code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : Union[str, Any] = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class A ( __snake_case ): __magic_name__ = '''informer''' __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "student_t" , SCREAMING_SNAKE_CASE = "nll" , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "mean" , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 64 , SCREAMING_SNAKE_CASE = 32 , SCREAMING_SNAKE_CASE = 32 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = "gelu" , SCREAMING_SNAKE_CASE = 0.05 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE = "prob" , SCREAMING_SNAKE_CASE = 5 , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : Any = prediction_length A : Dict = context_length or prediction_length A : List[Any] = distribution_output A : List[str] = loss A : int = input_size A : List[Any] = num_time_features A : str = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A : List[str] = scaling A : Any = num_dynamic_real_features A : str = num_static_real_features A : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) A : str = cardinality else: A : List[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) A : int = embedding_dimension else: A : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A : int = num_parallel_samples # Transformer architecture configuration A : str = input_size * len(self.lags_sequence ) + self._number_of_features A : Dict = d_model A : int = encoder_attention_heads A : Optional[Any] = decoder_attention_heads A : Union[str, Any] = encoder_ffn_dim A : int = decoder_ffn_dim A : Tuple = encoder_layers A : List[str] = decoder_layers A : Optional[int] = dropout A : List[Any] = attention_dropout A : List[Any] = activation_dropout A : int = encoder_layerdrop A : str = decoder_layerdrop A : Optional[Any] = activation_function A : List[str] = init_std A : List[str] = use_cache # Informer A : List[Any] = attention_type A : Tuple = sampling_factor A : Dict = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
3
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a : List[Any]= logging.get_logger(__name__) def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> YolosConfig: '''simple docstring''' __snake_case : Optional[int] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __snake_case : Optional[Any] = 1_92 __snake_case : Optional[Any] = 7_68 __snake_case : int = 12 __snake_case : Dict = 3 __snake_case : Tuple = [8_00, 13_33] __snake_case : Tuple = False elif yolos_name == "yolos_s_dWr": __snake_case : List[Any] = 3_30 __snake_case : List[str] = 14 __snake_case : Union[str, Any] = 6 __snake_case : Dict = 13_20 elif "yolos_s" in yolos_name: __snake_case : Optional[int] = 3_84 __snake_case : Tuple = 15_36 __snake_case : str = 12 __snake_case : int = 6 elif "yolos_b" in yolos_name: __snake_case : Optional[int] = [8_00, 13_44] __snake_case : str = 91 __snake_case : int = 'huggingface/label-files' __snake_case : List[Any] = 'coco-detection-id2label.json' __snake_case : int = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) __snake_case : Optional[Any] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __snake_case : Union[str, Any] = idalabel __snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : YolosConfig , UpperCAmelCase_ : bool = False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : Any = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __snake_case : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __snake_case : Dict = in_proj_weight[: config.hidden_size, :] __snake_case : Any = in_proj_bias[: config.hidden_size] __snake_case : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : int = in_proj_weight[-config.hidden_size :, :] __snake_case : List[str] = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> str: '''simple docstring''' if "backbone" in name: __snake_case : Dict = name.replace('backbone' , 'vit' ) if "cls_token" in name: __snake_case : Any = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: __snake_case : Optional[int] = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: __snake_case : List[str] = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: __snake_case : Any = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: __snake_case : str = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: __snake_case : List[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: __snake_case : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case : Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case : Optional[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case : List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: __snake_case : Optional[Any] = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: __snake_case : int = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: __snake_case : Any = name.replace('vit.norm' , 'vit.layernorm' ) return name def __UpperCAmelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : YolosForObjectDetection ) -> dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case : int = orig_state_dict.pop(UpperCAmelCase_ ) if "qkv" in key: __snake_case : str = key.split('.' ) __snake_case : int = int(key_split[2] ) __snake_case : Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __snake_case : Any = val[:dim, :] __snake_case : Union[str, Any] = val[ dim : dim * 2, : ] __snake_case : Any = val[-dim:, :] else: __snake_case : Optional[int] = val[:dim] __snake_case : List[str] = val[dim : dim * 2] __snake_case : List[Any] = val[-dim:] else: __snake_case : Tuple = val return orig_state_dict def __UpperCAmelCase ( ) -> torch.Tensor: '''simple docstring''' __snake_case : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : List[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ) -> int: '''simple docstring''' __snake_case : Optional[Any] = get_yolos_config(UpperCAmelCase_ ) # load original state_dict __snake_case : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location='cpu' )['model'] # load 🤗 model __snake_case : Optional[Any] = YolosForObjectDetection(UpperCAmelCase_ ) model.eval() __snake_case : int = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by YolosImageProcessor __snake_case : Optional[Any] = 8_00 if yolos_name != 'yolos_ti' else 5_12 __snake_case : Dict = YolosImageProcessor(format='coco_detection' , size=UpperCAmelCase_ ) __snake_case : int = image_processor(images=prepare_img() , return_tensors='pt' ) __snake_case : int = model(**UpperCAmelCase_ ) __snake_case , __snake_case : List[str] = outputs.logits, outputs.pred_boxes __snake_case , __snake_case : Dict = None, None if yolos_name == "yolos_ti": __snake_case : Dict = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __snake_case : Tuple = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __snake_case : Tuple = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __snake_case : Tuple = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __snake_case : Optional[Any] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __snake_case : Tuple = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __snake_case : str = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __snake_case : Tuple = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __snake_case : str = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __snake_case : Dict = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: __snake_case : Any = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) __snake_case : Optional[int] = model_mapping[yolos_name] image_processor.push_to_hub(UpperCAmelCase_ , organization='hustvl' ) model.push_to_hub(UpperCAmelCase_ , organization='hustvl' ) if __name__ == "__main__": _a : Any= argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _a : str= parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
95
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _a : Tuple= { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : str = """albert""" def __init__(self : Union[str, Any] , _A : int=3_00_00 , _A : Any=1_28 , _A : Tuple=40_96 , _A : int=12 , _A : Tuple=1 , _A : int=64 , _A : Optional[Any]=1_63_84 , _A : Optional[Any]=1 , _A : List[str]="gelu_new" , _A : Any=0 , _A : Optional[Any]=0 , _A : List[Any]=5_12 , _A : List[Any]=2 , _A : Dict=0.02 , _A : Union[str, Any]=1E-12 , _A : Tuple=0.1 , _A : int="absolute" , _A : List[Any]=0 , _A : str=2 , _A : int=3 , **_A : Tuple , ) -> Union[str, Any]: super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A) __snake_case : str = vocab_size __snake_case : List[Any] = embedding_size __snake_case : Tuple = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[str] = num_hidden_groups __snake_case : Dict = num_attention_heads __snake_case : Any = inner_group_num __snake_case : Union[str, Any] = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : List[str] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Optional[Any] = initializer_range __snake_case : List[Any] = layer_norm_eps __snake_case : Optional[Any] = classifier_dropout_prob __snake_case : List[str] = position_embedding_type class UpperCamelCase ( lowercase ): @property def _lowercase (self : Tuple) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case : int = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
95
1
from abc import ABC, abstractmethod from typing import List, Optional class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = False while not completed: if counter == 1: self.reset() _UpperCAmelCase = self.advance() if not self.does_advance(snake_case__ ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.update(snake_case__ ) counter += 1 if counter > 10_000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def UpperCamelCase ( self : List[str] ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase ( self : Optional[Any] , snake_case__ : int ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase ( self : Optional[int] , snake_case__ : int ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase ( self : int ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase ( self : List[Any] , snake_case__ : Dict=False ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : List[Any] , snake_case__ : List[int] ): """simple docstring""" super(snake_case__ , self ).__init__() if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(snake_case__ , snake_case__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _UpperCAmelCase = token_ids _UpperCAmelCase = len(self.token_ids ) _UpperCAmelCase = -1 # the index of the currently fulfilled step _UpperCAmelCase = False def UpperCamelCase ( self : Tuple ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self : Dict , snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(snake_case__ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase ( self : str , snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(snake_case__ )}""" ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False if self.does_advance(snake_case__ ): self.fulfilled_idx += 1 _UpperCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): _UpperCAmelCase = True _UpperCAmelCase = completed else: # failed to make progress. _UpperCAmelCase = True self.reset() return stepped, completed, reset def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = 0 def UpperCamelCase ( self : Dict ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase ( self : int , snake_case__ : Any=False ): """simple docstring""" _UpperCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: _UpperCAmelCase = self.seqlen _UpperCAmelCase = self.fulfilled_idx _UpperCAmelCase = self.completed return new_constraint class __lowerCAmelCase : def __init__( self : Any , snake_case__ : List[List[int]] , snake_case__ : str=True ): """simple docstring""" _UpperCAmelCase = max([len(snake_case__ ) for one in nested_token_ids] ) _UpperCAmelCase = {} for token_ids in nested_token_ids: _UpperCAmelCase = root for tidx, token_id in enumerate(snake_case__ ): if token_id not in level: _UpperCAmelCase = {} _UpperCAmelCase = level[token_id] if no_subsets and self.has_subsets(snake_case__ , snake_case__ ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" F""" {nested_token_ids}.""" ) _UpperCAmelCase = root def UpperCamelCase ( self : Optional[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = self.trie for current_token in current_seq: _UpperCAmelCase = start[current_token] _UpperCAmelCase = list(start.keys() ) return next_tokens def UpperCamelCase ( self : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" _UpperCAmelCase = self.next_tokens(snake_case__ ) return len(snake_case__ ) == 0 def UpperCamelCase ( self : Dict , snake_case__ : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = list(root.values() ) if len(snake_case__ ) == 0: return 1 else: return sum([self.count_leaves(snake_case__ ) for nn in next_nodes] ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[Any] ): """simple docstring""" _UpperCAmelCase = self.count_leaves(snake_case__ ) return len(snake_case__ ) != leaf_count class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : List[str] , snake_case__ : List[List[int]] ): """simple docstring""" super(snake_case__ , self ).__init__() if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(snake_case__ , snake_case__ ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(snake_case__ , snake_case__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _UpperCAmelCase = DisjunctiveTrie(snake_case__ ) _UpperCAmelCase = nested_token_ids _UpperCAmelCase = self.trie.max_height _UpperCAmelCase = [] _UpperCAmelCase = False def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = self.trie.next_tokens(self.current_seq ) if len(snake_case__ ) == 0: return None else: return token_list def UpperCamelCase ( self : Tuple , snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case__ )}""" ) _UpperCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase ( self : Any , snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case__ )}""" ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False if self.does_advance(snake_case__ ): self.current_seq.append(snake_case__ ) _UpperCAmelCase = True else: _UpperCAmelCase = True self.reset() _UpperCAmelCase = self.trie.reached_leaf(self.current_seq ) _UpperCAmelCase = completed return stepped, completed, reset def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] def UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Any=False ): """simple docstring""" _UpperCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: _UpperCAmelCase = self.seqlen _UpperCAmelCase = self.current_seq _UpperCAmelCase = self.completed return new_constraint class __lowerCAmelCase : def __init__( self : List[Any] , snake_case__ : List[Constraint] ): """simple docstring""" _UpperCAmelCase = constraints # max # of steps required to fulfill a given constraint _UpperCAmelCase = max([c.seqlen for c in constraints] ) _UpperCAmelCase = len(snake_case__ ) _UpperCAmelCase = False self.init_state() def UpperCamelCase ( self : Optional[int] ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = None _UpperCAmelCase = [constraint.copy(stateful=snake_case__ ) for constraint in self.constraints] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _UpperCAmelCase = constraint.advance() if isinstance(snake_case__ , snake_case__ ): token_list.append(snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): token_list.extend(snake_case__ ) else: _UpperCAmelCase = self.inprogress_constraint.advance() if isinstance(snake_case__ , snake_case__ ): token_list.append(snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): token_list.extend(snake_case__ ) if len(snake_case__ ) == 0: return None else: return token_list def UpperCamelCase ( self : List[str] , snake_case__ : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _UpperCAmelCase , _UpperCAmelCase = self.add(snake_case__ ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase ( self : int , snake_case__ : int ): """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) _UpperCAmelCase , _UpperCAmelCase = False, False if self.completed: _UpperCAmelCase = True _UpperCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.inprogress_constraint.update(snake_case__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=snake_case__ ) ) _UpperCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _UpperCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! _UpperCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(snake_case__ ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = pending_constraint.update(snake_case__ ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(snake_case__ ) _UpperCAmelCase = None if not complete and stepped: _UpperCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _UpperCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _UpperCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase ( self : str , snake_case__ : Any=True ): """simple docstring""" _UpperCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _UpperCAmelCase = [ constraint.copy(stateful=snake_case__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _UpperCAmelCase = self.inprogress_constraint.copy(stateful=snake_case__ ) _UpperCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
133
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): snake_case_ : Tuple = StableDiffusionLDMaDPipeline snake_case_ : Optional[int] = TEXT_TO_IMAGE_PARAMS snake_case_ : str = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _UpperCAmelCase = CLIPTextModel(snake_case__ ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int]=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(snake_case__ ) else: _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) _UpperCAmelCase = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = 3 * [inputs["prompt"]] # forward _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = 3 * [inputs.pop("prompt" )] _UpperCAmelCase = ldmad_pipe.tokenizer( snake_case__ , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="pt" , ) _UpperCAmelCase = text_inputs["input_ids"].to(snake_case__ ) _UpperCAmelCase = ldmad_pipe.text_encoder(snake_case__ )[0] _UpperCAmelCase = prompt_embeds # forward _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler(skip_prk_steps=snake_case__ ) _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = "french fries" _UpperCAmelCase = ldmad_pipe(**snake_case__ , negative_prompt=snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) _UpperCAmelCase = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : str , snake_case__ : Optional[int] , snake_case__ : Tuple="cpu" , snake_case__ : Any=torch.floataa , snake_case__ : Dict=0 ): """simple docstring""" _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _UpperCAmelCase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1].flatten() _UpperCAmelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _UpperCAmelCase = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) _UpperCAmelCase = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Any , snake_case__ : Optional[Any] , snake_case__ : int="cpu" , snake_case__ : Optional[Any]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _UpperCAmelCase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.495_586 _UpperCAmelCase = 0.33_795_515 _UpperCAmelCase = 112.48_518 _UpperCAmelCase = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.4_194_127 _UpperCAmelCase = 0.35_375_586 _UpperCAmelCase = 0.5_638_502 _UpperCAmelCase = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
133
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Any = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A__ : Tuple = logging.get_logger(__name__) A__ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : List[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Optional[int] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : int = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Dict = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } A__ : Dict = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } A__ : Any = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } A__ : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A__ : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A__ : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase :Dict = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ : Union[str, Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A__ : Union[str, Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A__ : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(snake_case__ ) class lowercase__ : def __call__( self : List[str] , snake_case__ : List[str] , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Union[bool, str] = False , snake_case__ : Union[bool, str] = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[bool] = None , **snake_case__ : Tuple , ): if titles is None and texts is None: return super().__call__( snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) elif titles is None or texts is None: lowerCamelCase_ : Dict =titles if texts is None else texts return super().__call__( snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Tuple =titles if not isinstance(snake_case__ , snake_case__ ) else [titles] lowerCamelCase_ : List[str] =texts if not isinstance(snake_case__ , snake_case__ ) else [texts] lowerCamelCase_ : int =len(snake_case__ ) lowerCamelCase_ : Any =questions if not isinstance(snake_case__ , snake_case__ ) else [questions] * n_passages if len(snake_case__ ) != len(snake_case__ ): raise ValueError( F"""There should be as many titles than texts but got {len(snake_case__ )} titles and {len(snake_case__ )} texts.""" ) lowerCamelCase_ : Any =super().__call__(snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ )["input_ids"] lowerCamelCase_ : Union[str, Any] =super().__call__(snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ )["input_ids"] lowerCamelCase_ : str ={ "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case__ , snake_case__ ) ] } if return_attention_mask is not False: lowerCamelCase_ : List[Any] =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ : Optional[int] =attention_mask return self.pad(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : BatchEncoding , snake_case__ : DPRReaderOutput , snake_case__ : int = 16 , snake_case__ : int = 64 , snake_case__ : int = 4 , ): lowerCamelCase_ : str =reader_input["input_ids"] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : str =reader_output[:3] lowerCamelCase_ : List[Any] =len(snake_case__ ) lowerCamelCase_ : Any =sorted(range(snake_case__ ) , reverse=snake_case__ , key=relevance_logits.__getitem__ ) lowerCamelCase_ : List[DPRReaderOutput] =[] for doc_id in sorted_docs: lowerCamelCase_ : int =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ : List[Any] =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ : Optional[int] =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ : int =len(snake_case__ ) lowerCamelCase_ : int =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case__ , top_spans=snake_case__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case__ , start_index=snake_case__ , end_index=snake_case__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__ ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] , snake_case__ : int , snake_case__ : int , ): lowerCamelCase_ : Any =[] for start_index, start_score in enumerate(snake_case__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ : List[str] =sorted(snake_case__ , key=lambda snake_case__ : x[1] , reverse=snake_case__ ) lowerCamelCase_ : List[Any] =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) lowerCamelCase_ : Tuple =end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case__ ) class lowercase__ ( snake_case__, snake_case__ ): _UpperCAmelCase :List[str] = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :int = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Optional[Any] = ["input_ids", "attention_mask"]
209
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = "audio-spectrogram-transformer" def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3_072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=1_024 , __UpperCAmelCase=128 , **__UpperCAmelCase , ) -> int: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : Any = patch_size __UpperCAmelCase : int = qkv_bias __UpperCAmelCase : str = frequency_stride __UpperCAmelCase : List[str] = time_stride __UpperCAmelCase : Optional[Any] = max_length __UpperCAmelCase : int = num_mel_bins
254
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase_ ( lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : List[str] = FileLock(str(tmpdir / """foo.lock""" ) ) __UpperCAmelCase : Any = 0.01 with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = time.time() locka.acquire(lowerCAmelCase__ ) assert time.time() - _start > timeout def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = """a""" * 1000 + """.lock""" __UpperCAmelCase : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowerCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __UpperCAmelCase : Union[str, Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase__ ): locka.acquire(0 )
254
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ ): if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(A_ ) * abs(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
74
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = [] for line in lines: lowerCAmelCase__ : int = re.sub(r'''#.*''' , '''''' , A_ ) # remove comments if line: filtered_lines.append(A_ ) lowerCAmelCase__ : Optional[int] = '''\n'''.join(A_ ) # Make a hash from all this code lowerCAmelCase__ : int = full_str.encode('''utf-8''' ) return shaaaa(A_ ).hexdigest() # get importable module names and hash for caching __UpperCamelCase : Any = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __UpperCamelCase : Optional[Any] = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __UpperCamelCase : Union[str, Any] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name __UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
74
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[Any] = logging.get_logger(__name__) A__ : List[Any] = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( UpperCamelCase_ ): _a = '''poolformer''' def __init__( self : int , A_ : List[str]=3 , A_ : List[Any]=1_6 , A_ : Union[str, Any]=1_6 , A_ : Optional[Any]=3 , A_ : Optional[Any]=4.0 , A_ : Union[str, Any]=[2, 2, 6, 2] , A_ : Optional[int]=[6_4, 1_2_8, 3_2_0, 5_1_2] , A_ : List[Any]=[7, 3, 3, 3] , A_ : str=[4, 2, 2, 2] , A_ : List[str]=[2, 1, 1, 1] , A_ : int=4 , A_ : Any=0.0 , A_ : List[Any]="gelu" , A_ : Tuple=True , A_ : Optional[Any]=1e-5 , A_ : Optional[Any]=0.02 , **A_ : Any , ): lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : Tuple = stride lowerCAmelCase_ : Dict = padding lowerCAmelCase_ : List[str] = pool_size lowerCAmelCase_ : Optional[int] = hidden_sizes lowerCAmelCase_ : Optional[Any] = mlp_ratio lowerCAmelCase_ : Optional[int] = depths lowerCAmelCase_ : int = patch_sizes lowerCAmelCase_ : int = strides lowerCAmelCase_ : Dict = num_encoder_blocks lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : List[str] = use_layer_scale lowerCAmelCase_ : Optional[Any] = layer_scale_init_value lowerCAmelCase_ : Any = initializer_range super().__init__(**A_) class __snake_case ( UpperCamelCase_ ): _a = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : List[str]): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase__ ( self : List[str]): return 2e-3
103
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __snake_case : def __init__( self : Tuple , A_ : Any , A_ : Tuple=1_3 , A_ : str=7 , A_ : Any=True , A_ : Union[str, Any]=True , A_ : int=False , A_ : int=True , A_ : List[Any]=9_9 , A_ : Dict=6_4 , A_ : int=5 , A_ : List[Any]=4 , A_ : Optional[Any]=6_4 , A_ : str="gelu" , A_ : Union[str, Any]=0.1 , A_ : List[Any]=0.1 , A_ : Any=5_1_2 , A_ : Union[str, Any]=1_6 , A_ : str=2 , A_ : Any=0.02 , A_ : str=3 , A_ : Optional[int]=4 , A_ : int=None , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : List[Any] = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : Tuple = use_token_type_ids lowerCAmelCase_ : List[Any] = use_labels lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = num_labels lowerCAmelCase_ : List[str] = num_choices lowerCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Dict): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''') def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ : int = None if self.use_input_mask: lowerCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase_ : Any = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Dict , A_ : Dict , A_ : int , A_ : Tuple , A_ : List[str] , A_ : str , A_ : List[Any]): lowerCAmelCase_ : int = MPNetModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Any = model(A_ , A_) lowerCAmelCase_ : Union[str, Any] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self : List[str] , A_ : Union[str, Any] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any): lowerCAmelCase_ : Any = MPNetForQuestionAnswering(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple , A_ : List[str] , A_ : Optional[Any] , A_ : Dict , A_ : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Any = MPNetForSequenceClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : Dict = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple , A_ : Dict , A_ : Tuple , A_ : Dict , A_ : List[str] , A_ : List[Any]): lowerCAmelCase_ : int = self.num_choices lowerCAmelCase_ : List[str] = MPNetForMultipleChoice(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : Optional[int] = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Any , A_ : int , A_ : Any , A_ : List[Any] , A_ : Any , A_ : Union[str, Any]): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Tuple = MPNetForTokenClassification(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[int] = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) : Union[str, Any] = config_and_inputs lowerCAmelCase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _a = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = True def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = MPNetModelTester(self) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=A_ , hidden_size=3_7) def UpperCAmelCase__ ( self : Any): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*A_) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*A_) @require_torch class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = MPNetModel.from_pretrained('''microsoft/mpnet-base''') lowerCAmelCase_ : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowerCAmelCase_ : Union[str, Any] = model(A_)[0] lowerCAmelCase_ : Optional[int] = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , A_) lowerCAmelCase_ : Tuple = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4))
