Optional[int]=3_0_7_2 , __A : Tuple="gelu" , __A : Tuple=0.0 , __A : int=0.0 , __A : Union[str, Any]=0.0_2 , __A : Any=1e-1_2 , __A : Dict=2_2_4 , __A : Any=1_6 , __A : List[str]=3 , __A : int=False , __A : Union[str, Any]=False , __A : Union[str, Any]=False , __A : Tuple=False , __A : Optional[int]=0.1 , __A : Dict=0.1 , __A : Any=True , __A : Dict=[3, 5, 7, 1_1] , __A : Any=[1, 2, 3, 6] , __A : Tuple=True , __A : Dict=0.4 , __A : List[str]=2_5_6 , __A : Any=1 , __A : List[str]=False , __A : Optional[int]=2_5_5 , **__A : Dict , ): super().__init__(**__A ) snake_case__ : str = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : List[Any] = layer_norm_eps snake_case__ : Union[str, Any] = image_size snake_case__ : str = patch_size snake_case__ : Tuple = num_channels snake_case__ : Optional[int] = use_mask_token snake_case__ : List[str] = use_absolute_position_embeddings snake_case__ : Any = use_relative_position_bias snake_case__ : Optional[Any] = use_shared_relative_position_bias snake_case__ : Optional[Any] = layer_scale_init_value snake_case__ : str = drop_path_rate snake_case__ : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ : Optional[Any] = out_indices snake_case__ : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ : List[str] = use_auxiliary_head snake_case__ : List[Any] = auxiliary_loss_weight snake_case__ : Dict = auxiliary_channels snake_case__ : int = auxiliary_num_convs snake_case__ : List[str] = auxiliary_concat_input snake_case__ : str = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = version.parse("1.11" ) @property def _lowercase ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase ( self : Optional[Any] ): return 1e-4
707
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): snake_case__ : List[str] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__A ) , torch_builtin(__A ) ) ) self.assertFalse(torch.allclose(gelu_python(__A ) , gelu_new(__A ) ) ) def _lowercase ( self : Dict ): snake_case__ : str = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation("gelu" ) snake_case__ : int = get_activation("gelu_10" ) snake_case__ : Optional[int] = torch_builtin(__A ) snake_case__ : Dict = geluaa(__A ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _lowercase ( self : str ): get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__A ): get_activation("bogus" ) with self.assertRaises(__A ): get_activation(__A ) def _lowercase ( self : List[str] ): snake_case__ : List[str] = get_activation("gelu" ) snake_case__ : Any = 1 snake_case__ : Union[str, Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__A ): snake_case__ : int = acta.a
25
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Dict = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : str = value elif weight_type == "weight_g": snake_case__ : Union[str, Any] = value elif weight_type == "weight_v": snake_case__ : Optional[Any] = value elif weight_type == "bias": snake_case__ : str = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Union[str, Any] ): snake_case__ : str = [] snake_case__ : Optional[int] = fairseq_model.state_dict() snake_case__ : int = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : str = True else: for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue snake_case__ : int = True if "*" in mapped_key: snake_case__ : Any = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : Any = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : Optional[Any] = "weight_v" elif "bias" in name: snake_case__ : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Optional[Any] = "weight" else: snake_case__ : Optional[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str ): snake_case__ : Tuple = full_name.split("conv_layers." )[-1] snake_case__ : Union[str, Any] = name.split("." ) snake_case__ : str = int(items[0] ) snake_case__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any , snake_case_ : Optional[int]=None , snake_case_ : Optional[int]=None , snake_case_ : Any=True ): if config_path is not None: snake_case__ : Tuple = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: snake_case__ : Tuple = UniSpeechSatConfig() snake_case__ : str = "" if is_finetuned: snake_case__ : Tuple = UniSpeechSatForCTC(snake_case_ ) else: snake_case__ : Any = UniSpeechSatForPreTraining(snake_case_ ) snake_case__, snake_case__, snake_case__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : List[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
25
0
import numpy as np def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[str] ): return np.where(vector > 0 , A_ , (alpha * (np.exp(A_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
709
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , snake_case_ : List[str]=None , ): if attention_mask is None: snake_case__ : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case__ : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case__ : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case_ ) if decoder_head_mask is None: snake_case__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) if cross_attn_head_mask is None: snake_case__ : Union[str, Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Any , __A : List[str]=1_3 , __A : List[Any]=7 , __A : Union[str, Any]=True , __A : Union[str, Any]=False , __A : str=9_9 , __A : Optional[Any]=1_6 , __A : Optional[Any]=2 , __A : Any=4 , __A : List[Any]=4 , __A : int="relu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0 , __A : Optional[Any]=0.0 , __A : List[Any]=2_0 , __A : Optional[Any]=2 , __A : int=1 , __A : Union[str, Any]=0 , ): snake_case__ : Optional[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Optional[Any] = is_training snake_case__ : List[str] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : str = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : int = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : List[str] = max_position_embeddings snake_case__ : Tuple = eos_token_id snake_case__ : Dict = pad_token_id snake_case__ : str = bos_token_id def _lowercase ( self : Tuple ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = self.eos_token_id # Eos Token snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case__ : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case__ : Union[str, Any] = self.get_config() snake_case__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowercase ( self : Dict ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : Optional[Any] , __A : int , __A : Dict ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() snake_case__ : List[Any] = inputs_dict["input_ids"] snake_case__ : Optional[Any] = inputs_dict["attention_mask"] snake_case__ : Union[str, Any] = inputs_dict["head_mask"] # first forward pass snake_case__ : Dict = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) snake_case__, snake_case__ : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case__ : Tuple = model(__A , attention_mask=__A )["last_hidden_state"] snake_case__ : Tuple = model(__A , attention_mask=__A , past_key_values=__A )[ "last_hidden_state" ] # select random slice snake_case__ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowercase ( self : str , __A : Dict , __A : Optional[Any] ): snake_case__ : Union[str, Any] = MaMaaaModel(config=__A ).to(__A ).eval() snake_case__ : Union[str, Any] = model(**__A ) snake_case__ : Tuple = outputs.encoder_last_hidden_state snake_case__ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_encoder() encoder.save_pretrained(__A ) snake_case__ : Any = MaMaaaEncoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Dict = model.get_decoder() decoder.save_pretrained(__A ) snake_case__ : Optional[Any] = MaMaaaDecoder.from_pretrained(__A ).to(__A ) snake_case__ : List[str] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) a_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () a_ = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) a_ = True a_ = True a_ = False a_ = False def _lowercase ( self : int , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowercase ( self : Tuple ): snake_case__ : Any = MaMaaaModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A ) def _lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: snake_case__ : int = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) snake_case__, snake_case__ : Optional[int] = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["missing_keys"] , [] ) def _lowercase ( self : Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__, snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): snake_case__ : str = model_class(__A ) model.to(__A ) model.eval() snake_case__ : str = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: snake_case__ : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: snake_case__ : Union[str, Any] = inputs["input_ids"] snake_case__ : List[str] = inputs.get("decoder_input_ids" , __A ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __A ) snake_case__ : Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: snake_case__ : List[Any] = wte(__A ) else: snake_case__ : Any = wte(__A ) snake_case__ : Optional[int] = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowercase ( self : Optional[Any] ): snake_case__, snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() snake_case__ : Any = input_dict["input_ids"] snake_case__ : int = input_ids.ne(1 ).to(__A ) snake_case__ : List[Any] = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): return torch.tensor(snake_case_ , dtype=torch.long , device=snake_case_ ) __lowerCamelCase : Optional[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def _lowercase ( self : Optional[int] ): snake_case__ : List[str] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : Optional[Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : str = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : str = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : Optional[Any] = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) # change to intended input snake_case__ : Union[str, Any] = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) snake_case__ : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) snake_case__ : int = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A )[0] snake_case__ : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here snake_case__ : List[str] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__A ) snake_case__ : List[str] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) snake_case__ : List[Any] = [ "L'affaire NSA souligne l'absence totale de dรฉbat sur le renseignement", "Selon moi, il y a deux niveaux de rรฉponse de la part du gouvernement franรงais.", "Lorsque Franรงois Hollande tรฉlรฉphone ร  Barack Obama ou quand le ministre des affaires รฉtrangรจres Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils rรฉagissent ร  une vraie dรฉcouverte, qui est celle de" " l'ampleur de la surveillance amรฉricaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams snake_case__ : str = tokenizer(__A , padding=__A , return_tensors="pt" ) snake_case__ : Tuple = model.generate( input_ids=dct["input_ids"].to(__A ) , attention_mask=dct["attention_mask"].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) snake_case__ : List[str] = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When Franรงois Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] snake_case__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