103
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """▁""" __lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCAmelCase = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } __lowerCAmelCase = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple ,_a : str ,_a : Any="<s>" ,_a : Optional[Any]="</s>" ,_a : Union[str, Any]="</s>" ,_a : Union[str, Any]="<s>" ,_a : Optional[int]="<unk>" ,_a : Union[str, Any]="<pad>" ,_a : int="<mask>" ,_a : Optional[Dict[str, Any]] = None ,**_a : int ,): '''simple docstring''' _a : Optional[int] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token _a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,mask_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) _a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _a : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _a : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a : List[str] = 1 _a : Tuple = len(self.sp_model ) + self.fairseq_offset _a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ): '''simple docstring''' _a : List[Any] = self.__dict__.copy() _a : Optional[Any] = None _a : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any ,_a : int ): '''simple docstring''' _a : Optional[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : str = {} _a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowercase ( self : List[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[str] = [self.cls_token_id] _a : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __lowercase ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[Any] = [self.sep_token_id] _a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowercase ( self : int ): '''simple docstring''' _a : Union[str, Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Tuple ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def __lowercase ( self : Optional[int] ,_a : Dict ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a : Optional[Any] = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowercase ( self : List[str] ,_a : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self : Dict ,_a : Union[str, Any] ): '''simple docstring''' _a : Dict = ''.join(_a ).replace(_a ,' ' ).strip() return out_string def __lowercase ( self : Any ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Any = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,'wb' ) as fi: _a : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
5
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase_ (__a : str = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _a : List[str] = BeautifulSoup(requests.get(__a ).text , 'html.parser' ) _a : Dict = soup.findAll('h1' ) _a : Union[str, Any] = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
import logging import os import threading import time try: import warnings except ImportError: UpperCAmelCase : List[Any] = None try: import msvcrt except ImportError: UpperCAmelCase : int = None try: import fcntl except ImportError: UpperCAmelCase : Optional[int] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCAmelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ UpperCAmelCase : List[str] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] UpperCAmelCase : Union[str, Any] = """3.0.12""" UpperCAmelCase : List[Any] = None def _A ( ): """simple docstring""" global _logger a__ : List[Any] =_logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : List[str] =lock_file return None def __str__( self ) -> Any: '''simple docstring''' a__ : Tuple =F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Any =lock return None def __enter__( self ) -> Optional[int]: '''simple docstring''' return self.lock def __exit__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=-1 , lowerCAmelCase__=None ) -> Tuple: '''simple docstring''' a__ : List[Any] =max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long a__ : int =self.hash_filename_if_too_long(lowerCAmelCase__ , lowerCAmelCase__ ) # The path to the lock file. a__ : Dict =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a__ : List[Any] =None # The default timeout value. a__ : Any =timeout # We use this lock primarily for the lock counter. a__ : int =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a__ : Dict =0 return None @property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return self._lock_file @property def _lowercase ( self ) -> Any: '''simple docstring''' return self._timeout @timeout.setter def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Dict =float(lowerCAmelCase__ ) return None def _lowercase ( self ) -> Any: '''simple docstring''' raise NotImplementedError() def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() @property def _lowercase ( self ) -> Dict: '''simple docstring''' return self._lock_file_fd is not None def _lowercase ( self , lowerCAmelCase__=None , lowerCAmelCase__=0.05 ) -> Dict: '''simple docstring''' if timeout is None: a__ : str =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a__ : str =id(self ) a__ : Optional[int] =self._lock_file a__ : Union[str, Any] =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a__ : str =max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowercase ( self , lowerCAmelCase__=False ) -> Tuple: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a__ : Optional[Any] =id(self ) a__ : Optional[Any] =self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() a__ : List[Any] =0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> str: '''simple docstring''' self.acquire() return self def __exit__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' self.release() return None def __del__( self ) -> Optional[int]: '''simple docstring''' self.release(force=lowerCAmelCase__ ) return None def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : List[str] =os.path.basename(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > max_length and max_length > 0: a__ : Tuple =os.path.dirname(lowerCAmelCase__ ) a__ : Optional[int] =str(hash(lowerCAmelCase__ ) ) a__ : Tuple =filename[: max_length - len(lowerCAmelCase__ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) else: return path class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=-1 , lowerCAmelCase__=None ) -> Optional[Any]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) a__ : Any ="\\\\?\\" + relative_to_absolute_path(self.lock_file ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Any =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a__ : str =os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCAmelCase__ ) else: a__ : str =fd return None def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self._lock_file_fd a__ : List[str] =None msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=-1 , lowerCAmelCase__=None ) -> Any: '''simple docstring''' a__ : Tuple =os.statvfs(os.path.dirname(lowerCAmelCase__ ) ).f_namemax super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =os.O_RDWR | os.O_CREAT | os.O_TRUNC a__ : Dict =os.open(self._lock_file , lowerCAmelCase__ ) try: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCAmelCase__ ) else: a__ : Tuple =fd return None def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self._lock_file_fd a__ : str =None fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN ) os.close(lowerCAmelCase__ ) return None class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a__ : List[str] =os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: a__ : Optional[int] =fd return None def _lowercase ( self ) -> List[Any]: '''simple docstring''' os.close(self._lock_file_fd ) a__ : List[Any] =None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None UpperCAmelCase : List[Any] = None if msvcrt: UpperCAmelCase : Tuple = WindowsFileLock elif fcntl: UpperCAmelCase : Optional[int] = UnixFileLock else: UpperCAmelCase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
95
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 0: return [] a__ , a__ : int =min(SCREAMING_SNAKE_CASE ), max(SCREAMING_SNAKE_CASE ) a__ : Optional[int] =int(max_value - min_value ) + 1 a__ : list[list] =[[] for _ in range(SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
95
1
'''simple docstring''' from __future__ import annotations import bisect def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> int: if hi < 0: lowercase_ : int = len(UpperCAmelCase__ ) while lo < hi: lowercase_ : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase_ : Optional[Any] = mid + 1 else: lowercase_ : Dict = mid return lo def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> int: if hi < 0: lowercase_ : Union[str, Any] = len(UpperCAmelCase__ ) while lo < hi: lowercase_ : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase_ : List[Any] = mid + 1 else: lowercase_ : Union[str, Any] = mid return lo def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> None: sorted_collection.insert(bisect_left(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> None: sorted_collection.insert(bisect_right(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> int | None: lowercase_ : Optional[int] = 0 lowercase_ : Optional[Any] = len(UpperCAmelCase__ ) - 1 while left <= right: lowercase_ : List[str] = left + (right - left) // 2 lowercase_ : Optional[int] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase_ : Union[str, Any] = midpoint - 1 else: lowercase_ : Optional[Any] = midpoint + 1 return None def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> int | None: lowercase_ : Optional[Any] = bisect.bisect_left(UpperCAmelCase__ , UpperCAmelCase__ ) if index != len(UpperCAmelCase__ ) and sorted_collection[index] == item: return index return None def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int | None: if right < left: return None lowercase_ : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCAmelCase__ , UpperCAmelCase__ , midpoint + 1 , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : List[Any] = input("Enter numbers separated by comma:\n").strip() _lowercase : Optional[Any] = sorted(int(item) for item in user_input.split(",")) _lowercase : str = int(input("Enter a single number to be found in the list:\n")) _lowercase : List[Any] = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
21
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
1
'''simple docstring''' lowerCAmelCase : Tuple =range(2, 20 + 1) lowerCAmelCase : str =[10**k for k in range(ks[-1] + 1)] lowerCAmelCase : Optional[Any] ={} def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ): lowercase_ :Optional[int] = sum(a_i[j] for j in range(__snake_case ,len(__snake_case ) ) ) lowercase_ :str = sum(a_i[j] * base[j] for j in range(min(len(__snake_case ) ,__snake_case ) ) ) lowercase_ , lowercase_ :Dict = 0, 0 lowercase_ :List[str] = n - i lowercase_ :Dict = memo.get(__snake_case ) if sub_memo is not None: lowercase_ :int = sub_memo.get(__snake_case ) if jumps is not None and len(__snake_case ) > 0: # find and make the largest jump without going over lowercase_ :int = -1 for _k in range(len(__snake_case ) - 1 ,-1 ,-1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase_ :List[str] = _k break if max_jump >= 0: lowercase_ , lowercase_ , lowercase_ :Dict = jumps[max_jump] # since the difference between jumps is cached, add c lowercase_ :Optional[int] = diff + c for j in range(min(__snake_case ,len(__snake_case ) ) ): lowercase_ , lowercase_ :List[Any] = divmod(__snake_case ,10 ) if new_c > 0: add(__snake_case ,__snake_case ,__snake_case ) else: lowercase_ :Optional[int] = [] else: lowercase_ :List[str] = {c: []} lowercase_ :List[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase_ , lowercase_ :Dict = next_term(__snake_case ,k - 1 ,i + dn ,__snake_case ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase_ , lowercase_ :str = compute(__snake_case ,__snake_case ,i + dn ,__snake_case ) diff += _diff dn += terms_jumped lowercase_ :Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase_ :Dict = 0 while j < len(__snake_case ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__snake_case ,(diff, dn, k) ) return (diff, dn) def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : str ): if i >= n: return 0, i if k > len(__snake_case ): a_i.extend([0 for _ in range(k - len(__snake_case ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase_ :Any = i lowercase_ , lowercase_ , lowercase_ :Any = 0, 0, 0 for j in range(len(__snake_case ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase_ :Optional[int] = ds_c + ds_b diff += addend lowercase_ :int = 0 for j in range(__snake_case ): lowercase_ :Optional[Any] = a_i[j] + addend lowercase_ , lowercase_ :List[str] = divmod(__snake_case ,10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__snake_case ,__snake_case ,__snake_case ) return diff, i - start_i def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ): for j in range(__snake_case ,len(__snake_case ) ): lowercase_ :Tuple = digits[j] + addend if s >= 10: lowercase_ , lowercase_ :Any = divmod(__snake_case ,10 ) lowercase_ :Optional[Any] = addend // 10 + quotient else: lowercase_ :Any = s lowercase_ :Dict = addend // 10 if addend == 0: break while addend > 0: lowercase_ , lowercase_ :Union[str, Any] = divmod(__snake_case ,10 ) digits.append(__snake_case ) def UpperCAmelCase_ ( __lowerCamelCase : List[Any] = 10**15 ): lowercase_ :Dict = [1] lowercase_ :Dict = 1 lowercase_ :Union[str, Any] = 0 while True: lowercase_ , lowercase_ :Tuple = next_term(__snake_case ,20 ,i + dn ,__snake_case ) dn += terms_jumped if dn == n - i: break lowercase_ :Optional[Any] = 0 for j in range(len(__snake_case ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
223
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=6_4 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = embedding_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_choices lowerCamelCase__ = MegatronBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True # test_resize_embeddings = False lowerCAmelCase_ = False def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = MegatronBertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCAmelCase ) def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' return torch.tensor( __snake_case ,dtype=torch.long ,device=__snake_case ,) _a = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: lowerCamelCase__ = os.path.join(os.environ['''MYDIR'''] , __lowerCAmelCase ) lowerCamelCase__ = MegatronBertModel.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.half() lowerCamelCase__ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ = model(__lowerCAmelCase )[0] lowerCamelCase__ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __lowerCAmelCase ) lowerCamelCase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase__ = output[0, ii, jj] lowerCamelCase__ = expected[3 * ii + jj] lowerCamelCase__ = '''ii={} jj={} a={} b={}'''.format(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(math.isclose(__lowerCAmelCase , __lowerCAmelCase , rel_tol=__lowerCAmelCase , abs_tol=__lowerCAmelCase ) , msg=__lowerCAmelCase )
209
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCamelCase_ : int = logging.get_logger(__name__) class _UpperCamelCase ( a_ ): '''simple docstring''' def __init__( self : int , *snake_case_ : Optional[int] , **snake_case_ : Optional[Any] ): warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
364
def A__ ( lowerCamelCase , lowerCamelCase ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(lowerCamelCase ) * abs(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
223
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _snake_case ( snake_case__ : Union[str, Any] ): A = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Any = StableDiffusionLatentUpscalePipeline _lowerCamelCase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _lowerCamelCase: List[str] = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _lowerCamelCase: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase: Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase: Optional[int] = frozenset([] ) _lowerCamelCase: Tuple = True @property def _SCREAMING_SNAKE_CASE ( self : str ) -> str: A = 1 A = 4 A = (16, 16) A = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(A_ ) return image def _SCREAMING_SNAKE_CASE ( self : int ) -> str: torch.manual_seed(0 ) A = UNetaDConditionModel( act_fn='gelu' ,attention_head_dim=8 ,norm_num_groups=A_ ,block_out_channels=[32, 32, 64, 64] ,time_cond_proj_dim=160 ,conv_in_kernel=1 ,conv_out_kernel=1 ,cross_attention_dim=32 ,down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) ,in_channels=8 ,mid_block_type=A_ ,only_cross_attention=A_ ,out_channels=5 ,resnet_time_scale_shift='scale_shift' ,time_embedding_type='fourier' ,timestep_post_act='gelu' ,up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') ,) A = AutoencoderKL( block_out_channels=[32, 32, 64, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) A = EulerDiscreteScheduler(prediction_type='sample' ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='quick_gelu' ,projection_dim=512 ,) A = CLIPTextModel(A_ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Union[str, Any]=0 ) -> List[Any]: if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 256, 256, 3) ) A = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_ ,1e-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().test_save_load_local(expected_max_difference=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] A = self.get_dummy_components() A = self.pipeline_class(**A_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 2 A = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A = getattr(A_ ,scheduler_enum.name ) A = scheduler_cls.from_config(pipe.scheduler.config ) A = pipe(**A_ )[0] outputs.append(A_ ) assert check_same_shape(A_ ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = torch.manual_seed(33 ) A = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ,torch_dtype=torch.floataa ) pipe.to('cuda' ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' ,torch_dtype=torch.floataa ) upscaler.to('cuda' ) A = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' A = pipe(A_ ,generator=A_ ,output_type='latent' ).images A = upscaler( prompt=A_ ,image=A_ ,num_inference_steps=20 ,guidance_scale=0 ,generator=A_ ,output_type='np' ,).images[0] A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = torch.manual_seed(33 ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' ,torch_dtype=torch.floataa ) upscaler.to('cuda' ) A = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) A = upscaler( prompt=A_ ,image=A_ ,num_inference_steps=20 ,guidance_scale=0 ,generator=A_ ,output_type='np' ,).images[0] A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5e-2
74
"""simple docstring""" import argparse import struct import unittest class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple ,A_ : bytes ) -> None: A = data # Initialize hash values A = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants A = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes: A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64)) A = struct.pack('>Q' ,(len(A_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None: # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' ,A_ ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 ) A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int: return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: import hashlib A = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() ) def _snake_case ( ): import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A = f.read() else: A = bytes(snake_case__ , 'utf-8' ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
74
1
"""simple docstring""" def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: '''simple docstring''' if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase : List[str] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase : List[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: lowercase : str = sylvester(number - 1 ) lowercase : Union[str, Any] = num - 1 lowercase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
53
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '''▁''' UpperCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase__ = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } UpperCAmelCase__ = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] def __init__(self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowercase =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token _lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) _lowercase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowercase ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase =1 _lowercase =len(self.sp_model ) + self.fairseq_offset _lowercase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Optional[int]: _lowercase =self.__dict__.copy() _lowercase =None _lowercase =self.sp_model.serialized_model_proto() return state def __setstate__(self , UpperCAmelCase ) -> List[str]: _lowercase =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowercase ={} _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase =[self.cls_token_id] _lowercase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A (self ) -> List[Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __A (self ) -> Any: _lowercase ={self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A (self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase =self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A (self , UpperCAmelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A (self , UpperCAmelCase ) -> List[Any]: _lowercase =''''''.join(UpperCAmelCase ).replace(UpperCAmelCase , ''' ''' ).strip() return out_string def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowercase =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , '''wb''' ) as fi: _lowercase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
5
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
1
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: return np.maximum(0, UpperCAmelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
101
'''simple docstring''' import math import sys def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if number != int(UpperCAmelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 A_ = [-1] * (number + 1) A_ = 0 for i in range(1, number + 1 ): A_ = sys.maxsize A_ = int(math.sqrt(UpperCAmelCase__ ) ) for j in range(1, root + 1 ): A_ = 1 + answers[i - (j**2)] A_ = min(UpperCAmelCase__, UpperCAmelCase__ ) A_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
101
1
import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE : List[Any] = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE : int = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def UpperCamelCase_( lowerCamelCase_ ) -> str: re.sub('<n>' , '' , lowerCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase_ ) )
21
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function A : Dict = 1.054571817e-34 # unit of ℏ : J * s A : int = 3e8 # unit of c : m * s^-1 def __lowerCamelCase ( __a :float , __a :float , __a :float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: A__ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: A__ = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: A__ = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
276
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Optional[Any] = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Optional[Any] ={ 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a_ ( unittest.TestCase ): def __init__( self : List[str] , lowercase : str , lowercase : Union[str, Any]=13 , lowercase : int=7 , lowercase : List[str]=True , lowercase : int=True , lowercase : str=True , lowercase : Any=True , lowercase : List[str]=99 , lowercase : Union[str, Any]=32 , lowercase : Optional[Any]=5 , lowercase : Dict=4 , lowercase : Dict=37 , lowercase : Dict="gelu" , lowercase : Optional[int]=0.1 , lowercase : str=0.1 , lowercase : List[Any]=512 , lowercase : str=16 , lowercase : Dict=2 , lowercase : Any=0.02 , lowercase : Any=4 , ): """simple docstring""" lowercase_ :List[str] = parent lowercase_ :Any = batch_size lowercase_ :Dict = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Optional[int] = use_attention_mask lowercase_ :Any = use_token_type_ids lowercase_ :Union[str, Any] = use_labels lowercase_ :Dict = vocab_size lowercase_ :Tuple = hidden_size lowercase_ :Tuple = num_hidden_layers lowercase_ :Optional[int] = num_attention_heads lowercase_ :Optional[Any] = intermediate_size lowercase_ :str = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Tuple = max_position_embeddings lowercase_ :Any = type_vocab_size lowercase_ :int = type_sequence_label_size lowercase_ :Tuple = initializer_range lowercase_ :Optional[Any] = num_choices def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Union[str, Any] = None if self.use_attention_mask: lowercase_ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ :List[str] = None if self.use_token_type_ids: lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Any = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :Union[str, Any] = config_and_inputs lowercase_ :Dict = True lowercase_ :Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = True __A = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[Any] = FlaxBertModelTester(self ) @slow def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :List[str] = FlaxBertModel.from_pretrained("bert-base-cased" ) lowercase_ :str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase )
223
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : str = '''▁''' __UpperCamelCase : Any = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __UpperCamelCase : List[Any] = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __UpperCamelCase : Dict = { '''facebook/s2t-small-librispeech-asr''': 1_0_2_4, } __UpperCamelCase : Dict = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __UpperCamelCase : str = {'''mustc''': MUSTC_LANGS} class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = MAX_MODEL_INPUT_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = [] def __init__( self : Tuple ,lowercase_ : int ,lowercase_ : str ,lowercase_ : Union[str, Any]="<s>" ,lowercase_ : Optional[Any]="</s>" ,lowercase_ : Dict="<pad>" ,lowercase_ : Any="<unk>" ,lowercase_ : Optional[int]=False ,lowercase_ : Optional[Any]=False ,lowercase_ : Any=None ,lowercase_ : Optional[int]=None ,lowercase_ : Optional[Dict[str, Any]] = None ,**lowercase_ : Optional[Any] ,): lowerCAmelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,pad_token=lowercase_ ,do_upper_case=lowercase_ ,do_lower_case=lowercase_ ,tgt_lang=lowercase_ ,lang_codes=lowercase_ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase_ ,) lowerCAmelCase__ : Optional[int] = do_upper_case lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : Dict = load_json(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : Optional[Any] = spm_file lowerCAmelCase__ : List[str] = load_spm(lowercase_ ,self.sp_model_kwargs ) if lang_codes is not None: lowerCAmelCase__ : Optional[Any] = lang_codes lowerCAmelCase__ : Optional[Any] = LANGUAGES[lang_codes] lowerCAmelCase__ : int = [F'<lang:{lang}>' for lang in self.langs] lowerCAmelCase__ : Tuple = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} lowerCAmelCase__ : List[str] = self.lang_tokens lowerCAmelCase__ : Tuple = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCAmelCase__ : Optional[Any] = {} @property def __lowerCAmelCase ( self : Dict ): return len(self.encoder ) @property def __lowerCAmelCase ( self : Tuple ): return self._tgt_lang @tgt_lang.setter def __lowerCAmelCase ( self : str ,lowercase_ : int ): lowerCAmelCase__ : List[str] = new_tgt_lang self.set_tgt_lang_special_tokens(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ): lowerCAmelCase__ : List[Any] = self.lang_code_to_id[tgt_lang] lowerCAmelCase__ : Union[str, Any] = [lang_code_id] def __lowerCAmelCase ( self : Dict ,lowercase_ : str ): return self.sp_model.encode(lowercase_ ,out_type=lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : Union[str, Any] ): return self.encoder.get(lowercase_ ,self.encoder[self.unk_token] ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : int ): return self.decoder.get(lowercase_ ,self.unk_token ) def __lowerCAmelCase ( self : str ,lowercase_ : List[str] ): lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : Union[str, Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCAmelCase__ : Optional[int] = self.sp_model.decode(lowercase_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCAmelCase__ : int = [] else: current_sub_tokens.append(lowercase_ ) lowerCAmelCase__ : Dict = self.sp_model.decode(lowercase_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __lowerCAmelCase ( self : Tuple ,lowercase_ : int ,lowercase_ : List[Any]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ,lowercase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ ,token_ids_a=lowercase_ ,already_has_special_tokens=lowercase_ ) lowerCAmelCase__ : int = [1] * len(self.prefix_tokens ) lowerCAmelCase__ : List[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Dict = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): lowerCAmelCase__ : Optional[int] = self.__dict__.copy() lowerCAmelCase__ : str = None return state def __setstate__( self : List[str] ,lowercase_ : Dict ): lowerCAmelCase__ : List[Any] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowerCAmelCase__ : List[str] = {} lowerCAmelCase__ : int = load_spm(self.spm_file ,self.sp_model_kwargs ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : str ,lowercase_ : Optional[str] = None ): lowerCAmelCase__ : Optional[Any] = Path(lowercase_ ) assert save_dir.is_dir(), F'{save_directory} should be a directory' lowerCAmelCase__ : Union[str, Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCAmelCase__ : List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder ,lowercase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,lowercase_ ) elif not os.path.isfile(self.spm_file ): with open(lowercase_ ,'''wb''' ) as fi: lowerCAmelCase__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (str(lowercase_ ), str(lowercase_ )) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : List[str] = sentencepiece.SentencePieceProcessor(**A_ ) spm.Load(str(A_ ) ) return spm def __SCREAMING_SNAKE_CASE ( A_ ): with open(A_ , '''r''' ) as f: return json.load(A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): with open(A_ , '''w''' ) as f: json.dump(A_ , A_ , indent=2 )
74
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A_ , 2 ) + pow(A_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
74
1
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __lowerCamelCase = qiskit.QuantumCircuit(__lowercase , __lowercase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(__lowercase , __lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowercase ) if __name__ == "__main__": UpperCAmelCase_ = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
12
'''simple docstring''' from __future__ import annotations from typing import Any class snake_case ( __lowerCamelCase ): """simple docstring""" pass class snake_case : """simple docstring""" def __init__( self : List[Any] , __A : Any ): __UpperCamelCase = data __UpperCamelCase = None def __iter__( self : Optional[Any] ): __UpperCamelCase = self __UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data __UpperCamelCase = node.next_node @property def _lowerCamelCase ( self : List[str] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": a__ : Dict =Node(1) a__ : Optional[int] =Node(2) a__ : List[str] =Node(3) a__ : Optional[int] =Node(4) print(root_node.has_loop) # False a__ : str =root_node.next_node print(root_node.has_loop) # True a__ : Optional[int] =Node(5) a__ : List[Any] =Node(6) a__ : int =Node(5) a__ : Tuple =Node(6) print(root_node.has_loop) # False a__ : str =Node(1) print(root_node.has_loop) # False
53
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } _snake_case = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } _snake_case = '''</w>''' _snake_case = '''@@ ''' def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: __UpperCAmelCase : Any = set() __UpperCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[int] = char return pairs # Speech2Text2 has no max input length _snake_case = {'''facebook/s2t-wav2vec2-large-en-de''': 1024} class _snake_case ( _lowercase ): lowerCamelCase__: int = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: Dict="<unk>" , __lowerCamelCase: List[str]=False , __lowerCamelCase: Union[str, Any]=None , **__lowerCamelCase: int , ) -> Dict: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = do_lower_case with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[str] = json.load(__lowerCamelCase ) __UpperCAmelCase : int = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[str] = None else: with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : Optional[Any] = merges_handle.read().split("\n" )[:-1] __UpperCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] __UpperCAmelCase : Union[str, Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : Optional[Any] = {} @property def _lowerCamelCase ( self: int ) -> int: return len(self.decoder ) def _lowerCamelCase ( self: Any ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : List[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : List[str] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : int = [] __UpperCAmelCase : Union[str, Any] = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Tuple = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Any = tuple(__lowerCamelCase ) __UpperCAmelCase : List[Any] = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : str = get_pairs(__lowerCamelCase ) __UpperCAmelCase : List[Any] = " ".join(__lowerCamelCase ) if word == "\n " + BPE_TOKEN_MERGES: __UpperCAmelCase : str = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase ): __UpperCAmelCase : Dict = word.replace(__lowerCamelCase , "" ) __UpperCAmelCase : Dict = word.replace(" " , __lowerCamelCase ) __UpperCAmelCase : Dict = word return word def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> Dict: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: __UpperCAmelCase : str = text.lower() __UpperCAmelCase : List[Any] = text.split() __UpperCAmelCase : Tuple = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(" " ) ) ) return split_tokens def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str ) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int ) -> str: __UpperCAmelCase : Any = self.decoder.get(__lowerCamelCase , self.unk_token ) return result def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] ) -> str: __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) # make sure @@ tokens are concatenated __UpperCAmelCase : Union[str, Any] = "".join(string.split(__lowerCamelCase ) ) return string def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[int] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Union[str, Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
342
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , lowerCAmelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , lowerCAmelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def UpperCamelCase ( ): '''simple docstring''' # pandas.read_csv is not present in _test_patching lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , lowerCAmelCase__ ): pass def UpperCamelCase ( ): '''simple docstring''' # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , lowerCAmelCase__ ) is None with patch_submodule(_test_patching , '''len''' , lowerCAmelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def UpperCamelCase ( ): '''simple docstring''' lowercase = '''__test_patch_submodule_start_and_stop_mock__''' lowercase = patch_submodule(_test_patching , '''open''' , lowerCAmelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase = '''__test_patch_submodule_successive_join__''' lowercase = '''__test_patch_submodule_successive_dirname__''' lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , lowerCAmelCase__ ): with patch_submodule(_test_patching , '''os.rename''' , lowerCAmelCase__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , lowerCAmelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , lowerCAmelCase__ ): with patch_submodule(_test_patching , '''os.path.join''' , lowerCAmelCase__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , lowerCAmelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def UpperCamelCase ( ): '''simple docstring''' lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , lowerCAmelCase__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , lowerCAmelCase__ ): pass
101
from __future__ import annotations lowercase__ :Any = 1.60_21E-19 # units = C def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
101
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
370
'''simple docstring''' _lowercase : Any = range(2, 20 + 1) _lowercase : str = [10**k for k in range(ks[-1] + 1)] _lowercase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase__ ( A : int , A : str , A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = sum(a_i[j] for j in range(A , len(A ) ) ) UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) UpperCAmelCase , UpperCAmelCase = 0, 0 UpperCAmelCase = n - i UpperCAmelCase = memo.get(A ) if sub_memo is not None: UpperCAmelCase = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over UpperCAmelCase = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase = _k break if max_jump >= 0: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase = diff + c for j in range(min(A , len(A ) ) ): UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: UpperCAmelCase = [] else: UpperCAmelCase = {c: []} UpperCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase , UpperCAmelCase = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase , UpperCAmelCase = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped UpperCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : List[Any] , A : int ): '''simple docstring''' if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase = i UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase = ds_c + ds_b diff += addend UpperCAmelCase = 0 for j in range(A ): UpperCAmelCase = a_i[j] + addend UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def lowerCamelCase__ ( A : List[str] , A : Optional[int] , A : Optional[Any] ): '''simple docstring''' for j in range(A , len(A ) ): UpperCAmelCase = digits[j] + addend if s >= 10: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) UpperCAmelCase = addend // 10 + quotient else: UpperCAmelCase = s UpperCAmelCase = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) digits.append(A ) def lowerCamelCase__ ( A : int = 10**15 ): '''simple docstring''' UpperCAmelCase = [1] UpperCAmelCase = 1 UpperCAmelCase = 0 while True: UpperCAmelCase , UpperCAmelCase = next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break UpperCAmelCase = 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
91
0
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A__ ( unittest.TestCase ): __UpperCamelCase : Tuple = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __UpperCamelCase : Any = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict ) -> Any: '''simple docstring''' _a : Optional[Any] =AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE ) # test with a raw waveform _a : List[Any] =np.zeros((3_4_0_0_0,) ) _a : Any =np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _a , _a : List[Any] =examples _a : Dict =audio_classifier(SCREAMING_SNAKE_CASE ) # by default a model is initialized with num_labels=2 self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )}, {"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) _a : List[str] =audio_classifier(SCREAMING_SNAKE_CASE , top_k=1 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) self.run_torchaudio(SCREAMING_SNAKE_CASE ) @require_torchaudio def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[int] ) -> Optional[Any]: '''simple docstring''' import datasets # test with a local file _a : int =datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _a : List[str] =dataset[0]["""audio"""]["""array"""] _a : List[Any] =audio_classifier(SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )}, {"""score""": ANY(SCREAMING_SNAKE_CASE ), """label""": ANY(SCREAMING_SNAKE_CASE )}, ] , ) @require_torch def __UpperCAmelCase ( self :Tuple ) -> List[Any]: '''simple docstring''' _a : Tuple ="""anton-l/wav2vec2-random-tiny-classifier""" _a : str =pipeline("""audio-classification""" , model=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =np.ones((8_0_0_0,) ) _a : List[str] =audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 ) _a : Optional[Any] =[ {"""score""": 0.0_842, """label""": """no"""}, {"""score""": 0.0_838, """label""": """up"""}, {"""score""": 0.0_837, """label""": """go"""}, {"""score""": 0.0_834, """label""": """right"""}, ] _a : str =[ {"""score""": 0.0_845, """label""": """stop"""}, {"""score""": 0.0_844, """label""": """on"""}, {"""score""": 0.0_841, """label""": """right"""}, {"""score""": 0.0_834, """label""": """left"""}, ] self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _a : str ={"""array""": np.ones((8_0_0_0,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _a : int =audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 ) self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' import datasets _a : Union[str, Any] ="""superb/wav2vec2-base-superb-ks""" _a : int =pipeline("""audio-classification""" , model=SCREAMING_SNAKE_CASE ) _a : Optional[Any] =datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _a : List[str] =np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _a : Union[str, Any] =audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __UpperCAmelCase ( self :Any ) -> Dict: '''simple docstring''' pass
276
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A__: Union[str, Any] = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") A__: Tuple = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image A__: Union[str, Any] = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] A__: List[Any] = requests.get(image_url).content A__: List[str] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
276
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''sentencepiece.bpe.model'''} __A = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } __A = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __A = '''▁''' class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[str]="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : str="<mask>" , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __lowerCamelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __lowerCamelCase : Union[str, Any] = vocab_file __lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __lowerCamelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __lowerCamelCase : Union[str, Any] = len(self.sp_model ) - 1 __lowerCamelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCamelCase__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Tuple = [self.cls_token_id] __lowerCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : str = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self : Dict ): return len(self.sp_model ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Any = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : str ): return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase : Tuple = self.sp_model.PieceToId(UpperCAmelCase ) return spm_id if spm_id else self.unk_token_id def lowerCamelCase__ ( self : str , UpperCAmelCase : List[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : Tuple ): __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Union[str, Any] = "" __lowerCamelCase : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __lowerCamelCase : int = True __lowerCamelCase : Any = [] else: current_sub_tokens.append(UpperCAmelCase ) __lowerCamelCase : Optional[int] = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self : Optional[Any] ): __lowerCamelCase : str = self.__dict__.copy() __lowerCamelCase : Any = None return state def __setstate__( self : Dict , UpperCAmelCase : Dict ): __lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowerCamelCase : Any = {} __lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase : List[str] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
64
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( a__ ): def __init__( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __lowerCamelCase : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : str , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : float = 0.0 , UpperCAmelCase : int = 50 , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCAmelCase ): __lowerCamelCase : Any = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __lowerCamelCase : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCamelCase : str = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase : Any = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCamelCase : Union[str, Any] = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , eta=UpperCAmelCase , use_clipped_model_output=UpperCAmelCase , generator=UpperCAmelCase ).prev_sample __lowerCamelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : str = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
64
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: A = 'ZinengTang/tvlt-base' A = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,**A_ : Optional[Any] ) -> List[Any]: return TvltImageProcessor.from_pretrained(self.checkpoint ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,**A_ : int ) -> Optional[int]: return TvltFeatureExtractor.from_pretrained(self.checkpoint ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=A_ ,feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) A = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor ,A_ ) self.assertIsInstance(processor.image_processor ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=A_ ,feature_extractor=A_ ) A = np.ones([1_2000] ) A = feature_extractor(A_ ,return_tensors='np' ) A = processor(audio=A_ ,return_tensors='np' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=A_ ,feature_extractor=A_ ) A = np.ones([3, 224, 224] ) A = image_processor(A_ ,return_tensors='np' ) A = processor(images=A_ ,return_tensors='np' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> int: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=A_ ,feature_extractor=A_ ) A = np.ones([1_2000] ) A = np.ones([3, 224, 224] ) A = processor(audio=A_ ,images=A_ ) self.assertListEqual(list(inputs.keys() ) ,['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.get_image_processor() A = self.get_feature_extractor() A = TvltProcessor(image_processor=A_ ,feature_extractor=A_ ) self.assertListEqual( processor.model_input_names ,image_processor.model_input_names + feature_extractor.model_input_names ,msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' ,)
74
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowercase = NewType('''DataClass''', Any) _lowercase = NewType('''DataClassType''', Any) def _snake_case ( snake_case__ : Tuple ): if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _snake_case ( snake_case__ : list ): A = {str(snake_case__ ): choice for choice in choices} return lambda snake_case__ : str_to_choice.get(snake_case__ , snake_case__ ) def _snake_case ( *, snake_case__ : Union[str, List[str]] = None , snake_case__ : str = None , snake_case__ : Any = dataclasses.MISSING , snake_case__ : Callable[[], Any] = dataclasses.MISSING , snake_case__ : dict = None , **snake_case__ : Any , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A = {} if aliases is not None: A = aliases if help is not None: A = help return dataclasses.field(metadata=snake_case__ , default=snake_case__ , default_factory=snake_case__ , **snake_case__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Iterable[DataClassType] def __init__( self : List[str] ,A_ : Union[DataClassType, Iterable[DataClassType]] ,**A_ : Any ) -> Optional[int]: # To make the default appear when using --help if "formatter_class" not in kwargs: A = ArgumentDefaultsHelpFormatter super().__init__(**A_ ) if dataclasses.is_dataclass(A_ ): A = [dataclass_types] A = list(A_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A_ ) @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ,A_ : dataclasses.Field ) -> Optional[Any]: A = F'--{field.name}' A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A = kwargs.pop('aliases' ,[] ) if isinstance(A_ ,A_ ): A = [aliases] A = getattr(field.type ,'__origin__' ,field.type ) if origin_type is Union or (hasattr(A_ ,'UnionType' ) and isinstance(A_ ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(A_ ) not in field.type.__args__: # filter `str` in Union A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A = getattr(field.type ,'__origin__' ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A = ( field.type.__args__[0] if isinstance(A_ ,field.type.__args__[1] ) else field.type.__args__[1] ) A = getattr(field.type ,'__origin__' ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A = {} if origin_type is Literal or (isinstance(field.type ,A_ ) and issubclass(field.type ,A_ )): if origin_type is Literal: A = field.type.__args__ else: A = [x.value for x in field.type] A = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A = field.default else: A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A = copy(A_ ) # Hack because type=bool in argparse does not behave as we want. A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A = default # This tells argparse we accept 0 or 1 value after --field_name A = '?' # This is the value that will get picked if we do --field_name (without value) A = True elif isclass(A_ ) and issubclass(A_ ,A_ ): A = field.type.__args__[0] A = '+' if field.default_factory is not dataclasses.MISSING: A = field.default_factory() elif field.default is dataclasses.MISSING: A = True else: A = field.type if field.default is not dataclasses.MISSING: A = field.default elif field.default_factory is not dataclasses.MISSING: A = field.default_factory() else: A = True parser.add_argument(A_ ,*A_ ,**A_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A = False parser.add_argument(F'--no_{field.name}' ,action='store_false' ,dest=field.name ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : DataClassType ) -> List[Any]: if hasattr(A_ ,'_argument_group_name' ): A = self.add_argument_group(dtype._argument_group_name ) else: A = self try: A = get_type_hints(A_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A_ ): A = '.'.join(map(A_ ,sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(A_ ): if not field.init: continue A = type_hints[field.name] self._parse_dataclass_field(A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Any=None ,A_ : int=False ,A_ : Any=True ,A_ : List[str]=None ,A_ : Union[str, Any]=None ,) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A = [] if args_filename: args_files.append(Path(A_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A = ArgumentParser() args_file_parser.add_argument(A_ ,type=A_ ,action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A , A = args_file_parser.parse_known_args(args=A_ ) A = vars(A_ ).get(args_file_flag.lstrip('-' ) ,A_ ) if cmd_args_file_paths: args_files.extend([Path(A_ ) for p in cmd_args_file_paths] ) A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A = file_args + args if args is not None else file_args + sys.argv[1:] A , A = self.parse_known_args(args=A_ ) A = [] for dtype in self.dataclass_types: A = {f.name for f in dataclasses.fields(A_ ) if f.init} A = {k: v for k, v in vars(A_ ).items() if k in keys} for k in keys: delattr(A_ ,A_ ) A = dtype(**A_ ) outputs.append(A_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Dict[str, Any] ,A_ : bool = False ) -> Tuple[DataClass, ...]: A = set(args.keys() ) A = [] for dtype in self.dataclass_types: A = {f.name for f in dataclasses.fields(A_ ) if f.init} A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A = dtype(**A_ ) outputs.append(A_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(A_ )}' ) return tuple(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]: with open(Path(A_ ) ,encoding='utf-8' ) as open_json_file: A = json.loads(open_json_file.read() ) A = self.parse_dict(A_ ,allow_extra_keys=A_ ) return tuple(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]: A = self.parse_dict(yaml.safe_load(Path(A_ ).read_text() ) ,allow_extra_keys=A_ ) return tuple(A_ )
74
1
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase ( A_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = MobileBertTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = MobileBertTokenizerFast SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Optional[Any] = filter_non_english SCREAMING_SNAKE_CASE_ : List[str] = "google/mobilebert-uncased" def lowerCamelCase__ ( self ): super().setUp() _lowercase : Optional[int] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowercase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowercase : Optional[int] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = "UNwant\u00E9d,running" _lowercase : Optional[int] = "unwanted, running" return input_text, output_text def lowerCamelCase__ ( self ): _lowercase : List[Any] = self.tokenizer_class(self.vocab_file ) _lowercase : Optional[int] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,[9, 6, 7, 12, 10, 11] ) def lowerCamelCase__ ( self ): if not self.test_rust_tokenizer: return _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : Optional[int] = self.get_rust_tokenizer() _lowercase : List[str] = "UNwant\u00E9d,running" _lowercase : str = tokenizer.tokenize(snake_case__ ) _lowercase : Optional[int] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : str = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : List[str] = rust_tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : int = self.get_rust_tokenizer() _lowercase : str = tokenizer.encode(snake_case__ ) _lowercase : Optional[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # With lower casing _lowercase : Optional[int] = self.get_tokenizer(do_lower_case=snake_case__ ) _lowercase : Optional[int] = self.get_rust_tokenizer(do_lower_case=snake_case__ ) _lowercase : Any = "UNwant\u00E9d,running" _lowercase : str = tokenizer.tokenize(snake_case__ ) _lowercase : Optional[Any] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : Dict = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : List[str] = rust_tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : str = self.get_rust_tokenizer() _lowercase : List[str] = tokenizer.encode(snake_case__ ) _lowercase : Optional[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase__ ( self ): _lowercase : Dict = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): _lowercase : Any = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = BasicTokenizer(do_lower_case=snake_case__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase__ ( self ): _lowercase : Any = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _lowercase : Optional[int] = {} for i, token in enumerate(snake_case__ ): _lowercase : Optional[int] = i _lowercase : Optional[Any] = WordpieceTokenizer(vocab=snake_case__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def lowerCamelCase__ ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase__ ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase__ ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(snake_case__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def lowerCamelCase__ ( self ): _lowercase : List[str] = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=snake_case__ ) _lowercase : Union[str, Any] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=snake_case__ ) _lowercase : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case__ ,snake_case__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : Dict = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : Tuple = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowercase : str = tokenizer_r.encode_plus( snake_case__ ,return_attention_mask=snake_case__ ,return_token_type_ids=snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ,) _lowercase : Dict = tokenizer_r.do_lower_case if hasattr(snake_case__ ,"""do_lower_case""" ) else False _lowercase : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def lowerCamelCase__ ( self ): _lowercase : str = ["的", "人", "有"] _lowercase : Dict = "".join(snake_case__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : str = True _lowercase : Dict = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : Tuple = tokenizer_p.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : int = tokenizer_r.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : List[str] = tokenizer_r.convert_ids_to_tokens(snake_case__ ) _lowercase : List[Any] = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case__ ,snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : List[Any] = False _lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : List[str] = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : int = tokenizer_r.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : Optional[Any] = tokenizer_p.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : Any = tokenizer_r.convert_ids_to_tokens(snake_case__ ) _lowercase : List[Any] = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that only the first Chinese character is not preceded by "##". _lowercase : Optional[int] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(snake_case__ ) ] self.assertListEqual(snake_case__ ,snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ )
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__: Tuple = logging.get_logger(__name__) __magic_name__: Any = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } __magic_name__: Optional[int] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } __magic_name__: str = "</w>" __magic_name__: Tuple = "@@ " def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = set() __magic_name__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[str] = char return pairs # Speech2Text2 has no max input length __magic_name__: Dict = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class snake_case__ ( _lowerCAmelCase ): lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__=False , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Union[str, Any]: super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Optional[int] = do_lower_case with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Tuple = json.load(lowerCAmelCase__ ) __magic_name__ : List[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) __magic_name__ : Any = None __magic_name__ : List[str] = None else: with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : int = merges_handle.read().split("""\n""" )[:-1] __magic_name__ : List[Any] = [tuple(merge.split()[:2] ) for merge in merges] __magic_name__ : Dict = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Optional[Any] = {} @property def __magic_name__ ( self ) -> int: return len(self.decoder ) def __magic_name__ ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Optional[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __magic_name__ : Any = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : List[str] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : str = bigram __magic_name__ : List[str] = [] __magic_name__ : Tuple = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : List[str] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[int] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Tuple = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Any = """ """.join(lowerCAmelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: __magic_name__ : Optional[int] = """\n""" + BPE_TOKEN_MERGES if word.endswith(lowerCAmelCase__ ): __magic_name__ : Dict = word.replace(lowerCAmelCase__ , """""" ) __magic_name__ : Any = word.replace(""" """ , lowerCAmelCase__ ) __magic_name__ : List[Any] = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: __magic_name__ : List[str] = text.lower() __magic_name__ : Optional[int] = text.split() __magic_name__ : Dict = [] for token in text: if token: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(""" """ ) ) ) return split_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> int: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: __magic_name__ : int = self.decoder.get(lowerCAmelCase__ , self.unk_token ) return result def __magic_name__ ( self , lowerCAmelCase__ ) -> str: __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) # make sure @@ tokens are concatenated __magic_name__ : Tuple = """""".join(string.split(lowerCAmelCase__ ) ) return string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : List[str] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Dict = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return (vocab_file, merges_file)