25
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def _lowercase ( self : str ): snake_case__ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , "width_multiplier" ) ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : List[Any] , __A : List[Any]=1_3 , __A : str=6_4 , __A : Dict=2 , __A : Tuple=3 , __A : Optional[Any]="swish" , __A : Optional[Any]=3 , __A : Optional[int]=3_2 , __A : int=0.1 , __A : str=0.0_2 , __A : str=True , __A : Any=True , __A : Any=1_0 , __A : Any=None , __A : Optional[int]=0.2_5 , __A : int=0.0 , __A : int=0.0 , ): snake_case__ : Optional[Any] = parent snake_case__ : Dict = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Dict = patch_size snake_case__ : Tuple = num_channels snake_case__ : List[Any] = make_divisible(5_1_2 * width_multiplier , divisor=8 ) snake_case__ : List[str] = hidden_act snake_case__ : Union[str, Any] = conv_kernel_size snake_case__ : Union[str, Any] = output_stride snake_case__ : Union[str, Any] = classifier_dropout_prob snake_case__ : str = use_labels snake_case__ : Optional[int] = is_training snake_case__ : Any = num_labels snake_case__ : Any = initializer_range snake_case__ : Tuple = scope snake_case__ : Optional[Any] = width_multiplier snake_case__ : str = ffn_dropout snake_case__ : Dict = attn_dropout def _lowercase ( self : Union[str, Any] ): snake_case__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None snake_case__ : List[str] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self : str ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowercase ( self : int , __A : Tuple , __A : Union[str, Any] , __A : Any , __A : Any ): snake_case__ : Union[str, Any] = MobileViTVaModel(config=_A ) model.to(_A ) model.eval() snake_case__ : Any = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self : Union[str, Any] , __A : Optional[int] , __A : Optional[Any] , __A : Dict , __A : int ): snake_case__ : List[Any] = self.num_labels snake_case__ : Union[str, Any] = MobileViTVaForImageClassification(_A ) model.to(_A ) model.eval() snake_case__ : List[str] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[Any] , __A : Tuple , __A : Any , __A : str , __A : List[Any] ): snake_case__ : Dict = self.num_labels snake_case__ : Dict = MobileViTVaForSemanticSegmentation(_A ) model.to(_A ) model.eval() snake_case__ : Tuple = model(_A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : Optional[int] = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self : List[Any] ): snake_case__ : Optional[Any] = self.prepare_config_and_inputs() snake_case__ : Optional[int] = config_and_inputs snake_case__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" a_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a_ = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = MobileViTVaModelTester(self ) snake_case__ : int = MobileViTVaConfigTester(self , config_class=_A , has_text_modality=_A ) def _lowercase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def _lowercase ( self : Optional[Any] ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def _lowercase ( self : Optional[int] ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def _lowercase ( self : int ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def _lowercase ( self : str ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self : Union[str, Any] ): pass def _lowercase ( self : List[str] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(_A ) snake_case__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def _lowercase ( self : List[Any] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _lowercase ( self : List[str] ): def check_hidden_states_output(__A : Optional[Any] , __A : Optional[Any] , __A : Dict ): snake_case__ : Optional[int] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): snake_case__ : Dict = model(**self._prepare_for_class(_A , _A ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Any = 5 self.assertEqual(len(_A ) , _A ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ : Optional[Any] = 2 for i in range(len(_A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) def _lowercase ( self : str ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def _lowercase ( self : Optional[int] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) @slow def _lowercase ( self : Optional[int] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = MobileViTVaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def _lowercase ( self : List[str] ): snake_case__ : Dict = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _A ) snake_case__ : Tuple = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : int = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): snake_case__ : str = model(**_A ) # verify the logits snake_case__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) snake_case__ : Dict = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) ) @slow def _lowercase ( self : Tuple ): snake_case__ : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case__ : Union[str, Any] = model.to(_A ) snake_case__ : int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case__ : Union[str, Any] = prepare_img() snake_case__ : Dict = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): snake_case__ : int = model(**_A ) snake_case__ : Optional[int] = outputs.logits # verify the logits snake_case__ : List[str] = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , _A ) snake_case__ : Dict = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=_A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _A , atol=1e-4 ) ) @slow def _lowercase ( self : int ): snake_case__ : Tuple = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case__ : str = model.to(_A ) snake_case__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case__ : Union[str, Any] = prepare_img() snake_case__ : List[Any] = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): snake_case__ : str = model(**_A ) snake_case__ : Dict = outputs.logits.detach().cpu() snake_case__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(5_0, 6_0)] ) snake_case__ : Dict = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , _A ) snake_case__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_A ) snake_case__ : str = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , _A )
710
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Any , __A : List[str] ): snake_case__ : List[Any] = data snake_case__ : Tuple = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0] @staticmethod def _lowercase ( __A : str , __A : Union[str, Any] ): return ((n << b) | (n >> (3_2 - b))) & 0xFFFFFFFF def _lowercase ( self : Tuple ): snake_case__ : List[Any] = B"\x80" + B"\x00" * (6_3 - (len(self.data ) + 8) % 6_4) snake_case__ : Union[str, Any] = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def _lowercase ( self : Union[str, Any] ): return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 ) ] def _lowercase ( self : Union[str, Any] , __A : str ): snake_case__ : Dict = list(struct.unpack(">16L" , __a ) ) + [0] * 6_4 for i in range(1_6 , 8_0 ): snake_case__ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 ) return w def _lowercase ( self : Any ): snake_case__ : Tuple = self.padding() snake_case__ : List[Any] = self.split_blocks() for block in self.blocks: snake_case__ : Optional[Any] = self.expand_block(__a ) snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : Tuple = self.h for i in range(0 , 8_0 ): if 0 <= i < 2_0: snake_case__ : Any = (b & c) | ((~b) & d) snake_case__ : Optional[Any] = 0x5A827999 elif 2_0 <= i < 4_0: snake_case__ : Optional[int] = b ^ c ^ d snake_case__ : Dict = 0x6ED9EBA1 elif 4_0 <= i < 6_0: snake_case__ : List[str] = (b & c) | (b & d) | (c & d) snake_case__ : Tuple = 0x8F1BBCDC elif 6_0 <= i < 8_0: snake_case__ : Union[str, Any] = b ^ c ^ d snake_case__ : Tuple = 0xCA62C1D6 snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ : Dict = ( self.rotate(__a , 5 ) + f + e + k + expanded_block[i] & 0xFFFFFFFF, a, self.rotate(__a , 3_0 ), c, d, ) snake_case__ : List[Any] = ( self.h[0] + a & 0xFFFFFFFF, self.h[1] + b & 0xFFFFFFFF, self.h[2] + c & 0xFFFFFFFF, self.h[3] + d & 0xFFFFFFFF, self.h[4] + e & 0xFFFFFFFF, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Union[str, Any] = b"Test String" assert SHAaHash(__snake_case ).final_hash() == hashlib.shaa(__snake_case ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE ( ): snake_case__ : List[str] = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) snake_case__ : List[Any] = parser.parse_args() snake_case__ : Dict = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: snake_case__ : Tuple = f.read() else: snake_case__ : Any = bytes(__snake_case , "utf-8" ) print(SHAaHash(__snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
711
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): snake_case__ : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" snake_case__ : Union[str, Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("RGB" ) snake_case__ : Tuple = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) snake_case__ : Dict = transform(lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) return image def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): if "visual_encoder" in key: snake_case__ : Any = re.sub("visual_encoder*" , "vision_model.encoder" , lowerCamelCase_ ) if "blocks" in key: snake_case__ : Union[str, Any] = re.sub(R"blocks" , "layers" , lowerCamelCase_ ) if "attn" in key: snake_case__ : Dict = re.sub(R"attn" , "self_attn" , lowerCamelCase_ ) if "norm1" in key: snake_case__ : str = re.sub(R"norm1" , "layer_norm1" , lowerCamelCase_ ) if "norm2" in key: snake_case__ : Tuple = re.sub(R"norm2" , "layer_norm2" , lowerCamelCase_ ) if "encoder.norm" in key: snake_case__ : Dict = re.sub(R"encoder.norm" , "post_layernorm" , lowerCamelCase_ ) if "encoder.patch_embed.proj" in key: snake_case__ : str = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , lowerCamelCase_ ) if "encoder.pos_embed" in key: snake_case__ : Dict = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , lowerCamelCase_ ) if "encoder.cls_token" in key: snake_case__ : Optional[Any] = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , lowerCamelCase_ ) if "self_attn" in key: snake_case__ : Union[str, Any] = re.sub(R"self_attn.proj" , "self_attn.projection" , lowerCamelCase_ ) return key @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Dict=None ): if config_path is not None: snake_case__ : List[Any] = BlipConfig.from_pretrained(lowerCamelCase_ ) else: snake_case__ : Tuple = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) snake_case__ : Dict = BlipForConditionalGeneration(lowerCamelCase_ ).eval() snake_case__ : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" snake_case__ : Dict = blip_decoder(pretrained=lowerCamelCase_ , image_size=384 , vit="base" ) snake_case__ : Optional[int] = pt_model.eval() snake_case__ : Union[str, Any] = pt_model.state_dict() for key in modified_state_dict.copy(): snake_case__ : Dict = modified_state_dict.pop(lowerCamelCase_ ) snake_case__ : int = rename_key(lowerCamelCase_ ) snake_case__ : Union[str, Any] = value hf_model.load_state_dict(lowerCamelCase_ ) snake_case__ : Tuple = 384 snake_case__ : Union[str, Any] = load_demo_image(image_size=lowerCamelCase_ , device="cpu" ) snake_case__ : int = BertTokenizer.from_pretrained("bert-base-uncased" ) snake_case__ : Optional[int] = tokenizer(["a picture of"] ).input_ids snake_case__ : Optional[Any] = hf_model.generate(lowerCamelCase_ , lowerCamelCase_ ) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] snake_case__ : List[Any] = hf_model.generate(lowerCamelCase_ ) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCamelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' snake_case__ : List[Any] = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) snake_case__ : Tuple = blip_vqa(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit="base" ) vqa_model.eval() snake_case__ : Tuple = vqa_model.state_dict() for key in modified_state_dict.copy(): snake_case__ : Dict = modified_state_dict.pop(lowerCamelCase_ ) snake_case__ : Tuple = rename_key(lowerCamelCase_ ) snake_case__ : List[Any] = value snake_case__ : Any = BlipForQuestionAnswering(lowerCamelCase_ ) hf_vqa_model.load_state_dict(lowerCamelCase_ ) snake_case__ : Dict = ["""How many dogs are in this image?"""] snake_case__ : Any = tokenizer(lowerCamelCase_ , return_tensors="pt" ).input_ids snake_case__ : str = hf_vqa_model.generate(lowerCamelCase_ , lowerCamelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) snake_case__ : str = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" snake_case__ : List[str] = blip_itm(pretrained=lowerCamelCase_ , image_size=lowerCamelCase_ , vit="base" ) itm_model.eval() snake_case__ : Tuple = itm_model.state_dict() for key in modified_state_dict.copy(): snake_case__ : Dict = modified_state_dict.pop(lowerCamelCase_ ) snake_case__ : Optional[int] = rename_key(lowerCamelCase_ ) snake_case__ : List[Any] = value snake_case__ : str = BlipForImageTextRetrieval(lowerCamelCase_ ) snake_case__ : str = ["""A picture of a woman with a dog sitting in a beach"""] snake_case__ : str = tokenizer( lowerCamelCase_ , return_tensors="pt" , padding="max_length" , truncation=lowerCamelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCamelCase_ ) hf_itm_model.eval() snake_case__ : List[Any] = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) snake_case__ : List[Any] = hf_itm_model(lowerCamelCase_ , lowerCamelCase_ , use_itm_head=lowerCamelCase_ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCamelCase : List[str] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
712
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Optional[int] = 256 class SCREAMING_SNAKE_CASE__ ( __lowerCamelCase ): """simple docstring""" a_ = ['melgan'] def __init__( self : Tuple , __A : SpectrogramNotesEncoder , __A : SpectrogramContEncoder , __A : TaFilmDecoder , __A : DDPMScheduler , __A : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN snake_case__ : List[Any] = math.log(1e-5 ) # Matches MelGAN training. snake_case__ : Any = 4.0 # Largest value for most examples snake_case__ : Optional[int] = 1_2_8 self.register_modules( notes_encoder=UpperCamelCase_ , continuous_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ , scheduler=UpperCamelCase_ , melgan=UpperCamelCase_ , ) def _lowercase ( self : List[str] , __A : List[Any] , __A : Any=(-1.0, 1.0) , __A : Optional[int]=False ): snake_case__, snake_case__ : Optional[int] = output_range if clip: snake_case__ : Dict = torch.clip(UpperCamelCase_ , self.min_value , self.max_value ) # Scale to [0, 1]. snake_case__ : Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _lowercase ( self : Tuple , __A : Any , __A : Any=(-1.0, 1.0) , __A : Optional[Any]=False ): snake_case__, snake_case__ : Tuple = input_range snake_case__ : Optional[int] = torch.clip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip else outputs # Scale to [0, 1]. snake_case__ : Dict = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _lowercase ( self : str , __A : Dict , __A : int , __A : Dict ): snake_case__ : Optional[int] = input_tokens > 0 snake_case__, snake_case__ : Optional[Any] = self.notes_encoder( encoder_input_tokens=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) snake_case__, snake_case__ : Tuple = self.continuous_encoder( encoder_inputs=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _lowercase ( self : Optional[int] , __A : int , __A : str , __A : Union[str, Any] ): snake_case__ : Optional[int] = noise_time if not torch.is_tensor(UpperCamelCase_ ): snake_case__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: snake_case__ : Tuple = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ : List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) snake_case__ : Any = self.decoder( encodings_and_masks=UpperCamelCase_ , decoder_input_tokens=UpperCamelCase_ , decoder_noise_time=UpperCamelCase_ ) return logits @torch.no_grad() def __call__( self : Optional[int] , __A : List[List[int]] , __A : Optional[torch.Generator] = None , __A : int = 1_0_0 , __A : bool = True , __A : str = "numpy" , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(UpperCamelCase_ )}.''' ) snake_case__ : Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) snake_case__ : Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa ) snake_case__ : Optional[int] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase_ ): if i == 0: snake_case__ : Any = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. snake_case__ : Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case__ : Union[str, Any] = ones snake_case__ : Dict = self.scale_features( UpperCamelCase_ , output_range=[-1.0, 1.0] , clip=UpperCamelCase_ ) snake_case__ : Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase_ , continuous_mask=UpperCamelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case__ : int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case__ : str = self.decode( encodings_and_masks=UpperCamelCase_ , input_tokens=UpperCamelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 snake_case__ : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample snake_case__ : List[str] = self.scale_to_features(UpperCamelCase_ , input_range=[-1.0, 1.0] ) snake_case__ : Optional[Any] = mel[:1] snake_case__ : Optional[Any] = mel.cpu().float().numpy() snake_case__ : Optional[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ ) logger.info("Generated segment" , UpperCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": snake_case__ : Union[str, Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: snake_case__ : List[Any] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase_ )
713
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = 10 snake_case__ : Union[str, Any] = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) snake_case__ : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(lowerCamelCase__ ) ), } , features=lowerCamelCase__ , ) return dataset @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Optional[Any] ): snake_case__ : str = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=lowerCamelCase__ ) return filename # FILE_CONTENT + files __lowerCamelCase : Any = """\ Text data. Second line of data.""" @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Any = tmp_path_factory.mktemp("data" ) / "file.txt" snake_case__ : List[str] = FILE_CONTENT with open(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ ) return filename @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): import bza snake_case__ : Dict = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" snake_case__ : Tuple = bytes(lowerCamelCase__ , "utf-8" ) with bza.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): import gzip snake_case__ : List[str] = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) snake_case__ : List[str] = bytes(lowerCamelCase__ , "utf-8" ) with gzip.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case__ : Dict = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" snake_case__ : Optional[Any] = bytes(lowerCamelCase__ , "utf-8" ) with lza.frame.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Optional[Any] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case__ : int = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(lowerCamelCase__ , "w" ) as archive: archive.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int ): import tarfile snake_case__ : str = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(lowerCamelCase__ , "w" ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): import lzma snake_case__ : Optional[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" snake_case__ : List[str] = bytes(lowerCamelCase__ , "utf-8" ) with lzma.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Tuple ): import zipfile snake_case__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case__ : Any = tmp_path_factory.mktemp("data" ) / "file.txt.zst" snake_case__ : Optional[Any] = bytes(lowerCamelCase__ , "utf-8" ) with zstd.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): snake_case__ : Tuple = tmp_path_factory.mktemp("data" ) / "file.xml" snake_case__ : Optional[int] = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ ) return filename __lowerCamelCase : List[Any] = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] __lowerCamelCase : str = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] __lowerCamelCase : Optional[Any] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } __lowerCamelCase : Union[str, Any] = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] __lowerCamelCase : Union[str, Any] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): snake_case__ : Optional[int] = datasets.Dataset.from_dict(lowerCamelCase__ ) snake_case__ : Any = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): snake_case__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con: snake_case__ : Union[str, Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(lowerCamelCase__ , "w" , newline="" ) as f: snake_case__ : Optional[int] = csv.DictWriter(lowerCamelCase__ , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): snake_case__ : int = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(lowerCamelCase__ , "w" , newline="" ) as f: snake_case__ : Union[str, Any] = csv.DictWriter(lowerCamelCase__ , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Any ): import bza snake_case__ : Any = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(lowerCamelCase__ , "rb" ) as f: snake_case__ : Optional[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Any ): snake_case__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : str ): snake_case__ : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) snake_case__ : str = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(lowerCamelCase__ , "wb" ) as f: snake_case__ : Union[str, Any] = pq.ParquetWriter(lowerCamelCase__ , schema=lowerCamelCase__ ) snake_case__ : Optional[Any] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase__ ) )] for k in DATA[0]} , schema=lowerCamelCase__ ) writer.write_table(lowerCamelCase__ ) writer.close() return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): snake_case__ : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) snake_case__ : int = {"data": DATA} with open(lowerCamelCase__ , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): snake_case__ : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) snake_case__ : int = {"data": DATA_DICT_OF_LISTS} with open(lowerCamelCase__ , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): snake_case__ : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): snake_case__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Any = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): snake_case__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Union[str, Any] ): import gzip snake_case__ : int = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(lowerCamelCase__ , "rb" ) as orig_file: with gzip.open(lowerCamelCase__ , "wb" ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Optional[int] ): import gzip snake_case__ : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(lowerCamelCase__ , "rb" ) as orig_file: with gzip.open(lowerCamelCase__ , "wb" ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : int ): snake_case__ : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): snake_case__ : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("nested" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Dict ): snake_case__ : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any ): snake_case__ : Dict = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(lowerCamelCase__ , "w" ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] ): snake_case__ : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(lowerCamelCase__ , "w" ) as f: f.add(lowerCamelCase__ , arcname=os.path.join("nested" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : List[Any] = ["0", "1", "2", "3"] snake_case__ : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(lowerCamelCase__ , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__ : Union[str, Any] = ["0", "1", "2", "3"] snake_case__ : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(lowerCamelCase__ , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): snake_case__ : List[str] = ["0", "1", "2", "3"] snake_case__ : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(lowerCamelCase__ , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Any ): snake_case__ : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : str ): snake_case__ : Any = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename("unsupported.ext" ) ) f.write(lowerCamelCase__ , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): snake_case__ : Union[str, Any] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) snake_case__ : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( ): return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( ): return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Any ): snake_case__ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] ): snake_case__ : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
714
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ): snake_case__ : Tuple = args.log_outputs snake_case__ : Union[str, Any] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric snake_case__ : List[str] = load_metric("wer" ) snake_case__ : List[str] = load_metric("cer" ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) snake_case__ : List[str] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results snake_case__ : Dict = F'''WER: {wer_result}\nCER: {cer_result}''' print(snake_case_ ) with open(F'''{dataset_id}_eval_results.txt''' , "w" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : Union[str, Any] = F'''log_{dataset_id}_predictions.txt''' snake_case__ : int = F'''log_{dataset_id}_targets.txt''' with open(snake_case_ , "w" ) as p, open(snake_case_ , "w" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] , snake_case_ : Any ): p.write(F'''{i}''' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F'''{i}''' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case_ , with_indices=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = "[,?.!\-\;\:\"โ€œ%โ€˜โ€๏ฟฝโ€”โ€™โ€ฆโ€“]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Optional[int] = re.sub(snake_case_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: snake_case__ : Optional[int] = " ".join(text.split(snake_case_ ) ) return text def SCREAMING_SNAKE_CASE ( snake_case_ : int ): # load dataset snake_case__ : int = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[Any] = feature_extractor.sampling_rate # resample audio snake_case__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: snake_case__ : int = 0 if torch.cuda.is_available() else -1 snake_case__ : List[str] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Any ): snake_case__ : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction["text"] snake_case__ : Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples snake_case__ : Any = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with ๐Ÿค— Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with ๐Ÿค— Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) __lowerCamelCase : str = parser.parse_args() main(args)
25
0