342
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def __lowercase ( snake_case_ : Tuple ,snake_case_ : Tuple ,snake_case_ : Tuple=8 ) ->List[Any]: '''simple docstring''' __A : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __A : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __lowercase ( snake_case_ : List[str] ,snake_case_ : Tuple=512 ,snake_case_ : Dict=512 ) ->str: '''simple docstring''' __A : Dict = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) __A : Any = np.array(pil_image.convert('''RGB''' ) ) __A : str = arr.astype(np.floataa ) / 127.5 - 1 __A : List[str] = np.transpose(snake_case_ ,[2, 0, 1] ) __A : Optional[int] = torch.from_numpy(snake_case_ ).unsqueeze(0 ) return image class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCamelCase , scheduler=__lowerCamelCase , movq=__lowerCamelCase , ) __A : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : List[str] = min(int(num_inference_steps * strength ) , __lowerCamelCase ) __A : Tuple = max(num_inference_steps - init_timestep , 0 ) __A : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' if not isinstance(__lowerCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCamelCase )}""" ) __A : Optional[Any] = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) __A : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: __A : str = image else: if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[str] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCamelCase ) ] __A : Optional[int] = torch.cat(__lowerCamelCase , dim=0 ) else: __A : Optional[Any] = self.movq.encode(__lowerCamelCase ).latent_dist.sample(__lowerCamelCase ) __A : List[str] = self.movq.config.scaling_factor * init_latents __A : int = torch.cat([init_latents] , dim=0 ) __A : Optional[Any] = init_latents.shape __A : List[str] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents __A : str = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __A : Any = init_latents return latents def UpperCamelCase__( self , __lowerCamelCase=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __A : Optional[int] = torch.device(F"""cuda:{gpu_id}""" ) __A : List[str] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __A : Optional[Any] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __A : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: __A , __A : str = cpu_offload_with_hook(__lowerCamelCase , __lowerCamelCase , prev_module_hook=__lowerCamelCase ) # We'll offload the last model manually. __A : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__( self ): '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCamelCase ) def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 512 , __lowerCamelCase = 512 , __lowerCamelCase = 100 , __lowerCamelCase = 4.0 , __lowerCamelCase = 0.3 , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ): '''simple docstring''' __A : List[str] = self._execution_device __A : Union[str, Any] = guidance_scale > 1.0 if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = torch.cat(__lowerCamelCase , dim=0 ) __A : List[str] = image_embeds.shape[0] if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[str] = torch.cat(__lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __A : int = image_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) __A : str = negative_image_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) __A : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCamelCase ) if not isinstance(__lowerCamelCase , __lowerCamelCase ): __A : str = [image] if not all(isinstance(__lowerCamelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) __A : List[Any] = torch.cat([prepare_image(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i in image] , dim=0 ) __A : str = image.to(dtype=image_embeds.dtype , device=__lowerCamelCase ) __A : Optional[Any] = self.movq.encode(__lowerCamelCase )['''latents'''] __A : int = latents.repeat_interleave(__lowerCamelCase , dim=0 ) self.scheduler.set_timesteps(__lowerCamelCase , device=__lowerCamelCase ) __A , __A : int = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __A : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __A , __A : Union[str, Any] = downscale_height_and_width(__lowerCamelCase , __lowerCamelCase , self.movq_scale_factor ) __A : Tuple = self.prepare_latents( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , image_embeds.dtype , __lowerCamelCase , __lowerCamelCase ) for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __A : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __A : Optional[int] = {'''image_embeds''': image_embeds} __A : Optional[int] = self.unet( sample=__lowerCamelCase , timestep=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , added_cond_kwargs=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] if do_classifier_free_guidance: __A , __A : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __A , __A : List[Any] = noise_pred.chunk(2 ) __A , __A : Optional[Any] = variance_pred.chunk(2 ) __A : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __A : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __A , __A : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __A : Tuple = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase , )[0] # post-processing __A : int = self.movq.decode(__lowerCamelCase , force_not_quantize=__lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __A : Optional[Any] = image * 0.5 + 0.5 __A : Dict = image.clamp(0 , 1 ) __A : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __A : List[Any] = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
291
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a_ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } a_ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" a_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowercase ( snake_case_ : str ) ->dict[str, int]: '''simple docstring''' __A : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __lowercase ( snake_case_ : tuple ) ->str: '''simple docstring''' return x[0] def __lowercase ( snake_case_ : str ) ->str: '''simple docstring''' __A : Union[str, Any] = get_letter_count(snake_case_ ) __A : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(snake_case_ ) __A : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=snake_case_ ) __A : Optional[int] = ''''''.join(freq_to_letter[freq] ) __A : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=snake_case_ ,reverse=snake_case_ ) __A : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(snake_case_ ) def __lowercase ( snake_case_ : str ) ->int: '''simple docstring''' __A : Any = get_frequency_order(snake_case_ ) __A : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
291
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __a (unittest.TestCase): '''simple docstring''' def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , _a=False , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = size if size is not None else {'''height''': 20, '''width''': 20} SCREAMING_SNAKE_CASE__ : Dict = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : Dict = batch_size SCREAMING_SNAKE_CASE__ : Any = num_channels SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Any = min_resolution SCREAMING_SNAKE_CASE__ : Dict = max_resolution SCREAMING_SNAKE_CASE__ : List[str] = do_resize SCREAMING_SNAKE_CASE__ : Any = size SCREAMING_SNAKE_CASE__ : Any = do_center_crop SCREAMING_SNAKE_CASE__ : Union[str, Any] = crop_size SCREAMING_SNAKE_CASE__ : int = do_normalize SCREAMING_SNAKE_CASE__ : Optional[Any] = image_mean SCREAMING_SNAKE_CASE__ : Optional[int] = image_std SCREAMING_SNAKE_CASE__ : int = do_reduce_labels def _a ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) SCREAMING_SNAKE_CASE__ : Tuple = Image.open(dataset[0]["""file"""] ) SCREAMING_SNAKE_CASE__ : str = Image.open(dataset[1]["""file"""] ) return image, map def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open(ds[0]["""file"""] ) SCREAMING_SNAKE_CASE__ : List[Any] = Image.open(ds[1]["""file"""] ) SCREAMING_SNAKE_CASE__ : Any = Image.open(ds[2]["""file"""] ) SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __a (UpperCAmelCase__ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = BeitImageProcessor if is_vision_available() else None def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = BeitImageProcessingTester(self ) @property def _a ( self ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase_ , """center_crop""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , lowercase_ ) SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase_ ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , lowercase_ ) def _a ( self ) -> List[Any]: """simple docstring""" pass def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[int] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[str] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(lowercase_ , lowercase_ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE__ : Any = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(lowercase_ , lowercase_ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) SCREAMING_SNAKE_CASE__ : int = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE__ : Tuple = image_processing(lowercase_ , lowercase_ , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE__ : Any = image_processing(lowercase_ , lowercase_ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(lowercase_ , lowercase_ , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
132
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ : Dict = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } UpperCAmelCase_ : List[str] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = GPTaTokenizer def __init__( self : Optional[int] , lowercase_ : int=None , lowercase_ : List[str]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Tuple="<|endoftext|>" , lowercase_ : str="<|endoftext|>" , lowercase_ : Dict="<|endoftext|>" , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('''add_bos_token''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , lowercase_) != add_prefix_space: SCREAMING_SNAKE_CASE_ : int = getattr(lowercase_ , pre_tok_state.pop('''type''')) SCREAMING_SNAKE_CASE_ : str = add_prefix_space SCREAMING_SNAKE_CASE_ : Dict = pre_tok_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = add_prefix_space def _SCREAMING_SNAKE_CASE ( self : str , *lowercase_ : List[Any] , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('''is_split_into_words''' , lowercase_) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowercase_ : List[str] , **lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = kwargs.get('''is_split_into_words''' , lowercase_) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self._tokenizer.model.save(lowercase_ , name=lowercase_) return tuple(lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : "Conversation"): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_) + [self.eos_token_id]) if len(lowercase_) > self.model_max_length: SCREAMING_SNAKE_CASE_ : Any = input_ids[-self.model_max_length :] return input_ids
91
0
'''simple docstring''' from __future__ import annotations def a ( __a , __a = None , __a = None , __a = False , ) -> tuple[int, float, str]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = cipher_alphabet or [chr(__a ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase__ :Optional[Any] = { '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary UpperCamelCase__ :int = frequencies_dict if not case_sensitive: UpperCamelCase__ :Dict = ciphertext.lower() # Chi squared statistic values UpperCamelCase__ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(__a ) ): UpperCamelCase__ :Optional[int] = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase__ :int = (alphabet_letters.index(letter.lower() ) - shift) % len( __a ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase__ :Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase__ :Union[str, Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :Optional[Any] = decrypted_with_shift.lower().count(__a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :Optional[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Tuple = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase__ :List[str] = decrypted_with_shift.count(__a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase__ :int = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase__ :Union[str, Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase__ :List[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__a ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase__ :int = min( __a , key=__a , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :Any = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
219
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class lowercase ( A__ ): """simple docstring""" _a = 'distilbert' _a = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , UpperCamelCase_=30522 , UpperCamelCase_=512 , UpperCamelCase_=False , UpperCamelCase_=6 , UpperCamelCase_=12 , UpperCamelCase_=768 , UpperCamelCase_=4 * 768 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=0.02 , UpperCamelCase_=0.1 , UpperCamelCase_=0.2 , UpperCamelCase_=0 , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :str = sinusoidal_pos_embds UpperCamelCase__ :Any = n_layers UpperCamelCase__ :str = n_heads UpperCamelCase__ :Tuple = dim UpperCamelCase__ :str = hidden_dim UpperCamelCase__ :Dict = dropout UpperCamelCase__ :int = attention_dropout UpperCamelCase__ :Optional[Any] = activation UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :Union[str, Any] = qa_dropout UpperCamelCase__ :Dict = seq_classif_dropout super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ ) class lowercase ( A__ ): """simple docstring""" @property def lowerCAmelCase__ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ :str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ :str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
219
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = None def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[Any]=0.9_99 , snake_case__ : Dict="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Dict ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _snake_case : int = [] for i in range(snake_case__ ): _snake_case : Tuple = i / num_diffusion_timesteps _snake_case : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowercase( __a , __a ): '''simple docstring''' @register_to_config def __init__( self: List[str], a_: int = 1_000, a_: str = "fixed_small_log", a_: bool = True, a_: Optional[float] = 1.0, a_: str = "epsilon", a_: str = "squaredcos_cap_v2", ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) _snake_case : Tuple = betas_for_alpha_bar(a_ ) _snake_case : List[str] = 1.0 - self.betas _snake_case : Optional[int] = torch.cumprod(self.alphas, dim=0 ) _snake_case : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _snake_case : Optional[Any] = 1.0 # setable values _snake_case : str = None _snake_case : Tuple = torch.from_numpy(np.arange(0, a_ )[::-1].copy() ) _snake_case : int = variance_type def UpperCamelCase_ ( self: Dict, a_: torch.FloatTensor, a_: Optional[int] = None ): '''simple docstring''' return sample def UpperCamelCase_ ( self: Any, a_: int, a_: Union[str, torch.device] = None ): '''simple docstring''' _snake_case : List[Any] = num_inference_steps _snake_case : Any = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _snake_case : Optional[int] = (np.arange(0, a_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _snake_case : Optional[Any] = torch.from_numpy(a_ ).to(a_ ) def UpperCamelCase_ ( self: List[Any], a_: Tuple, a_: Dict=None, a_: Union[str, Any]=None, a_: Tuple=None ): '''simple docstring''' if prev_timestep is None: _snake_case : Optional[Any] = t - 1 _snake_case : Dict = self.alphas_cumprod[t] _snake_case : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _snake_case : List[str] = 1 - alpha_prod_t _snake_case : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _snake_case : int = self.betas[t] else: _snake_case : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _snake_case : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _snake_case : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _snake_case : Optional[int] = torch.log(torch.clamp(a_, min=1E-20 ) ) _snake_case : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _snake_case : Optional[Any] = variance.log() _snake_case : List[str] = beta.log() _snake_case : Optional[int] = (predicted_variance + 1) / 2 _snake_case : Dict = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase_ ( self: Optional[Any], a_: torch.FloatTensor, a_: int, a_: torch.FloatTensor, a_: Optional[int] = None, a_: Tuple=None, a_: bool = True, ): '''simple docstring''' _snake_case : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _snake_case , _snake_case : str = torch.split(a_, sample.shape[1], dim=1 ) else: _snake_case : Dict = None # 1. compute alphas, betas if prev_timestep is None: _snake_case : Optional[Any] = t - 1 _snake_case : Optional[int] = self.alphas_cumprod[t] _snake_case : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _snake_case : Optional[Any] = 1 - alpha_prod_t _snake_case : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _snake_case : str = self.betas[t] _snake_case : int = self.alphas[t] else: _snake_case : Dict = 1 - alpha_prod_t / alpha_prod_t_prev _snake_case : str = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _snake_case : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _snake_case : Tuple = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _snake_case : int = torch.clamp( a_, -self.config.clip_sample_range, self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _snake_case : Any = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case : Any = 0 if t > 0: _snake_case : str = randn_tensor( model_output.shape, dtype=model_output.dtype, generator=a_, device=model_output.device ) _snake_case : Union[str, Any] = self._get_variance( a_, predicted_variance=a_, prev_timestep=a_, ) if self.variance_type == "fixed_small_log": _snake_case : Tuple = variance elif self.variance_type == "learned_range": _snake_case : int = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" """ for the UnCLIPScheduler.""" ) _snake_case : List[Any] = variance * variance_noise _snake_case : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=a_, pred_original_sample=a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: torch.FloatTensor, a_: torch.FloatTensor, a_: torch.IntTensor, ): '''simple docstring''' _snake_case : List[Any] = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype ) _snake_case : str = timesteps.to(original_samples.device ) _snake_case : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 _snake_case : List[str] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _snake_case : Optional[Any] = sqrt_alpha_prod.unsqueeze(-1 ) _snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 _snake_case : Optional[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _snake_case : str = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _snake_case : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
64
"""simple docstring""" from math import factorial A_ = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
64
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[int] = (DEISMultistepScheduler,) __snake_case : List[Any] = (("num_inference_steps", 25),) def UpperCamelCase ( self: List[str] , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**UpperCAmelCase_ ) return config def UpperCamelCase ( self: str , UpperCAmelCase_: List[Any]=0 , **UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(UpperCAmelCase_ ) new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = sample, sample for t in range(UpperCAmelCase_ , time_step + scheduler.config.solver_order + 1 ): _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Optional[Any]=0 , **UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(UpperCAmelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residual (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str=None , **UpperCAmelCase_: List[str] ): '''simple docstring''' if scheduler is None: _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample return sample def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , UpperCAmelCase_ ) for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase_ , """set_timesteps""" ): scheduler.set_timesteps(UpperCAmelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase_ , """set_timesteps""" ): _SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] _SCREAMING_SNAKE_CASE = scheduler.timesteps[5] _SCREAMING_SNAKE_CASE = scheduler.timesteps[6] _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = DEISMultistepScheduler(**self.get_scheduler_config() ) _SCREAMING_SNAKE_CASE = self.full_loop(scheduler=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 _SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = self.full_loop(scheduler=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , algorithm_type="""deis""" , solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , ) def UpperCamelCase ( self: Any ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , algorithm_type=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = self.full_loop( solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , algorithm_type=UpperCAmelCase_ , ) assert not torch.isnan(UpperCAmelCase_ ).any(), "Samples have nan numbers" def UpperCamelCase ( self: Any ): '''simple docstring''' self.check_over_configs(lower_order_final=UpperCAmelCase_ ) self.check_over_configs(lower_order_final=UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=UpperCAmelCase_ , time_step=0 ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.full_loop() _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="""v_prediction""" ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.0_91 ) < 1E-3 def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0 ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample assert sample.dtype == torch.floataa
125
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __UpperCAmelCase : def __init__( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: int=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Union[str, Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Dict=True , UpperCAmelCase_: str=True , UpperCAmelCase_: List[str]=99 , UpperCAmelCase_: int=32 , UpperCAmelCase_: List[Any]=2 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: Dict=37 , UpperCAmelCase_: Tuple="gelu" , UpperCAmelCase_: Any=0.1 , UpperCAmelCase_: List[str]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Optional[int]=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[int]=0.02 , UpperCAmelCase_: Union[str, Any]=3 , UpperCAmelCase_: Optional[int]=4 , UpperCAmelCase_: Tuple=None , UpperCAmelCase_: Any=0 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = projection_dim def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) _SCREAMING_SNAKE_CASE = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRContextEncoder(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRReader(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : Dict = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __snake_case : Optional[Any] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __snake_case : str = False __snake_case : List[Any] = False __snake_case : Any = False __snake_case : List[Any] = False __snake_case : Tuple = False def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) _SCREAMING_SNAKE_CASE = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Dict = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = """time_series_transformer""" lowerCAmelCase__ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self : Any , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "student_t" , UpperCamelCase : str = "nll" , UpperCamelCase : int = 1 , UpperCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase : Optional[Union[str, bool]] = "mean" , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : int = 32 , UpperCamelCase : int = 32 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : bool = True , UpperCamelCase : str = "gelu" , UpperCamelCase : int = 64 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : int = 100 , UpperCamelCase : float = 0.02 , UpperCamelCase : Tuple=True , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(UpperCamelCase ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
2
from __future__ import annotations def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) UpperCAmelCase : str = number_of_bytes // partitions UpperCAmelCase : Dict = [] for i in range(UpperCAmelCase ): UpperCAmelCase : int = i * bytes_per_partition + 1 UpperCAmelCase : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class UpperCamelCase_ ( a_ ): _A : Optional[torch.FloatTensor] = None _A : torch.FloatTensor = None _A : Optional[Tuple[torch.FloatTensor]] = None _A : Optional[Tuple[torch.FloatTensor]] = None class UpperCamelCase_ ( a_ ): def __init__( self , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=5_12 , snake_case__="cls" , snake_case__=False , snake_case__=True , **snake_case__ , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase = project_dim UpperCAmelCase = pooler_fn UpperCAmelCase = learn_encoder UpperCAmelCase = use_attention_mask class UpperCamelCase_ ( a_ ): _A : Union[str, Any] = [r'pooler', r'logit_scale'] _A : List[str] = [r'position_ids', r'predictions.decoder.bias'] _A : int = 'roberta' _A : Optional[int] = RobertaSeriesConfig def __init__( self , snake_case__ ) -> Tuple: """simple docstring""" super().__init__(snake_case__ ) UpperCAmelCase = XLMRobertaModel(snake_case__ ) UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase = getattr(snake_case__ , """has_pre_transformation""" , snake_case__ ) if self.has_pre_transformation: UpperCAmelCase = nn.Linear(config.hidden_size , config.project_dim ) UpperCAmelCase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase_ ( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = self.base_model( input_ids=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , position_ids=snake_case__ , head_mask=snake_case__ , inputs_embeds=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_attentions=snake_case__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=snake_case__ , ) if self.has_pre_transformation: UpperCAmelCase = outputs["""hidden_states"""][-2] UpperCAmelCase = self.pre_LN(snake_case__ ) UpperCAmelCase = self.transformation_pre(snake_case__ ) return TransformationModelOutput( projection_state=snake_case__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCAmelCase = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=snake_case__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
248
"""simple docstring""" lowerCAmelCase_ : Dict = {str(digit): digit**5 for digit in range(1_0)} def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCAmelCase ) ) def _lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
248
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = dataset lowerCamelCase = process lowerCamelCase = params def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _a ): """simple docstring""" lowerCamelCase = self.dataset[i] lowerCamelCase = self.process(_a , **self.params ) return processed class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a , _a=None ): """simple docstring""" lowerCamelCase = loader lowerCamelCase = infer lowerCamelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCamelCase = None lowerCamelCase = loader_batch_size # Internal bookkeeping lowerCamelCase = None lowerCamelCase = None def __len__( self ): """simple docstring""" return len(self.loader ) def __iter__( self ): """simple docstring""" lowerCamelCase = iter(self.loader ) return self def _lowerCAmelCase ( self ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowerCamelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCamelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_a , _a ): # Convert ModelOutput to tuple first lowerCamelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowerCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowerCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_a , _a ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowerCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowerCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowerCamelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowerCamelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCamelCase = self._loader_batch_data.__class__(_a ) self._loader_batch_index += 1 return result def _lowerCAmelCase ( self ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCamelCase = next(self.iterator ) lowerCamelCase = self.infer(_a , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_a , torch.Tensor ): lowerCamelCase = processed else: lowerCamelCase = list(processed.keys() )[0] lowerCamelCase = processed[key] if isinstance(_a , _a ): lowerCamelCase = len(_a ) else: lowerCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase = observed_batch_size # Setting internal index to unwrap the batch lowerCamelCase = processed lowerCamelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a , _a=None ): """simple docstring""" super().__init__(_a , _a , _a ) def __iter__( self ): """simple docstring""" lowerCamelCase = iter(self.loader ) lowerCamelCase = None return self def _lowerCAmelCase ( self ): """simple docstring""" if self.subiterator is None: lowerCamelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowerCamelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCamelCase = self.infer(next(self.iterator ) , **self.params ) lowerCamelCase = next(self.subiterator ) return processed class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __iter__( self ): """simple docstring""" lowerCamelCase = iter(self.loader ) return self def _lowerCAmelCase ( self ): """simple docstring""" # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. lowerCamelCase = False lowerCamelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCamelCase = self.loader_batch_item() lowerCamelCase = item.pop("""is_last""" ) accumulator.append(_a ) if is_last: return accumulator while not is_last: lowerCamelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_a , torch.Tensor ): lowerCamelCase = processed else: lowerCamelCase = list(processed.keys() )[0] lowerCamelCase = processed[key] if isinstance(_a , _a ): lowerCamelCase = len(_a ) else: lowerCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase = observed_batch_size lowerCamelCase = processed lowerCamelCase = 0 while self._loader_batch_index < self.loader_batch_size: lowerCamelCase = self.loader_batch_item() lowerCamelCase = item.pop("""is_last""" ) accumulator.append(_a ) if is_last: return accumulator else: lowerCamelCase = processed lowerCamelCase = item.pop("""is_last""" ) accumulator.append(_a ) return accumulator class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a ): """simple docstring""" lowerCamelCase = dataset lowerCamelCase = key def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _a ): """simple docstring""" return self.dataset[i][self.key] class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = dataset lowerCamelCase = keya lowerCamelCase = keya def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _a ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
291
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase = (image_size // patch_size) ** 2 lowerCamelCase = num_patches + 1 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = ViTMSNModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = self.type_sequence_label_size lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ViTMSNModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def a__ ( ) -> Any: lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(2 ) lowerCamelCase = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**_a ) # verify the logits lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCamelCase = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
291
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : List[Any] = 'laion/clap-htsat-unfused' __magic_name__ : int = tempfile.mkdtemp() def __lowerCAmelCase ( self : Tuple , **_A : str ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **_A ) def __lowerCAmelCase ( self : List[str] , **_A : List[Any] ) -> Any: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def __lowerCAmelCase ( self : Optional[int] ) -> int: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Optional[Any] = self.get_feature_extractor() __magic_name__ : List[str] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Tuple = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : str = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : List[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __magic_name__ : Tuple = self.get_feature_extractor(do_normalize=_A , padding_value=1.0 ) __magic_name__ : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: __magic_name__ : Dict = self.get_feature_extractor() __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : List[Any] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ : List[Any] = floats_list((3, 1000) ) __magic_name__ : Dict = feature_extractor(_A , return_tensors='np' ) __magic_name__ : List[Any] = processor(audios=_A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __magic_name__ : List[str] = self.get_feature_extractor() __magic_name__ : Tuple = self.get_tokenizer() __magic_name__ : int = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ : Any = 'This is a test string' __magic_name__ : str = processor(text=_A ) __magic_name__ : Optional[int] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : Tuple ) -> Dict: __magic_name__ : str = self.get_feature_extractor() __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : List[str] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : List[Any] = processor.batch_decode(_A ) __magic_name__ : Dict = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def __lowerCAmelCase ( self : Dict ) -> Any: __magic_name__ : Dict = self.get_feature_extractor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : int = ClapProcessor(tokenizer=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
275
'''simple docstring''' lowerCAmelCase :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
275
1
'''simple docstring''' from collections import deque class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = process_name # process name UpperCAmelCase : Optional[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase : Any = arrival_time UpperCAmelCase : List[Any] = burst_time # remaining burst time UpperCAmelCase : List[Any] = 0 # total time of the process wait in ready queue UpperCAmelCase : Any = 0 # time from arrival time to completion time class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : List[Any] = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase : Any = time_slices # unfinished process is in this ready_queue UpperCAmelCase : Union[str, Any] = queue # current time UpperCAmelCase : Tuple = current_time # finished process is in this sequence queue UpperCAmelCase : Dict = deque() def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for i in range(len(__snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : int = [] for i in range(len(__snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : int = [] for i in range(len(__snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def A_ ( self , snake_case ): '''simple docstring''' return [q.burst_time for q in queue] def A_ ( self , snake_case ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = deque() # sequence deque of finished process while len(__snake_case ) != 0: UpperCAmelCase : str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase : List[str] = 0 # set the process's turnaround time because it is finished UpperCAmelCase : Tuple = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase : str = self.current_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__snake_case ) ): UpperCAmelCase : int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase : Optional[int] = 0 # set the finish time UpperCAmelCase : str = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase : Any = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A_ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCAmelCase , UpperCAmelCase : List[str] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a : List[str] = Process("P1", 0, 53) a : Optional[Any] = Process("P2", 0, 17) a : Optional[Any] = Process("P3", 0, 68) a : Union[str, Any] = Process("P4", 0, 24) a : Optional[int] = 3 a : str = [17, 25] a : Optional[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) a : str = Process("P1", 0, 53) a : Any = Process("P2", 0, 17) a : Tuple = Process("P3", 0, 68) a : Tuple = Process("P4", 0, 24) a : Tuple = 3 a : Tuple = [17, 25] a : Optional[Any] = deque([Pa, Pa, Pa, Pa]) a : List[str] = MLFQ(number_of_queues, time_slices, queue, 0) a : Union[str, Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\\n \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\\n \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\\n \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\\n {mlfq.calculate_sequence_of_finish_queue()}' )
311
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _lowerCAmelCase : str = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase : List[Any] = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase : str = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _lowerCAmelCase : List[str] = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } _lowerCAmelCase : Optional[Any] = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } _lowerCAmelCase : List[str] = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def UpperCamelCase_( _snake_case : str ): """simple docstring""" if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def UpperCamelCase_( _snake_case : Tuple , _snake_case : List[str] , _snake_case : Any , _snake_case : str , _snake_case : Union[str, Any]=False ): """simple docstring""" __a =checkpoint[F'{old_prefix}.in_layers.0.weight'] __a =checkpoint[F'{old_prefix}.in_layers.0.bias'] __a =checkpoint[F'{old_prefix}.in_layers.2.weight'] __a =checkpoint[F'{old_prefix}.in_layers.2.bias'] __a =checkpoint[F'{old_prefix}.emb_layers.1.weight'] __a =checkpoint[F'{old_prefix}.emb_layers.1.bias'] __a =checkpoint[F'{old_prefix}.out_layers.0.weight'] __a =checkpoint[F'{old_prefix}.out_layers.0.bias'] __a =checkpoint[F'{old_prefix}.out_layers.3.weight'] __a =checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: __a =checkpoint[F'{old_prefix}.skip_connection.weight'] __a =checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def UpperCamelCase_( _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[int]=None ): """simple docstring""" __a , __a , __a =checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) __a , __a , __a =checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) __a =checkpoint[F'{old_prefix}.norm.weight'] __a =checkpoint[F'{old_prefix}.norm.bias'] __a =weight_q.squeeze(-1 ).squeeze(-1 ) __a =bias_q.squeeze(-1 ).squeeze(-1 ) __a =weight_k.squeeze(-1 ).squeeze(-1 ) __a =bias_k.squeeze(-1 ).squeeze(-1 ) __a =weight_v.squeeze(-1 ).squeeze(-1 ) __a =bias_v.squeeze(-1 ).squeeze(-1 ) __a =( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) __a =checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_( _snake_case : str , _snake_case : Tuple ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' ) __a ={} __a =checkpoint['time_embed.0.weight'] __a =checkpoint['time_embed.0.bias'] __a =checkpoint['time_embed.2.weight'] __a =checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: __a =checkpoint['label_emb.weight'] __a =checkpoint['input_blocks.0.0.weight'] __a =checkpoint['input_blocks.0.0.bias'] __a =unet_config['down_block_types'] __a =unet_config['layers_per_block'] __a =unet_config['attention_head_dim'] __a =unet_config['block_out_channels'] __a =1 __a =channels_list[0] for i, layer_type in enumerate(_snake_case ): __a =channels_list[i] __a =current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_snake_case ): __a =F'down_blocks.{i}.resnets.{j}' __a =F'input_blocks.{current_layer}.0' __a =True if j == 0 and downsample_block_has_skip else False __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_snake_case ): __a =F'down_blocks.{i}.resnets.{j}' __a =F'input_blocks.{current_layer}.0' __a =True if j == 0 and downsample_block_has_skip else False __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) __a =F'down_blocks.{i}.attentions.{j}' __a =F'input_blocks.{current_layer}.1' __a =convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: __a =F'down_blocks.{i}.downsamplers.0' __a =F'input_blocks.{current_layer}.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 __a =current_channels # hardcoded the mid-block for now __a ='mid_block.resnets.0' __a ='middle_block.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) __a ='mid_block.attentions.0' __a ='middle_block.1' __a =convert_attention(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) __a ='mid_block.resnets.1' __a ='middle_block.2' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) __a =0 __a =unet_config['up_block_types'] for i, layer_type in enumerate(_snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __a =F'up_blocks.{i}.resnets.{j}' __a =F'output_blocks.{current_layer}.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: __a =F'up_blocks.{i}.upsamplers.0' __a =F'output_blocks.{current_layer-1}.1' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __a =F'up_blocks.{i}.resnets.{j}' __a =F'output_blocks.{current_layer}.0' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) __a =F'up_blocks.{i}.attentions.{j}' __a =F'output_blocks.{current_layer}.1' __a =convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: __a =F'up_blocks.{i}.upsamplers.0' __a =F'output_blocks.{current_layer-1}.2' __a =convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) __a =checkpoint['out.0.weight'] __a =checkpoint['out.0.bias'] __a =checkpoint['out.2.weight'] __a =checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Optional[Any] = strabool(args.class_cond) _lowerCAmelCase : Dict = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: _lowerCAmelCase : Tuple = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase : Optional[int] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _lowerCAmelCase : int = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Tuple = con_pt_to_diffuser(args.unet_path, unet_config) _lowerCAmelCase : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _lowerCAmelCase : int = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _lowerCAmelCase : Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _lowerCAmelCase : List[str] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') _lowerCAmelCase : Any = CMStochasticIterativeScheduler(**scheduler_config) _lowerCAmelCase : str = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
218
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _UpperCamelCase: List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _UpperCamelCase: Tuple = get_tests_dir('fixtures/vocab.json') _UpperCamelCase: Any = get_tests_dir('fixtures') class a__ ( unittest.TestCase ): _lowerCamelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def lowercase ( self : Union[str, Any] ) -> Tuple: lowercase : Dict = 0 def lowercase ( self : Optional[int] ) -> Optional[int]: lowercase : str = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : int ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Union[str, Any] = WavaVecaConfig() lowercase : List[Any] = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) lowercase : Any = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCAmelCase, os.path.join(lowerCAmelCase, lowerCAmelCase ) ) copyfile(lowerCAmelCase, os.path.join(lowerCAmelCase, 'vocab.json' ) ) lowercase : Optional[int] = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Any ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any = WavaVecaFeatureExtractor() lowercase : Dict = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowercase : Dict = WavaVecaProcessor(lowerCAmelCase, lowerCAmelCase ) # save in new folder processor.save_pretrained(lowerCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCAmelCase, lowerCAmelCase ), 'r' ) as f: lowercase : Tuple = json.load(lowerCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCAmelCase, lowerCAmelCase ), 'w' ) as f: f.write(json.dumps(lowerCAmelCase ) ) lowercase : str = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Optional[int] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Optional[Any] = WavaVecaFeatureExtractor() lowercase : List[str] = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowercase : Optional[int] = WavaVecaProcessor(lowerCAmelCase, lowerCAmelCase ) # save in new folder processor.save_pretrained(lowerCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCAmelCase, lowerCAmelCase ), 'r' ) as f: lowercase : Any = json.load(lowerCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCAmelCase, lowerCAmelCase ), 'w' ) as f: f.write(json.dumps(lowerCAmelCase ) ) lowercase : int = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : List[str] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Union[str, Any] = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowerCAmelCase ) # copy relevant files copyfile(lowerCAmelCase, os.path.join(lowerCAmelCase, 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowerCAmelCase, lowerCAmelCase ), 'w' ) as f: f.write('{}' ) lowercase : str = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : str ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase ): lowercase : Optional[int] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): lowercase : Union[str, Any] = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCAmelCase ) lowercase : Union[str, Any] = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) lowercase : Optional[int] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) lowercase : int = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast' ) # Test we can also load the slow version lowercase : int = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCAmelCase, use_fast=lowerCAmelCase ) lowercase : str = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__, 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) def lowercase ( self : Tuple ) -> Tuple: try: AutoConfig.register('custom', lowerCAmelCase ) AutoFeatureExtractor.register(lowerCAmelCase, lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase, slow_tokenizer_class=lowerCAmelCase ) AutoProcessor.register(lowerCAmelCase, lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoProcessor.register(lowerCAmelCase, lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase : Tuple = CustomFeatureExtractor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Optional[int] = os.path.join(lowerCAmelCase, 'vocab.txt' ) with open(lowerCAmelCase, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowercase : Any = CustomTokenizer(lowerCAmelCase ) lowercase : List[Any] = CustomProcessor(lowerCAmelCase, lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCAmelCase ) lowercase : Optional[int] = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase ( self : List[Any] ) -> Dict: class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = False class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = False class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'AutoFeatureExtractor' _lowerCamelCase = 'AutoTokenizer' _lowerCamelCase = False try: AutoConfig.register('custom', lowerCAmelCase ) AutoFeatureExtractor.register(lowerCAmelCase, lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase, slow_tokenizer_class=lowerCAmelCase ) AutoProcessor.register(lowerCAmelCase, lowerCAmelCase ) # If remote code is not set, the default is to use local classes. lowercase : Tuple = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase : str = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCAmelCase ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase : Tuple = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor', trust_remote_code=lowerCAmelCase ) self.assertEqual(processor.__class__.__name__, 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase ( self : str ) -> Any: lowercase : Dict = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__, 'BertTokenizerFast' ) def lowercase ( self : Tuple ) -> Any: lowercase : List[Any] = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__, 'ConvNextImageProcessor' ) @is_staging_test class a__ ( unittest.TestCase ): _lowerCamelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowercase ( cls : Optional[int] ) -> str: lowercase : Any = TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def lowercase ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token, repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-processor' ) except HTTPError: pass def lowercase ( self : Union[str, Any] ) -> Tuple: lowercase : Optional[Any] = WavaVecaProcessor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase, 'test-processor' ), push_to_hub=lowerCAmelCase, use_auth_token=self._token ) lowercase : Optional[Any] = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase, getattr(new_processor.feature_extractor, lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab() ) def lowercase ( self : Optional[Any] ) -> Optional[int]: lowercase : Any = WavaVecaProcessor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase, 'test-processor-org' ), push_to_hub=lowerCAmelCase, use_auth_token=self._token, organization='valid_org', ) lowercase : List[str] = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase, getattr(new_processor.feature_extractor, lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab() ) def lowercase ( self : Dict ) -> str: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase : Union[str, Any] = CustomFeatureExtractor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Optional[Any] = os.path.join(lowerCAmelCase, 'vocab.txt' ) with open(lowerCAmelCase, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowercase : Optional[int] = CustomTokenizer(lowerCAmelCase ) lowercase : Optional[Any] = CustomProcessor(lowerCAmelCase, lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''', token=self._token ) lowercase : Optional[int] = Repository(lowerCAmelCase, clone_from=f'''{USER}/test-dynamic-processor''', token=self._token ) processor.save_pretrained(lowerCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map, { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', }, ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCAmelCase, 'tokenizer_config.json' ) ) as f: lowercase : int = json.load(lowerCAmelCase ) self.assertDictEqual( tokenizer_config['auto_map'], { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', }, ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase, 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase, 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase, 'custom_processing.py' ) ) ) repo.push_to_hub() lowercase : Union[str, Any] = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''', trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__, 'CustomProcessor' )
53
"""simple docstring""" import unittest from transformers import DonutProcessor _UpperCamelCase: Any = 'naver-clova-ix/donut-base' class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = DonutProcessor.from_pretrained(lowerCAmelCase ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase : Any = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, lowerCAmelCase )
53
1
'''simple docstring''' import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list, SCREAMING_SNAKE_CASE__ : int ) -> int: UpperCAmelCase_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) ) UpperCAmelCase_ : Dict = 0 while arr[min(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) - 1] < x: UpperCAmelCase_ : Tuple = step step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) ) if prev >= n: return -1 while arr[prev] < x: UpperCAmelCase_ : str = prev + 1 if prev == min(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": snake_case_ : Dict = input("Enter numbers separated by a comma:\n").strip() snake_case_ : Optional[Any] = [int(item) for item in user_input.split(",")] snake_case_ : List[str] = int(input("Enter the number to be searched:\n")) snake_case_ : Union[str, Any] = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
125
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Optional[int] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __a (lowerCamelCase ): __a : Union[str, Any] = "lilt" def __init__( self : Any , __magic_name__ : Tuple=3_05_22 , __magic_name__ : str=7_68 , __magic_name__ : Tuple=12 , __magic_name__ : int=12 , __magic_name__ : str=30_72 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : List[Any]=2 , __magic_name__ : Dict=0.0_2 , __magic_name__ : List[Any]=1E-12 , __magic_name__ : List[str]=0 , __magic_name__ : List[str]="absolute" , __magic_name__ : str=None , __magic_name__ : Dict=4 , __magic_name__ : str=10_24 , **__magic_name__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : int = position_embedding_type UpperCAmelCase_ : Tuple = classifier_dropout UpperCAmelCase_ : Dict = channel_shrink_ratio UpperCAmelCase_ : int = max_ad_position_embeddings
125
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[Any] = """Speech2TextFeatureExtractor""" __SCREAMING_SNAKE_CASE :Optional[Any] = """Speech2TextTokenizer""" def __init__( self : List[str] , a__ : Union[str, Any] , a__ : List[str] ): super().__init__(a__ , a__ ) __magic_name__ = self.feature_extractor __magic_name__ = False def __call__( self : Union[str, Any] , *a__ : Tuple , **a__ : Optional[int] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a__ , **a__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __magic_name__ = kwargs.pop('''raw_speech''' ) else: __magic_name__ = kwargs.pop('''audio''' , a__ ) __magic_name__ = kwargs.pop('''sampling_rate''' , a__ ) __magic_name__ = kwargs.pop('''text''' , a__ ) if len(a__ ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __magic_name__ = self.feature_extractor(a__ , *a__ , sampling_rate=a__ , **a__ ) if text is not None: __magic_name__ = self.tokenizer(a__ , **a__ ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ = encodings['''input_ids'''] return inputs def snake_case__ ( self : int , *a__ : str , **a__ : Optional[Any] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case__ ( self : str , *a__ : str , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @contextmanager def snake_case__ ( self : List[str] ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __magic_name__ = True __magic_name__ = self.tokenizer yield __magic_name__ = self.feature_extractor __magic_name__ = False
98
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _lowerCAmelCase = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _lowerCAmelCase = 10 _lowerCAmelCase = 256 def UpperCamelCase ( a ) -> Optional[MinHash]: '''simple docstring''' if len(a ) < MIN_NUM_TOKENS: return None __magic_name__ = MinHash(num_perm=a ) for token in set(a ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase ( a ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(a ) if len(t.strip() ) > 0} class _SCREAMING_SNAKE_CASE : def __init__( self : Any , *, a__ : float = 0.85 , ): __magic_name__ = duplication_jaccard_threshold __magic_name__ = NUM_PERM __magic_name__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __magic_name__ = defaultdict(a__ ) def snake_case__ ( self : int , a__ : Tuple , a__ : MinHash ): __magic_name__ = self._index.query(a__ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = [] for base, duplicates in self._duplicate_clusters.items(): __magic_name__ = [base] + list(a__ ) # reformat the cluster to be a list of dict __magic_name__ = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def snake_case__ ( self : int , a__ : Tuple ): __magic_name__ = self.get_duplicate_clusters() with open(a__ , '''w''' ) as f: json.dump(a__ , a__ ) def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = element __magic_name__ = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def UpperCamelCase ( a , a ) -> Tuple: '''simple docstring''' __magic_name__ = DuplicationIndex(duplication_jaccard_threshold=a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a ) ) , max_queue_size=100 ) ): di.add(a , a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase ( a , a ) -> float: '''simple docstring''' __magic_name__ = get_tokens(a ) __magic_name__ = get_tokens(a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _lowerCAmelCase = None def UpperCamelCase ( a , a ) -> Dict: '''simple docstring''' __magic_name__ = [] for elementa in cluster: __magic_name__ = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __magic_name__ = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a , a ) >= jaccard_threshold: elementa["copies"] += 1 break else: __magic_name__ = 1 extremes.append(a ) return extremes def UpperCamelCase ( a , a , a ) -> Optional[Any]: '''simple docstring''' global _shared_dataset __magic_name__ = dataset __magic_name__ = [] __magic_name__ = partial(_find_cluster_extremes_shared , jaccard_threshold=a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a , a , ) , total=len(a ) , ): extremes_list.append(a ) return extremes_list def UpperCamelCase ( a , a = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' __magic_name__ = make_duplicate_clusters(a , a ) __magic_name__ = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __magic_name__ = {} __magic_name__ = find_extremes(a , a , a ) for extremes in extremes_clusters: for element in extremes: __magic_name__ = element __magic_name__ = duplicate_indices - set(extreme_dict.keys() ) __magic_name__ = dataset.filter(lambda a , a : idx not in remove_indices , with_indices=a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __magic_name__ = element['''base_index'''] in extreme_dict if element["is_extreme"]: __magic_name__ = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(a )}''' ) print(F'''Number of duplicate clusters: {len(a )}''' ) print(F'''Files in duplicate cluster: {len(a )}''' ) print(F'''Unique files in duplicate cluster: {len(a )}''' ) print(F'''Filtered dataset size: {len(a )}''' ) return ds_filter, duplicate_clusters
98
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __snake_case : Any = logging.get_logger(__name__) class A__(a_ ): """simple docstring""" _A : Tuple = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = True , **_lowercase , ) -> None: super().__init__(**_lowercase ) a_ : Any = size if size is not None else {"""shortest_edge""": 224} a_ : Any = get_size_dict(_lowercase , default_to_square=_lowercase ) a_ : Tuple = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} a_ : Any = get_size_dict(_lowercase , param_name="""crop_size""" ) a_ : Union[str, Any] = do_resize a_ : Any = size a_ : Tuple = resample a_ : Dict = do_rescale a_ : Optional[int] = rescale_factor a_ : Dict = do_center_crop a_ : List[str] = crop_size a_ : Optional[Any] = do_flip_channel_order def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PIL.Image.BILINEAR , _lowercase = None , **_lowercase , ) -> np.ndarray: a_ : int = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) a_ : List[Any] = get_resize_output_image_size(_lowercase , size=size["""shortest_edge"""] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: a_ : Any = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> List[Any]: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None ) -> np.ndarray: return flip_channel_order(_lowercase , data_format=_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: a_ : Any = do_resize if do_resize is not None else self.do_resize a_ : List[str] = resample if resample is not None else self.resample a_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale a_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : Optional[Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) a_ : List[str] = size if size is not None else self.size a_ : List[str] = get_size_dict(_lowercase , default_to_square=_lowercase ) a_ : Any = crop_size if crop_size is not None else self.crop_size a_ : Any = get_size_dict(_lowercase , param_name="""crop_size""" ) a_ : Optional[Any] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. a_ : Dict = [to_numpy_array(_lowercase ) for image in images] if do_resize: a_ : Union[str, Any] = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: a_ : Dict = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: a_ : Optional[int] = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: a_ : List[Any] = [self.flip_channel_order(image=_lowercase ) for image in images] a_ : List[str] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] a_ : List[str] = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None ) -> Dict: a_ : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_lowercase ): a_ : str = target_sizes.numpy() a_ : str = [] for idx in range(len(_lowercase ) ): a_ : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_lowercase ) a_ : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: a_ : Any = logits.argmax(dim=1 ) a_ : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
248
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__(a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = MvpTokenizer _A : List[Any] = MvpTokenizerFast _A : Dict = True _A : Optional[Any] = filter_roberta_detectors def UpperCamelCase__ ( self ) -> Union[str, Any]: super().setUp() a_ : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] a_ : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) a_ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a_ : Optional[int] = {"""unk_token""": """<unk>"""} a_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) def UpperCamelCase__ ( self , **_lowercase ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , **_lowercase ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCamelCase__ ( self , _lowercase ) -> int: return "lower newer", "lower newer" @cached_property def UpperCamelCase__ ( self ) -> List[Any]: return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: a_ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a_ : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : Optional[Any] = tokenizer(_lowercase , max_length=len(_lowercase ) , padding=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) a_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(_lowercase , _lowercase ) # Test that special tokens are reset @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[str] = tokenizer(_lowercase , padding=_lowercase , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , _lowercase ) self.assertIn("""attention_mask""" , _lowercase ) self.assertNotIn("""labels""" , _lowercase ) self.assertNotIn("""decoder_attention_mask""" , _lowercase ) @require_torch def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : List[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : int = tokenizer(text_target=_lowercase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def UpperCamelCase__ ( self ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : int = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=_lowercase , truncation=_lowercase , return_tensors="""pt""" ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: a_ : Tuple = ["""A long paragraph for summarization."""] a_ : Optional[Any] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a_ : List[Any] = tokenizer(_lowercase , text_target=_lowercase , return_tensors="""pt""" ) a_ : Union[str, Any] = inputs["""input_ids"""] a_ : Dict = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def UpperCamelCase__ ( self ) -> int: pass def UpperCamelCase__ ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a_ : List[str] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a_ : List[str] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a_ : Optional[int] = """A, <mask> AllenNLP sentence.""" a_ : Union[str, Any] = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) a_ : Tuple = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) a_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) a_ : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
248
1
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
93
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase = 'Create a default config file for Accelerate with only a few flags set.' def _a ( SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE = default_json_config_file , SCREAMING_SNAKE_CASE = False ): """simple docstring""" lowercase__ = Path(SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) if path.exists(): print( f'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() lowercase__ = num_gpus lowercase__ = False if num_gpus > 1: lowercase__ = '''MULTI_GPU''' else: lowercase__ = '''NO''' elif is_xpu_available() and use_xpu: lowercase__ = torch.xpu.device_count() lowercase__ = num_xpus lowercase__ = False if num_xpus > 1: lowercase__ = '''MULTI_XPU''' else: lowercase__ = '''NO''' elif is_npu_available(): lowercase__ = torch.npu.device_count() lowercase__ = num_npus lowercase__ = False if num_npus > 1: lowercase__ = '''MULTI_NPU''' else: lowercase__ = '''NO''' else: lowercase__ = 0 lowercase__ = True lowercase__ = 1 lowercase__ = '''NO''' lowercase__ = ClusterConfig(**SCREAMING_SNAKE_CASE ) config.to_json_file(SCREAMING_SNAKE_CASE ) return path def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = parser.add_parser('''default''' , parents=SCREAMING_SNAKE_CASE , help=SCREAMING_SNAKE_CASE , formatter_class=SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=SCREAMING_SNAKE_CASE , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'accelerate configuration saved at {config_file}' )
93
1
def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Union[str, Any] = len(lowercase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCAmelCase : Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None __lowerCAmelCase : int = sorted_collection[point] if current_item == item: return point else: if point < left: __lowerCAmelCase : Dict = left __lowerCAmelCase : int = point elif point > right: __lowerCAmelCase : Any = right __lowerCAmelCase : Optional[Any] = point else: if item < current_item: __lowerCAmelCase : Any = point - 1 else: __lowerCAmelCase : List[Any] = point + 1 return None def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowerCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif point > right: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase__ , lowercase__ , lowercase__ , point - 1 ) else: return interpolation_search_by_recursion( lowercase__ , lowercase__ , point + 1 , lowercase__ ) def _lowercase ( lowercase__ ): if collection != sorted(lowercase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _UpperCamelCase = 0 if debug == 1: _UpperCamelCase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _UpperCamelCase = 67 _UpperCamelCase = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print("Not found")
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): _UpperCamelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCamelCase__ ( self ) ->str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = (3, 32, 128) __lowerCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __lowerCAmelCase : List[str] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowerCAmelCase : Optional[int] = dict(zip(A_ , range(len(A_ ) ) ) ) __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) __lowerCAmelCase : Union[str, Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowerCAmelCase : str = Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) return image_input def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Union[str, Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase : int = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __lowerCAmelCase : int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.get_image_processor() __lowerCAmelCase : Optional[Any] = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Optional[int] = self.prepare_image_inputs() __lowerCAmelCase : Optional[Any] = image_processor(A_ , return_tensors='''np''' ) __lowerCAmelCase : Tuple = processor(images=A_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Union[str, Any] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Any = '''test''' __lowerCAmelCase : Dict = processor(text=A_ ) __lowerCAmelCase : str = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = '''test''' __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : int = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase : Optional[int] = processor.char_decode(A_ ) __lowerCAmelCase : Tuple = tokenizer.batch_decode(A_ ) __lowerCAmelCase : Any = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() __lowerCAmelCase : List[Any] = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = self.get_image_processor() __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = torch.randn(1 , 27 , 38 ) __lowerCAmelCase : Optional[int] = torch.randn(1 , 27 , 5_0257 ) __lowerCAmelCase : Optional[Any] = torch.randn(1 , 27 , 3_0522 ) __lowerCAmelCase : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
275
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = os.path.abspath(__UpperCAmelCase ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model UpperCAmelCase_ = tf.train.list_variables(__UpperCAmelCase ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCAmelCase_ = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' UpperCAmelCase_ = name[1:] # figure out how many levels deep the name is UpperCAmelCase_ = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__UpperCAmelCase ) # read data UpperCAmelCase_ = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) names.append('''/'''.join(__UpperCAmelCase ) ) arrays.append(__UpperCAmelCase ) logger.info(f"Read a total of {len(__UpperCAmelCase ):,} layers" ) # Sanity check if len(set(__UpperCAmelCase ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(__UpperCAmelCase ) )})" ) UpperCAmelCase_ = list(set(__UpperCAmelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = full_name.split('''/''' ) UpperCAmelCase_ = model UpperCAmelCase_ = [] for i, m_name in enumerate(__UpperCAmelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): UpperCAmelCase_ = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''embeddings''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''encoder''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''layer''' ) UpperCAmelCase_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''pooler''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''token_type_embeddings''' ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''attention''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''attention''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''output''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''attention''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''output''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''output''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''output''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''intermediate''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) UpperCAmelCase_ = getattr(__UpperCAmelCase , '''weight''' ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary UpperCAmelCase_ = '''.'''.join(__UpperCAmelCase ) if re.match(r'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __UpperCAmelCase ) or re.match( r'''(\S+)\.attention\.output\.dense\.weight''' , __UpperCAmelCase ): UpperCAmelCase_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCAmelCase_ = array.transpose() if pointer.shape == array.shape: UpperCAmelCase_ = torch.from_numpy(__UpperCAmelCase ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' logger.info(f"Loading model based on config from {config_path}..." ) UpperCAmelCase_ = BertConfig.from_json_file(__UpperCAmelCase ) UpperCAmelCase_ = BertModel(__UpperCAmelCase ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) UpperCamelCase_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
53
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from math import factorial def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) A : Union[str, Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A : Union[str, Any] = float(factorial(_lowerCamelCase ) ) coefficient /= factorial(_lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
256
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = ["image_processor", "tokenizer"] a__ = "BridgeTowerImageProcessor" a__ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any ) -> Optional[int]: super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Dict , ) -> BatchEncoding: A : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) # add pixel_values + pixel_mask A : List[Any] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , do_normalize=__lowerCamelCase , do_center_crop=__lowerCamelCase , **__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def SCREAMING_SNAKE_CASE__ ( self : int , *__lowerCamelCase : List[str] , **__lowerCamelCase : str ) -> List[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : str ) -> Any: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: A : Dict = self.tokenizer.model_input_names A : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
256
1
"""simple docstring""" def a_ ( lowerCamelCase = 1_0**1_2 ): UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"""{solution() = }""")
98
"""simple docstring""" import argparse lowerCAmelCase__ : List[str] = 'docs/source/_static/js/custom.js' def a_ ( lowerCamelCase ): with open(lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCAmelCase__ = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase__ : Optional[int] = parser.parse_args() update_custom_js(args.version)
98
1
"""simple docstring""" from math import sqrt def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : Any = 0 for i in range(1 ,int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def A_ ( snake_case_ : int = 1_0_0_0_0 ): '''simple docstring''' UpperCamelCase : Tuple = sum( i for i in range(1 ,snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
354
"""simple docstring""" def A_ ( snake_case_ : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(snake_case_ ,(list, tuple) ) or not all( isinstance(snake_case_ ,snake_case_ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) UpperCamelCase : int = numbers[0] for i in range(1 ,len(snake_case_ ) ): # update the maximum and minimum subarray products UpperCamelCase : List[str] = numbers[i] if number < 0: UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number ) UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number ) # update the maximum product found till now UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ ) return max_prod
27
0
'''simple docstring''' from __future__ import annotations _lowercase : Tuple = 8.988E9 # units = N * m^s * C^-2 def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" lowercase_ : int = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase_ : List[Any] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase_ : Union[str, Any] = abs(__SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase_ : Dict = abs(__SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase_ : Tuple = (COULOMBS_CONSTANT * charge_product / abs(__SCREAMING_SNAKE_CASE )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
93
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase__ : lowerCAmelCase_ = None def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Any = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : str = os.path.join(__SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_json_file(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = feat_extract_first.save_pretrained(__SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.feature_extraction_class() self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
93
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : List[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _UpperCamelCase ( A_ ): '''simple docstring''' __UpperCAmelCase : int ="segformer" def __init__( self , __a=3 , __a=4 , __a=[2, 2, 2, 2] , __a=[8, 4, 2, 1] , __a=[32, 64, 1_60, 2_56] , __a=[7, 3, 3, 3] , __a=[4, 2, 2, 2] , __a=[1, 2, 5, 8] , __a=[4, 4, 4, 4] , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.1 , __a=0.0_2 , __a=0.1 , __a=1e-6 , __a=2_56 , __a=2_55 , **__a , ): super().__init__(**snake_case__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , snake_case__ , ) __lowerCAmelCase = num_channels __lowerCAmelCase = num_encoder_blocks __lowerCAmelCase = depths __lowerCAmelCase = sr_ratios __lowerCAmelCase = hidden_sizes __lowerCAmelCase = patch_sizes __lowerCAmelCase = strides __lowerCAmelCase = mlp_ratios __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = classifier_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = drop_path_rate __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = decoder_hidden_size __lowerCAmelCase = kwargs.get("reshape_last_stage" , snake_case__ ) __lowerCAmelCase = semantic_loss_ignore_index class _UpperCamelCase ( A_ ): '''simple docstring''' __UpperCAmelCase : str =version.parse("""1.11""" ) @property def snake_case ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case ( self ): return 1e-4 @property def snake_case ( self ): return 12
360
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = {} __lowerCAmelCase = 2 while True: __lowerCAmelCase = factor_map.pop(_UpperCamelCase , _UpperCamelCase ) if factor: __lowerCAmelCase = factor + prime while x in factor_map: x += factor __lowerCAmelCase = factor else: __lowerCAmelCase = prime yield prime prime += 1 def _lowerCamelCase ( _UpperCamelCase = 1e10 ): '''simple docstring''' __lowerCAmelCase = sieve() __lowerCAmelCase = 1 while True: __lowerCAmelCase = next(_UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
259
0
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : str = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ , a_ ) -> Any: """simple docstring""" A_ : int = os.path.abspath(a_ ) logger.info(F"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model A_ : Any = tf.train.list_variables(a_ ) A_ : str = [] A_ : List[Any] = [] A_ : Union[str, Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") A_ : List[Any] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(F"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' A_ : int = name[1:] # figure out how many levels deep the name is A_ : Any = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(a_ ) # read data A_ : int = tf.train.load_variable(a_ , a_ ) names.append("""/""".join(a_ ) ) arrays.append(a_ ) logger.info(F"Read a total of {len(a_ ):,} layers" ) # Sanity check if len(set(a_ ) ) != 1: raise ValueError(F"Found layer names with different depths (layer depth {list(set(a_ ) )})" ) A_ : Dict = list(set(a_ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(a_ , a_ ): A_ : List[Any] = full_name.split("""/""" ) A_ : Dict = model A_ : Optional[Any] = [] for i, m_name in enumerate(a_ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): A_ : List[Any] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) A_ : Dict = getattr(a_ , """embeddings""" ) A_ : List[str] = getattr(a_ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) A_ : List[Any] = getattr(a_ , """encoder""" ) A_ : str = getattr(a_ , """layer""" ) A_ : Dict = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) A_ : Tuple = getattr(a_ , """pooler""" ) A_ : List[str] = getattr(a_ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) A_ : Any = getattr(a_ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) A_ : Optional[int] = getattr(a_ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) A_ : str = getattr(a_ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) A_ : List[Any] = getattr(a_ , """token_type_embeddings""" ) else: raise ValueError(F"Unknown embedding layer with name {full_name}" ) trace.append("""weight""" ) A_ : List[str] = getattr(a_ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) A_ : str = getattr(a_ , """attention""" ) A_ : Optional[Any] = getattr(a_ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) A_ : Union[str, Any] = getattr(a_ , """attention""" ) A_ : Union[str, Any] = getattr(a_ , """output""" ) A_ : Union[str, Any] = getattr(a_ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) A_ : str = getattr(a_ , """attention""" ) A_ : List[str] = getattr(a_ , """output""" ) A_ : Union[str, Any] = getattr(a_ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) A_ : List[str] = getattr(a_ , """output""" ) A_ : Optional[int] = getattr(a_ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) A_ : List[Any] = getattr(a_ , """output""" ) A_ : Dict = getattr(a_ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) A_ : Optional[Any] = getattr(a_ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) A_ : Optional[int] = getattr(a_ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) A_ : Optional[Any] = getattr(a_ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) A_ : List[Any] = getattr(a_ , """intermediate""" ) A_ : List[str] = getattr(a_ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) A_ : Optional[Any] = getattr(a_ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) A_ : List[str] = getattr(a_ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) A_ : Any = getattr(a_ , """weight""" ) else: logger.warning(F"Ignored {m_name}" ) # for certain layers reshape is necessary A_ : Optional[Any] = """.""".join(a_ ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , a_ ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , a_ ): A_ : List[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: A_ : Optional[Any] = array.transpose() if pointer.shape == array.shape: A_ : Optional[int] = torch.from_numpy(a_ ) else: raise ValueError( F"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" F" {array.shape}" ) logger.info(F"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" logger.info(F"Loading model based on config from {config_path}..." ) A_ : Union[str, Any] = BertConfig.from_json_file(a_ ) A_ : Any = BertModel(a_ ) # Load weights from checkpoint logger.info(F"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(a_ , a_ , a_ ) # Save pytorch-model logger.info(F"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) UpperCamelCase__ : Dict = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
344
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> str: super().__init__() A_ : Optional[Any] = pad_token_id A_ : List[Any] = max_length A_ : str = vocab A_ : Union[str, Any] = merges A_ : List[Any] = BytePairTokenizer(_lowerCamelCase , _lowerCamelCase , sequence_length=_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> int: A_ : Tuple = [""" """.join(_lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] A_ : Dict = tokenizer.get_vocab() return cls(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) -> str: A_ : Tuple = GPTaTokenizer.from_pretrained(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) return cls.from_tokenizer(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase ) -> List[Any]: return cls(**_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Any: A_ : List[Any] = self.tf_tokenizer(_lowerCamelCase ) A_ : Any = tf.ones_like(_lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A_ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ : Tuple = pad_model_inputs( _lowerCamelCase , max_seq_length=_lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
34
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase( lowercase_ = "" ) -> dict[str, float]: '''simple docstring''' snake_case_ = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" snake_case_ = BeautifulSoup(requests.get(lowercase_ ).text , """html.parser""" ) snake_case_ = soup.find_all("""td""" , attrs="""titleColumn""" ) snake_case_ = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase_ , lowercase_ ) } def UpperCamelCase( lowercase_ = "IMDb_Top_250_Movies.csv" ) -> None: '''simple docstring''' snake_case_ = get_imdb_top_aaa_movies() with open(lowercase_ , """w""" , newline="""""" ) as out_file: snake_case_ = csv.writer(lowercase_ ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
34
1
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class UpperCAmelCase_ ( _lowercase): def __init__( self : List[str] , __UpperCamelCase : Dict="" , __UpperCamelCase : Any="train" ) -> Optional[Any]: assert os.path.isdir(__UpperCamelCase ) _UpperCamelCase = [] _UpperCamelCase = os.listdir(__UpperCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue _UpperCamelCase = os.path.join(__UpperCamelCase , __UpperCamelCase ) if not os.path.isfile(__UpperCamelCase ): continue self.documents.append(__UpperCamelCase ) def __len__( self : Dict ) -> Any: return len(self.documents ) def __getitem__( self : List[str] , __UpperCamelCase : List[str] ) -> int: _UpperCamelCase = self.documents[idx] _UpperCamelCase = document_path.split('''/''' )[-1] with open(__UpperCamelCase , encoding='''utf-8''' ) as source: _UpperCamelCase = source.read() _UpperCamelCase , _UpperCamelCase = process_story(__UpperCamelCase ) return document_name, story_lines, summary_lines def lowercase ( a__ : int ) -> List[str]: _UpperCamelCase = list(filter(lambda a__ : len(a__ ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it _UpperCamelCase = [_add_missing_period(a__ ) for line in nonempty_lines] # gather article lines _UpperCamelCase = [] _UpperCamelCase = deque(a__ ) while True: try: _UpperCamelCase = lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(a__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _UpperCamelCase = list(filter(lambda a__ : not t.startswith('''@highlight''' ) , a__ ) ) return story_lines, summary_lines def lowercase ( a__ : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def lowercase ( a__ : Tuple , a__ : Union[str, Any] , a__ : Any ) -> Any: if len(a__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(a__ )) ) return sequence def lowercase ( a__ : Tuple , a__ : List[str] ) -> Any: _UpperCamelCase = torch.ones_like(a__ ) _UpperCamelCase = sequence == pad_token_id _UpperCamelCase = 0 return mask def lowercase ( a__ : Optional[int] , a__ : str , a__ : Optional[int] ) -> Optional[Any]: _UpperCamelCase = [tokenizer.encode(a__ ) for line in story_lines] _UpperCamelCase = [token for sentence in story_lines_token_ids for token in sentence] _UpperCamelCase = [tokenizer.encode(a__ ) for line in summary_lines] _UpperCamelCase = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowercase ( a__ : Tuple , a__ : Optional[Any] ) -> int: _UpperCamelCase = [] for sequence in batch: _UpperCamelCase = -1 _UpperCamelCase = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(a__ ) return torch.tensor(a__ )
256
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( _lowercase): def __init__( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str]=13 , __UpperCamelCase : str=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Dict=32 , __UpperCamelCase : int=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : List[str]=16 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : str=False , __UpperCamelCase : Dict=True , __UpperCamelCase : Tuple="None" , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Any=None , ) -> Tuple: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = relative_attention _UpperCamelCase = position_biased_input _UpperCamelCase = pos_att_type _UpperCamelCase = scope def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: _UpperCamelCase = self.get_config() _UpperCamelCase = 300 return config def _UpperCamelCase ( self : int , __UpperCamelCase : List[Any] ) -> str: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> List[str]: _UpperCamelCase = DebertaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] _UpperCamelCase = model(__UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ) -> Tuple: _UpperCamelCase = DebertaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> List[Any]: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Dict: _UpperCamelCase = self.num_labels _UpperCamelCase = DebertaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) -> List[Any]: _UpperCamelCase = DebertaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCamelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Any ) -> Union[str, Any]: _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase): snake_case__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def _UpperCamelCase ( self : Union[str, Any] ) -> Tuple: _UpperCamelCase = DebertaModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _UpperCamelCase ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ) -> List[str]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCamelCase ) def _UpperCamelCase ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCamelCase ) def _UpperCamelCase ( self : Dict ) -> Tuple: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCamelCase ) @slow def _UpperCamelCase ( self : Any ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DebertaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: pass @slow def _UpperCamelCase ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) _UpperCamelCase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] # compare the actual values for a slice. _UpperCamelCase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
256
1
import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCAmelCase_ ( lowercase__ , lowercase__ ): """simple docstring""" UpperCAmelCase__ : str = 1 @register_to_config def __init__( self , _a=2_0_0_0 , _a=0.1 , _a=2_0 , _a=1e-3 ) -> Optional[Any]: _a : Dict = None _a : Dict = None _a : Any = None def __lowercase ( self , _a , _a = None ) -> str: _a : List[str] = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def __lowercase ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _a : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _a : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _a : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _a : List[Any] = std.unsqueeze(-1 ) _a : Dict = -score / std # compute _a : Optional[Any] = -1.0 / len(self.timesteps ) _a : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _a : Optional[int] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _a : str = beta_t.unsqueeze(-1 ) _a : Optional[Any] = -0.5 * beta_t * x _a : Tuple = torch.sqrt(_a ) _a : Optional[int] = drift - diffusion**2 * score _a : Optional[int] = x + drift * dt # add noise _a : str = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) _a : Tuple = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Any: return self.config.num_train_timesteps
355
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a__ = logging.get_logger(__name__) @add_end_docstrings( __lowercase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self , _a ) -> np.ndarray: if self.framework == "tf": _a : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _a : Tuple = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __lowercase ( self , _a ) -> np.ndarray: _a : int = self.get_masked_index(_a ) _a : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def __lowercase ( self , _a ) -> Optional[int]: if isinstance(_a , _a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_a ) def __lowercase ( self , _a , _a=None , **_a ) -> Dict[str, GenericTensor]: if return_tensors is None: _a : Union[str, Any] = self.framework _a : str = self.tokenizer(_a , return_tensors=_a ) self.ensure_exactly_one_mask_token(_a ) return model_inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : List[str] = self.model(**_a ) _a : Any = model_inputs['''input_ids'''] return model_outputs def __lowercase ( self , _a , _a=5 , _a=None ) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _a : List[Any] = target_ids.shape[0] _a : Any = model_outputs['''input_ids'''][0] _a : List[str] = model_outputs['''logits'''] if self.framework == "tf": _a : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _a : List[str] = outputs.numpy() _a : Dict = outputs[0, masked_index, :] _a : str = stable_softmax(_a , axis=-1 ) if target_ids is not None: _a : Any = tf.gather_nd(tf.squeeze(_a , 0 ) , target_ids.reshape(-1 , 1 ) ) _a : Union[str, Any] = tf.expand_dims(_a , 0 ) _a : Optional[int] = tf.math.top_k(_a , k=_a ) _a , _a : Optional[Any] = topk.values.numpy(), topk.indices.numpy() else: _a : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _a : List[str] = outputs[0, masked_index, :] _a : List[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _a : List[Any] = probs[..., target_ids] _a , _a : Optional[Any] = probs.topk(_a ) _a : Dict = [] _a : List[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _a : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _a : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _a : Tuple = target_ids[p].tolist() _a : List[str] = p # Filter padding out: _a : List[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _a : List[str] = self.tokenizer.decode(_a , skip_special_tokens=_a ) _a : List[Any] = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_a ) result.append(_a ) if single_mask: return result[0] return result def __lowercase ( self , _a , _a=None ) -> Dict: if isinstance(_a , _a ): _a : Tuple = [targets] try: _a : int = self.tokenizer.get_vocab() except Exception: _a : Any = {} _a : List[Any] = [] for target in targets: _a : List[Any] = vocab.get(_a , _a ) if id_ is None: _a : Tuple = self.tokenizer( _a , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , max_length=1 , truncation=_a , )['''input_ids'''] if len(_a ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue _a : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _a : List[str] = list(set(_a ) ) if len(_a ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _a : int = np.array(_a ) return target_ids def __lowercase ( self , _a=None , _a=None ) -> Tuple: _a : str = {} if targets is not None: _a : List[Any] = self.get_target_ids(_a , _a ) _a : Optional[Any] = target_ids if top_k is not None: _a : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: _a : Optional[Any] = super().__call__(_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs
15
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase__ : Tuple = random.Random() if is_torch_available(): import torch def lowercase_ ( _snake_case ,_snake_case=1.0 ,_snake_case=None ,_snake_case=None ): if rng is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = global_rng SCREAMING_SNAKE_CASE__ : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4_00 , SCREAMING_SNAKE_CASE__=20_00 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=1_60_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : Dict = min_seq_length SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feature_size SCREAMING_SNAKE_CASE__ : Optional[Any] = padding_value SCREAMING_SNAKE_CASE__ : Any = sampling_rate SCREAMING_SNAKE_CASE__ : Optional[Any] = return_attention_mask SCREAMING_SNAKE_CASE__ : List[Any] = do_normalize def __magic_name__ (self ) -> Dict: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __magic_name__ (self , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ) -> List[Any]: """simple docstring""" def _flatten(SCREAMING_SNAKE_CASE__ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE__ ) ) if equal_length: SCREAMING_SNAKE_CASE__ : int = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = ASTFeatureExtractor def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ASTFeatureExtractionTester(self ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] SCREAMING_SNAKE_CASE__ : Dict = [np.asarray(SCREAMING_SNAKE_CASE__ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE__ : int = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ : str = feat_extract(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] SCREAMING_SNAKE_CASE__ : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) @require_torch def __magic_name__ (self ) -> Tuple: """simple docstring""" import torch SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Any = np.random.rand(1_00 ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE__ : Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE__ : Dict = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" from datasets import load_dataset SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE__ : Union[str, Any] = ds.sort("""id""" ).select(range(SCREAMING_SNAKE_CASE__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on SCREAMING_SNAKE_CASE__ : Optional[int] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ : int = ASTFeatureExtractor() SCREAMING_SNAKE_CASE__ : Dict = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
25
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =42 a_ : int =None def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[str]=0.9_9_9 , lowerCAmelCase: Any="cosine" , )-> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase: Any ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase: List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _snake_case : Optional[Any] = [] for i in range(lowerCAmelCase ): _snake_case : str = i / num_diffusion_timesteps _snake_case : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase ) / alpha_bar_fn(lowerCAmelCase ) , lowerCAmelCase ) ) return torch.tensor(lowerCAmelCase , dtype=torch.floataa ) class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : Dict , UpperCamelCase : str = 10_00 , UpperCamelCase : Optional[Any] = "fixed_small_log" , UpperCamelCase : Tuple = True , UpperCamelCase : int = 1.0 , UpperCamelCase : Optional[Any] = "epsilon" , UpperCamelCase : Tuple = "squaredcos_cap_v2" , ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) _snake_case : List[Any] = betas_for_alpha_bar(_SCREAMING_SNAKE_CASE ) _snake_case : int = 1.0 - self.betas _snake_case : Dict = torch.cumprod(self.alphas , dim=0 ) _snake_case : int = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _snake_case : Union[str, Any] = 1.0 # setable values _snake_case : List[str] = None _snake_case : Tuple = torch.from_numpy(np.arange(0 , _SCREAMING_SNAKE_CASE )[::-1].copy() ) _snake_case : Optional[int] = variance_type def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Tuple = None ): '''simple docstring''' return sample def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Dict = None ): '''simple docstring''' _snake_case : Optional[Any] = num_inference_steps _snake_case : Optional[Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _snake_case : Tuple = (np.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _snake_case : Dict = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None ): '''simple docstring''' if prev_timestep is None: _snake_case : int = t - 1 _snake_case : str = self.alphas_cumprod[t] _snake_case : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _snake_case : Dict = 1 - alpha_prod_t _snake_case : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _snake_case : Optional[Any] = self.betas[t] else: _snake_case : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _snake_case : List[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _snake_case : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _snake_case : Optional[int] = torch.log(torch.clamp(_SCREAMING_SNAKE_CASE , min=1e-2_0 ) ) _snake_case : Optional[int] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _snake_case : Union[str, Any] = variance.log() _snake_case : Tuple = beta.log() _snake_case : List[str] = (predicted_variance + 1) / 2 _snake_case : Dict = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] = None , UpperCamelCase : Tuple=None , UpperCamelCase : List[Any] = True , ): '''simple docstring''' _snake_case : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _snake_case : List[str] = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case : Tuple = None # 1. compute alphas, betas if prev_timestep is None: _snake_case : Tuple = t - 1 _snake_case : List[str] = self.alphas_cumprod[t] _snake_case : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _snake_case : Dict = 1 - alpha_prod_t _snake_case : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _snake_case : Dict = self.betas[t] _snake_case : Union[str, Any] = self.alphas[t] else: _snake_case : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev _snake_case : Union[str, Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _snake_case : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _snake_case : Any = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _snake_case : Dict = torch.clamp( _SCREAMING_SNAKE_CASE , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : str = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _snake_case : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case : int = 0 if t > 0: _snake_case : List[str] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE , device=model_output.device ) _snake_case : List[Any] = self._get_variance( _SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , ) if self.variance_type == "fixed_small_log": _snake_case : Any = variance elif self.variance_type == "learned_range": _snake_case : Any = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.' ) _snake_case : Dict = variance * variance_noise _snake_case : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : int = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) _snake_case : Optional[Any] = timesteps.to(original_samples.device ) _snake_case : Optional[int] = alphas_cumprod[timesteps] ** 0.5 _snake_case : Any = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _snake_case : Any = sqrt_alpha_prod.unsqueeze(-1 ) _snake_case : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 _snake_case : List[str] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _snake_case : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
371
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: str )-> List[str]: # Initialise PyTorch model _snake_case : Optional[Any] = MobileBertConfig.from_json_file(lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _snake_case : Optional[int] = MobileBertForPreTraining(lowerCAmelCase ) # Load weights from tf checkpoint _snake_case : Optional[int] = load_tf_weights_in_mobilebert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
260
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Optional[Any] = logging.get_logger(__name__) class A ( __snake_case ): __magic_name__ = ['''pixel_values'''] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : str = size if size is not None else {'''shortest_edge''': 384} A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : str = do_resize A : List[Any] = size # Default value set here for backwards compatibility where the value in config is None A : List[Any] = crop_pct if crop_pct is not None else 224 / 256 A : Optional[int] = resample A : Union[str, Any] = do_rescale A : List[str] = rescale_factor A : Union[str, Any] = do_normalize A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) A : Any = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : Dict = int(shortest_edge / crop_pct ) A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" A : int = do_resize if do_resize is not None else self.do_resize A : Tuple = crop_pct if crop_pct is not None else self.crop_pct A : Optional[Any] = resample if resample is not None else self.resample A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean A : List[str] = image_std if image_std is not None else self.image_std A : Union[str, Any] = size if size is not None else self.size A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : Any = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] A : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
3
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = """https://openaipublic.azureedge.net/jukebox/models/""" __snake_case = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :int = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Union[str, Any] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[Any] = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[int] = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: UpperCamelCase :Any = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: UpperCamelCase :int = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase :Any = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: UpperCamelCase :str = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Optional[int] = {} import re UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :str = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[int] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[Any] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[Any] = regex_match.groups() UpperCamelCase :Any = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :Any = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' UpperCamelCase :List[str] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = prefix + resnet_block UpperCamelCase :str = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = regex_match.groups() UpperCamelCase :int = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' UpperCamelCase :str = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Any = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' UpperCamelCase :Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Optional[int] = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = regex_match.groups() UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :int = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' UpperCamelCase :List[Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Dict = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :List[str] = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :Dict = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # keep original key else: UpperCamelCase :List[str] = original_key UpperCamelCase :Any = replace_key(SCREAMING_SNAKE_CASE__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: UpperCamelCase :Union[str, Any] = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) UpperCamelCase :List[Any] = original_key UpperCamelCase :Any = original_key UpperCamelCase :Optional[int] = value return new_dict @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): UpperCamelCase :Dict = requests.get(F'''{PREFIX}{file}''' , allow_redirects=SCREAMING_SNAKE_CASE__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=SCREAMING_SNAKE_CASE__ ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content ) UpperCamelCase :Optional[int] = MODEL_MAPPING[model_name.split('''/''' )[-1]] UpperCamelCase :Any = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = JukeboxModel(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = [] UpperCamelCase :List[Any] = {} for i, dict_name in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] UpperCamelCase :Tuple = {} for k in old_dic.keys(): if k.endswith('''.b''' ): UpperCamelCase :Optional[int] = old_dic[k] elif k.endswith('''.w''' ): UpperCamelCase :Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase :Optional[Any] = old_dic[k] else: UpperCamelCase :Any = old_dic[k] UpperCamelCase :Any = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' UpperCamelCase :Dict = fix_jukebox_keys(SCREAMING_SNAKE_CASE__ , model.state_dict() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) weight_dict.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = weight_dict.pop(0 ) model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) return weight_dict if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowercase ( __a ): """simple docstring""" def __init__( self : Optional[int] , snake_case : Union[str, Any] , snake_case : int ) -> Optional[Any]: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ : Union[str, Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a__ , scheduler=a__ ) @torch.no_grad() def __call__( self : List[Any] , snake_case : int = 1 , snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case : float = 0.0 , snake_case : int = 5_0 , snake_case : Optional[bool] = None , snake_case : Optional[str] = "pil" , snake_case : bool = True , ) -> int: """simple docstring""" if isinstance(self.unet.config.sample_size , a__ ): UpperCamelCase_ : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCamelCase_ : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) UpperCamelCase_ : Optional[Any] = randn_tensor(a__ , generator=a__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase_ : Tuple = self.unet(a__ , a__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ : Tuple = self.scheduler.step( a__ , a__ , a__ , eta=a__ , use_clipped_model_output=a__ , generator=a__ ).prev_sample UpperCamelCase_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
359
from manim import * class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : str = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : List[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : List[str] = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = Text('CPU' , font_size=2_4 ) UpperCamelCase_ : List[str] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) UpperCamelCase_ : Union[str, Any] = [mem.copy() for i in range(1 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Union[str, Any] = Text('GPU' , font_size=2_4 ) UpperCamelCase_ : Optional[Any] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.align_to(snake_case , snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : int = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Tuple = Text('Model' , font_size=2_4 ) UpperCamelCase_ : Dict = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , ) UpperCamelCase_ : Union[str, Any] = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , ) UpperCamelCase_ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_ : Dict = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=2.5 ) , Write(snake_case ) , Write(snake_case ) ) self.add(snake_case ) UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Tuple = [] for i, rect in enumerate(snake_case ): UpperCamelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) cpu_target.move_to(snake_case ) cpu_target.generate_target() UpperCamelCase_ : int = 0.46 / 4 UpperCamelCase_ : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case , buff=0.0 ) cpu_targs.append(snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case ) ) second_animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(*snake_case ) self.wait()
50
0
'''simple docstring''' def snake_case_ (_a : str ): UpperCAmelCase = 0 for ch in input_str: UpperCAmelCase = ord(_a ) UpperCAmelCase = pow(2 , _a ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' import os from distutils.util import strtobool def snake_case_ (_a : Union[str, Any] , _a : List[Any] ): for e in env_keys: UpperCAmelCase = int(os.environ.get(_a , -1 ) ) if val >= 0: return val return default def snake_case_ (_a : Dict , _a : Any=False ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return strtobool(_a ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case_ (_a : str , _a : Optional[Any]="no" ): UpperCAmelCase = os.environ.get(_a , str(_a ) ) return value
34
1
'''simple docstring''' import math def a_ ( lowerCamelCase : int ): lowerCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCamelCase ) def a_ ( lowerCamelCase : float = 1 / 12345 ): lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 3 while True: lowerCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase ): lowerCAmelCase = int(lowerCamelCase ) total_partitions += 1 if check_partition_perfect(lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
55
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : List[str]=1_0 , UpperCAmelCase__ : Optional[int]=[8, 1_6, 3_2, 6_4] , UpperCAmelCase__ : str=[1, 1, 2, 1] , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Tuple=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Union[str, Any]=[2, 3, 4] , UpperCAmelCase__ : Any=1 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = embeddings_size lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = scope lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = num_groups def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : int ) -> int: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Any: lowerCAmelCase = BitModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[str]: lowerCAmelCase = self.num_labels lowerCAmelCase = BitForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> Any: lowerCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Optional[int] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCamelCase : Optional[Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase = BitModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : Any ) -> Optional[Any]: return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: pass def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(config=UpperCAmelCase__ ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: def check_hidden_states_output(UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ): lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase = layer_type lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: pass def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = BitModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> Optional[int]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**UpperCAmelCase__ ) # verify the logits lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @require_torch class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : int = (BitBackbone,) if is_torch_available() else () lowerCamelCase : Dict = BitConfig lowerCamelCase : Tuple = False def __UpperCAmelCase ( self : str ) -> Optional[Any]: lowerCAmelCase = BitModelTester(self )
55
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCAmelCase__ = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowerCamelCase__ ( unittest.TestCase): @classmethod def __A (cls ) -> List[str]: _lowercase =TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def __A (cls ) -> Dict: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __A (self ) -> Dict: _lowercase =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , repo_id='''test-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def __A (self ) -> Optional[Any]: _lowercase =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) _lowercase =BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def __A (self ) -> str: CustomConfig.register_for_auto_class() _lowercase =CustomConfig(attribute=4_2 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) _lowercase =AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 4_2 ) class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Any: _lowercase =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowercase =c.n_embd + 1 # int _lowercase =c.resid_pdrop + 1.0 # float _lowercase =not c.scale_attn_weights # bool _lowercase =c.summary_type + '''foo''' # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(UpperCAmelCase , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(UpperCAmelCase , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(UpperCAmelCase , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(UpperCAmelCase , c.summary_type , '''mismatch for key: summary_type''' ) def __A (self ) -> Union[str, Any]: _lowercase =PretrainedConfig() _lowercase =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) _lowercase =[key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )] if len(UpperCAmelCase ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f" {', '.join(UpperCAmelCase )}." ) def __A (self ) -> Optional[int]: with self.assertRaises(UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(UpperCAmelCase ) def __A (self ) -> List[str]: # A mock response for an HTTP head request to emulate server down _lowercase =mock.Mock() _lowercase =5_0_0 _lowercase ={} _lowercase =HTTPError _lowercase ={} # Download this model to make sure it's in the cache. _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase ) as mock_head: _lowercase =BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __A (self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 _lowercase =BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __A (self ) -> Any: _lowercase =AutoConfig.from_pretrained('''bert-base-cased''' ) _lowercase =['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase ) _lowercase =2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowercase =AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowercase =['''config.42.0.0.json'''] _lowercase =7_6_8 configuration.save_pretrained(UpperCAmelCase ) shutil.move(os.path.join(UpperCAmelCase , '''config.4.0.0.json''' ) , os.path.join(UpperCAmelCase , '''config.42.0.0.json''' ) ) _lowercase =AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def __A (self ) -> List[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowercase ='''hf-internal-testing/test-two-configs''' import transformers as new_transformers _lowercase ='''v4.0.0''' _lowercase , _lowercase =new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowercase ='''v3.0.0''' _lowercase =old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
5
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) <= 1: return [tuple(a_ )] __A = [] def generate(a_ , a_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __A , __A = arr[k - 1], arr[i] else: # k is odd __A , __A = arr[k - 1], arr[0] generate(k - 1 , a_ ) generate(len(a_ ) , a_ ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE :Dict = [int(item) for item in user_input.split(',')] print(heaps(arr))
15
0
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : bool = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis __lowerCamelCase = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __lowerCamelCase = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check __lowerCamelCase = primes[:idx] break __lowerCamelCase = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __lowerCamelCase = False for r in range(_UpperCAmelCase ): __lowerCamelCase = pow(_UpperCAmelCase , d * 2**r , _UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __lowerCamelCase = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __magic_name__ ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
350
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: return abs(__lowerCAmelCase ) if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase ) def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase , __lowerCamelCase = y, x % y return abs(__lowerCAmelCase ) def __magic_name__ ( ) -> Tuple: try: __lowerCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowerCAmelCase , __lowerCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
339
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bloom''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self , A=25_0880 , A=64 , A=2 , A=8 , A=1e-5 , A=0.02 , A=True , A=1 , A=2 , A=False , A=0.0 , A=0.0 , A=1 , A=False , **A , ) -> Tuple: _SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg _SCREAMING_SNAKE_CASE = kwargs.pop("""n_embed""" , A ) _SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = pretraining_tp _SCREAMING_SNAKE_CASE = apply_residual_connection_post_layernorm _SCREAMING_SNAKE_CASE = hidden_dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = slow_but_exact super().__init__(bos_token_id=A , eos_token_id=A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = version.parse('''1.12''' ) def __init__( self , A , A = "default" , A = None , A = False , ) -> str: super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? _SCREAMING_SNAKE_CASE = 0 @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: _SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A , direction="""inputs""" , inverted_values_shape=A ) _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_( self ) -> int: return self._config.n_layer @property def snake_case_( self ) -> int: return self._config.n_head @property def snake_case_( self ) -> float: return 1e-3 def snake_case_( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: _SCREAMING_SNAKE_CASE = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _SCREAMING_SNAKE_CASE = seqlen + 2 _SCREAMING_SNAKE_CASE = self._config.hidden_size // self.num_attention_heads _SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _SCREAMING_SNAKE_CASE = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: _SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype _SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def snake_case_( self ) -> int: return 13
58
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int = 1_6000 ): '''simple docstring''' _UpperCAmelCase = int(round(sample_rate * max_length ) ) if len(_SCREAMING_SNAKE_CASE ) <= sample_length: return wav _UpperCAmelCase = randint(0 , len(_SCREAMING_SNAKE_CASE ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _a : """simple docstring""" UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """Name of a dataset from the datasets package"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the training audio paths and labels."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the validation audio paths and labels."""}) UpperCamelCase__ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCamelCase__ = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCamelCase__ = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) UpperCamelCase__ = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase__ = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""}) UpperCamelCase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowercase__ ( self : Optional[Any] )->int: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __UpperCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. _UpperCAmelCase = DatasetDict() _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--label_column_name` to the correct text column - one of ''' f'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCAmelCase = feature_extractor.model_input_names[0] def train_transforms(_SCREAMING_SNAKE_CASE : Tuple ): _UpperCAmelCase = [] for audio in batch[data_args.audio_column_name]: _UpperCAmelCase = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _UpperCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names _UpperCAmelCase , _UpperCAmelCase = {}, {} for i, label in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = label # Load the accuracy metric from the datasets package _UpperCAmelCase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_SCREAMING_SNAKE_CASE : List[str] ): _UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=eval_pred.label_ids ) _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCAmelCase = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCAmelCase = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE ) # Initialize our trainer _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase = trainer.evaluate() trainer.log_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub _UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
260
0
from collections.abc import Sequence from queue import Queue class lowercase : def __init__( self , snake_case , snake_case , snake_case , snake_case=None , snake_case=None ): snake_case_ = start snake_case_ = end snake_case_ = val snake_case_ = (start + end) // 2 snake_case_ = left snake_case_ = right def __repr__( self ): return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class lowercase : def __init__( self , snake_case , snake_case ): snake_case_ = collection snake_case_ = function if self.collection: snake_case_ = self._build_tree(0 , len(snake_case ) - 1 ) def a ( self , snake_case , snake_case ): self._update_tree(self.root , snake_case , snake_case ) def a ( self , snake_case , snake_case ): return self._query_range(self.root , snake_case , snake_case ) def a ( self , snake_case , snake_case ): if start == end: return SegmentTreeNode(snake_case , snake_case , self.collection[start] ) snake_case_ = (start + end) // 2 snake_case_ = self._build_tree(snake_case , snake_case ) snake_case_ = self._build_tree(mid + 1 , snake_case ) return SegmentTreeNode(snake_case , snake_case , self.fn(left.val , right.val ) , snake_case , snake_case ) def a ( self , snake_case , snake_case , snake_case ): if node.start == i and node.end == i: snake_case_ = val return if i <= node.mid: self._update_tree(node.left , snake_case , snake_case ) else: self._update_tree(node.right , snake_case , snake_case ) snake_case_ = self.fn(node.left.val , node.right.val ) def a ( self , snake_case , snake_case , snake_case ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , snake_case , snake_case ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , snake_case , node.mid ) , self._query_range(node.right , node.mid + 1 , snake_case ) , ) else: # range in right child tree return self._query_range(node.right , snake_case , snake_case ) def a ( self ): if self.root is not None: snake_case_ = Queue() queue.put(self.root ) while not queue.empty(): snake_case_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) _UpperCAmelCase : str = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
200
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : int = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : int = '''canine''' def __init__( self , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_6384 , snake_case=16 , snake_case=0.02 , snake_case=1e-1_2 , snake_case=0 , snake_case=0xE000 , snake_case=0xE001 , snake_case=4 , snake_case=4 , snake_case=8 , snake_case=1_6384 , snake_case=128 , **snake_case , ): super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps # Character config: snake_case_ = downsampling_rate snake_case_ = upsampling_kernel_size snake_case_ = num_hash_functions snake_case_ = num_hash_buckets snake_case_ = local_transformer_stride
200
1
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase = 0 ): _lowerCamelCase, _lowerCamelCase : Tuple = row, column _lowerCamelCase : int = [[default_value for c in range(lowercase )] for r in range(lowercase )] def __str__( self ): _lowerCamelCase : Tuple = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _lowerCamelCase : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: _lowerCamelCase : int = max(lowercase , len(str(lowercase ) ) ) _lowerCamelCase : Optional[int] = F'''%{max_element_length}s''' # Make string and return def single_line(lowercase ) -> str: nonlocal string_format_identifier _lowerCamelCase : int = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def A_ ( self , lowercase ): if not (isinstance(lowercase , (list, tuple) ) and len(lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , lowercase ): assert self.validate_indicies(lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self , lowercase , lowercase ): assert self.validate_indicies(lowercase ) _lowerCamelCase : Dict = value def __add__( self , lowercase ): assert isinstance(lowercase , lowercase ) assert self.row == another.row and self.column == another.column # Add _lowerCamelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : List[str] = self[r, c] + another[r, c] return result def __neg__( self ): _lowerCamelCase : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : List[str] = -self[r, c] return result def __sub__( self , lowercase ): return self + (-another) def __mul__( self , lowercase ): if isinstance(lowercase , (int, float) ): # Scalar multiplication _lowerCamelCase : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : Optional[Any] = self[r, c] * another return result elif isinstance(lowercase , lowercase ): # Matrix multiplication assert self.column == another.row _lowerCamelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCamelCase : Optional[int] = F'''Unsupported type given for another ({type(lowercase )})''' raise TypeError(lowercase ) def A_ ( self ): _lowerCamelCase : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : Optional[Any] = self[r, c] return result def A_ ( self , lowercase , lowercase ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCamelCase : Optional[int] = v.transpose() _lowerCamelCase : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _snake_case ( ): # a^(-1) _lowerCamelCase : Optional[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCamelCase : Optional[Any] = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _lowerCamelCase : Tuple = Matrix(3 , 1 , 0 ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = 1, 2, -3 _lowerCamelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase__ , lowercase__ )}''' ) def _snake_case ( ): import doctest doctest.testmod() testa()
96
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( _lowercase): snake_case__ : Any = ["image_processor", "tokenizer"] snake_case__ : Dict = "FlavaImageProcessor" snake_case__ : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Any , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) _lowerCamelCase : int = kwargs.pop('''feature_extractor''' ) _lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = self.image_processor def __call__( self : Optional[Any] , __lowerCAmelCase : Optional[ImageInput] = None , __lowerCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Dict , ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _lowerCamelCase : Dict = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if images is not None: _lowerCamelCase : str = self.image_processor( __lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if text is not None and images is not None: encoding.update(__lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , *__lowerCAmelCase : int , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , *__lowerCAmelCase : str , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = self.tokenizer.model_input_names _lowerCamelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
175
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [randint(-10_00, 10_00 ) for i in range(10 )] _lowerCamelCase : Tuple = randint(-50_00, 50_00 ) return (arr, r) lowerCAmelCase__ = make_dataset() def snake_case_ ( A_ : list[int], A_ : int ): '''simple docstring''' for triplet in permutations(A_, 3 ): if sum(A_ ) == target: return tuple(sorted(A_ ) ) return (0, 0, 0) def snake_case_ ( A_ : list[int], A_ : int ): '''simple docstring''' arr.sort() _lowerCamelCase : Optional[Any] = len(A_ ) for i in range(n - 1 ): _lowerCamelCase , _lowerCamelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' _lowerCamelCase : List[Any] = ''' triplet_sum1(*dataset) ''' _lowerCamelCase : str = ''' triplet_sum2(*dataset) ''' _lowerCamelCase : Optional[int] = repeat(setup=A_, stmt=A_, repeat=5, number=1_00_00 ) _lowerCamelCase : Union[str, Any] = repeat(setup=A_, stmt=A_, repeat=5, number=1_00_00 ) return (min(A_ ), min(A_ )) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
175
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=7 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=99 , UpperCamelCase=32 , UpperCamelCase=2 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=16 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=None , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFRoFormerModel(config=UpperCamelCase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = True lowerCamelCase_ = TFRoFormerForCausalLM(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFRoFormerForMaskedLM(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRoFormerForSequenceClassification(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFRoFormerForMultipleChoice(config=UpperCamelCase ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRoFormerForTokenClassification(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFRoFormerForQuestionAnswering(config=UpperCamelCase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFRoFormerModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(UpperCamelCase ) @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(UpperCamelCase )[0] # TODO Replace vocab size lowerCamelCase_ = 5_0000 lowerCamelCase_ = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCamelCase_ = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase , atol=1e-4 ) @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = 1e-4 def snake_case ( self ): """simple docstring""" lowerCamelCase_ = tf.constant([[4, 10]] ) lowerCamelCase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCamelCase_ = emba(input_ids.shape ) lowerCamelCase_ = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(UpperCamelCase , UpperCamelCase , atol=self.tolerance ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) lowerCamelCase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCamelCase_ = emba.weight[:3, :5] tf.debugging.assert_near(UpperCamelCase , UpperCamelCase , atol=self.tolerance ) @require_tf class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = 1e-4 def snake_case ( self ): """simple docstring""" # 2,12,16,64 lowerCamelCase_ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCamelCase_ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCamelCase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCamelCase_ = embed_positions([2, 16, 768] )[None, None, :, :] lowerCamelCase_ ,lowerCamelCase_ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) lowerCamelCase_ = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCamelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCamelCase , atol=self.tolerance )
55
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class snake_case : """simple docstring""" @staticmethod def snake_case ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" pass def __snake_case ( UpperCAmelCase_ : List[Any] ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ : Dict = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model=UpperCamelCase , tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) lowerCamelCase_ = "What is the placebo?" lowerCamelCase_ = [ { "image": load_image(UpperCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = dqa_pipeline(UpperCamelCase , top_k=2 ) self.assertEqual( UpperCamelCase , [ [ {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "How many cats are there?" lowerCamelCase_ = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , words=UpperCamelCase , boxes=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def snake_case ( self ): """simple docstring""" pass
55
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : def __init__( self : Dict, lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : Optional[int]=1_3, lowerCAmelCase__ : Optional[Any]=7, lowerCAmelCase__ : Optional[Any]=True, lowerCAmelCase__ : Any=True, lowerCAmelCase__ : str=True, lowerCAmelCase__ : Any=9_9, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=5, lowerCAmelCase__ : Tuple=4, lowerCAmelCase__ : List[Any]=3_7, lowerCAmelCase__ : Tuple="gelu", lowerCAmelCase__ : Any=0.1, lowerCAmelCase__ : Optional[Any]=0.1, lowerCAmelCase__ : Dict=5_1_2, lowerCAmelCase__ : List[str]=1_6, lowerCAmelCase__ : Tuple=2, lowerCAmelCase__ : int=0.02, lowerCAmelCase__ : int=3, lowerCAmelCase__ : Optional[Any]=4, lowerCAmelCase__ : Dict=None, ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Tuple = use_token_type_ids _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : int = type_vocab_size _UpperCamelCase : List[str] = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : int = num_labels _UpperCamelCase : List[str] = num_choices _UpperCamelCase : str = scope _UpperCamelCase : Optional[int] = self.vocab_size - 1 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _UpperCamelCase : List[str] = None if self.use_token_type_ids: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _UpperCamelCase : Optional[int] = None _UpperCamelCase : str = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_choices ) _UpperCamelCase : str = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) _UpperCamelCase : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str], *lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[str] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, head_mask=lowerCAmelCase__ ) _UpperCamelCase : Any = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__ ) _UpperCamelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Any, lowerCAmelCase__ : Tuple, lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : Any = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Tuple = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[int], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[Any], *lowerCAmelCase__ : Any ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[str], lowerCAmelCase__ : Dict, lowerCAmelCase__ : Dict, lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[Any], *lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _UpperCamelCase : Union[str, Any] = model(lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Tuple = config_and_inputs _UpperCamelCase : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCamelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCamelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self : Union[str, Any], lowerCAmelCase__ : Any, lowerCAmelCase__ : List[str], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str], lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case ( self : str, lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : List[str], lowerCAmelCase__ : Optional[int]=False ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = super()._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__, return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCamelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Tuple = inputs_dict['''labels'''] _UpperCamelCase : List[str] = inputs_dict['''labels'''] _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowerCAmelCase__, ) _UpperCamelCase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCAmelCase__ ) return inputs_dict def snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = OpenAIGPTModelTester(self ) _UpperCamelCase : int = ConfigTester(self, config_class=lowerCAmelCase__, n_embd=3_7 ) def snake_case ( self : Optional[int] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def snake_case ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def snake_case ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : int = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _a ( unittest.TestCase ): @slow def snake_case ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) _UpperCamelCase : str = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=lowerCAmelCase__ ) # the president is _UpperCamelCase : Optional[int] = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCamelCase : Union[str, Any] = model.generate(lowerCAmelCase__, do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist(), lowerCAmelCase__ )
128
"""simple docstring""" from functools import lru_cache @lru_cache def a_ ( _lowercase ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
128
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''switch_transformers''' __snake_case = ['''past_key_values'''] __snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Dict , __UpperCAmelCase : List[Any]=32_128 , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : str=64 , __UpperCAmelCase : Dict=2_048 , __UpperCAmelCase : int=64 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : str=12 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : List[Any]=0.01 , __UpperCAmelCase : Any="float32" , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=32 , __UpperCAmelCase : str=128 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]=1e-6 , __UpperCAmelCase : Optional[int]=0.001 , __UpperCAmelCase : Any=0.001 , __UpperCAmelCase : List[Any]=1.0 , __UpperCAmelCase : List[Any]="relu" , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=0 , __UpperCAmelCase : str=1 , **__UpperCAmelCase : List[Any] , ) ->Optional[int]: """simple docstring""" a = vocab_size a = d_model a = d_kv a = d_ff a = num_sparse_encoder_layers a = num_layers a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: a = self.num_layers // self.num_sparse_encoder_layers else: a = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: a = self.num_decoder_layers // self.num_sparse_decoder_layers else: a = self.num_decoder_layers # HACK: this will create 0 sparse layers a = num_heads a = num_experts a = expert_capacity a = router_bias a = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) a = router_dtype a = router_ignore_padding_tokens a = relative_attention_num_buckets a = relative_attention_max_distance a = dropout_rate a = layer_norm_epsilon a = initializer_factor a = feed_forward_proj a = use_cache a = add_router_probs a = router_z_loss_coef a = router_aux_loss_coef a = self.feed_forward_proj.split('''-''' ) a = act_info[-1] a = act_info[0] == '''gated''' if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a = '''gelu_new''' super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" UpperCAmelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" UpperCAmelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : str) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def _lowerCamelCase ( self : Union[str, Any] , A : List[List[List[str]]] , A : List[List[str]] , A : int = 1 , A : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A , hypotheses=A , min_len=A , max_len=A) }
339
0
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase ): A__ , A__ = text, pattern A__ , A__ = len(__lowerCamelCase ), len(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): for i in range(self.patLen - 1,-1,-1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self,__lowerCamelCase ): for i in range(self.patLen - 1,-1,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self ): # searches pattern in text and returns index positions A__ = [] for i in range(self.textLen - self.patLen + 1 ): A__ = self.mismatch_in_text(__lowerCamelCase ) if mismatch_index == -1: positions.append(__lowerCamelCase ) else: A__ = self.match_in_pattern(self.text[mismatch_index] ) A__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions a__: List[str] = 'ABAABA' a__: str = 'AB' a__: Union[str, Any] = BoyerMooreSearch(text, pattern) a__: int = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
39
def UpperCamelCase__( )->Dict: A__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A__ = 6 A__ = 1 A__ = 19_01 A__ = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 A__ = day - days_per_month[month - 2] if month > 12: year += 1 A__ = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
39
1
'''simple docstring''' from __future__ import annotations class lowercase__ : '''simple docstring''' def __init__( self , __snake_case = 0 ): _SCREAMING_SNAKE_CASE : List[str] = key def UpperCAmelCase_ ( self , __snake_case , __snake_case ): assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__snake_case ) ^ key ) for ch in content] def UpperCAmelCase_ ( self , __snake_case , __snake_case ): assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__snake_case ) ^ key ) for ch in content] def UpperCAmelCase_ ( self , __snake_case , __snake_case = 0 ): assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _SCREAMING_SNAKE_CASE : Union[str, Any] = """""" for ch in content: ans += chr(ord(__snake_case ) ^ key ) return ans def UpperCAmelCase_ ( self , __snake_case , __snake_case = 0 ): assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _SCREAMING_SNAKE_CASE : Union[str, Any] = """""" for ch in content: ans += chr(ord(__snake_case ) ^ key ) return ans def UpperCAmelCase_ ( self , __snake_case , __snake_case = 0 ): assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) try: with open(__snake_case ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__snake_case , __snake_case ) ) except OSError: return False return True def UpperCAmelCase_ ( self , __snake_case , __snake_case ): assert isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) try: with open(__snake_case ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__snake_case , __snake_case ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
200
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : '''simple docstring''' def __init__( self , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="resnet50" , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=True , __snake_case=True , ): _SCREAMING_SNAKE_CASE : Tuple = parent _SCREAMING_SNAKE_CASE : Optional[int] = out_indices if out_indices is not None else [4] _SCREAMING_SNAKE_CASE : str = stage_names _SCREAMING_SNAKE_CASE : List[str] = out_features _SCREAMING_SNAKE_CASE : int = backbone _SCREAMING_SNAKE_CASE : Any = batch_size _SCREAMING_SNAKE_CASE : List[str] = image_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels _SCREAMING_SNAKE_CASE : int = use_pretrained_backbone _SCREAMING_SNAKE_CASE : Optional[Any] = is_training def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[Any] = model(__snake_case ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = (TimmBackbone,) if is_torch_available() else () A_ : Tuple = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} A_ : Optional[Any] = False A_ : List[Any] = False A_ : Dict = False A_ : int = False def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = TimmBackboneModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def UpperCAmelCase_ ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = """resnet18""" _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-18""" _SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(__snake_case ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case , out_indices=[1, 2, 3] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoBackbone.from_pretrained(__snake_case , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Safetensors is not supported by timm.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[str] = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality _SCREAMING_SNAKE_CASE : str = self.all_model_classes[0] _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) model.to(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Tuple = model(**__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = outputs[0][-1] # Encoder-/Decoder-only models _SCREAMING_SNAKE_CASE : str = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _SCREAMING_SNAKE_CASE : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = None _SCREAMING_SNAKE_CASE : Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _SCREAMING_SNAKE_CASE : str = copy.deepcopy(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : List[Any] = model(**__snake_case )
200
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowercase__ ( lowercase ): def __init__( self : int ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Dict = params _UpperCamelCase : Optional[Any] = np.array(lowerCamelCase__ ) _UpperCamelCase : Tuple = np.array([len(lowerCamelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Dict ,lowerCamelCase__ : Tuple ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self : str ): '''simple docstring''' return len(self.lengths ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Dict = self.params.max_model_input_size _UpperCamelCase : Any = self.lengths > max_len logger.info(F'Splitting {sum(lowerCamelCase__ )} too long sequences.' ) def divide_chunks(lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ): return [l[i : i + n] for i in range(0 ,len(lowerCamelCase__ ) ,lowerCamelCase__ )] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : List[Any] = [] if self.params.mlm: _UpperCamelCase , _UpperCamelCase : int = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: _UpperCamelCase , _UpperCamelCase : Optional[Any] = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _UpperCamelCase : List[str] = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: _UpperCamelCase : Tuple = np.insert(lowerCamelCase__ ,0 ,lowerCamelCase__ ) if sub_s[-1] != sep_id: _UpperCamelCase : Optional[int] = np.insert(lowerCamelCase__ ,len(lowerCamelCase__ ) ,lowerCamelCase__ ) assert len(lowerCamelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCamelCase__ ) new_tok_ids.extend(lowerCamelCase__ ) new_lengths.extend([len(lowerCamelCase__ ) for l in sub_seqs] ) _UpperCamelCase : str = np.array(lowerCamelCase__ ) _UpperCamelCase : Any = np.array(lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = len(self ) _UpperCamelCase : Any = self.lengths > 11 _UpperCamelCase : Optional[int] = self.token_ids[indices] _UpperCamelCase : Optional[Any] = self.lengths[indices] _UpperCamelCase : Optional[Any] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: _UpperCamelCase : Tuple = self.params.special_tok_ids['unk_token'] _UpperCamelCase : Optional[int] = len(self ) _UpperCamelCase : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _UpperCamelCase : Union[str, Any] = (unk_occs / self.lengths) < 0.5 _UpperCamelCase : Optional[Any] = self.token_ids[indices] _UpperCamelCase : int = self.lengths[indices] _UpperCamelCase : Optional[Any] = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase_ ( self : str ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : int = [t[0] for t in batch] _UpperCamelCase : Any = [t[1] for t in batch] assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) # Max for paddings _UpperCamelCase : Dict = max(lowerCamelCase__ ) # Pad token ids if self.params.mlm: _UpperCamelCase : str = self.params.special_tok_ids['pad_token'] else: _UpperCamelCase : Optional[Any] = self.params.special_tok_ids['unk_token'] _UpperCamelCase : Optional[Any] = [list(t.astype(lowerCamelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCamelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCamelCase__ ) assert all(len(lowerCamelCase__ ) == max_seq_len_ for t in tk_ ) _UpperCamelCase : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) _UpperCamelCase : Union[str, Any] = torch.tensor(lowerCamelCase__ ) # (bs) return tk_t, lg_t
236
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ ): if not nums: return 0 _UpperCamelCase : Any = nums[0] _UpperCamelCase : Optional[int] = 0 for num in nums[1:]: _UpperCamelCase , _UpperCamelCase : Optional[Any] = ( max_excluding + num, max(UpperCAmelCase_ , UpperCAmelCase_ ), ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
236
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __lowercase ( lowerCamelCase : Tuple ): def wrapper(*lowerCamelCase : str , **lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : int = timeit.default_timer() UpperCamelCase_ : Optional[int] = func(*lowerCamelCase , **lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = timeit.default_timer() - starttime return delta UpperCamelCase_ : str = func.__name__ return wrapper def __lowercase ( lowerCamelCase : dict , lowerCamelCase : Optional[Any]=100 , lowerCamelCase : Dict=None ): UpperCamelCase_ : Dict = [] UpperCamelCase_ : Dict = seq_shapes or {} for i in range(lowerCamelCase ): UpperCamelCase_ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCamelCase , _ArrayXD ): UpperCamelCase_ : Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCamelCase , datasets.Value ): if v.dtype == "string": UpperCamelCase_ : Union[str, Any] = 'The small grey turtle was surprisingly fast when challenged.' else: UpperCamelCase_ : List[str] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCamelCase , datasets.Sequence ): while isinstance(lowerCamelCase , datasets.Sequence ): UpperCamelCase_ : Optional[Any] = v.feature UpperCamelCase_ : str = seq_shapes[k] UpperCamelCase_ : Optional[Any] = np.random.rand(*lowerCamelCase ).astype(v.dtype ) UpperCamelCase_ : int = data dummy_data.append((i, example) ) return dummy_data def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : str=100 , lowerCamelCase : str=None ): UpperCamelCase_ : Optional[int] = generate_examples(lowerCamelCase , num_examples=lowerCamelCase , seq_shapes=lowerCamelCase ) with ArrowWriter(features=lowerCamelCase , path=lowerCamelCase ) as writer: for key, record in dummy_data: UpperCamelCase_ : List[str] = features.encode_example(lowerCamelCase ) writer.write(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_ : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCamelCase_ : Dict = datasets.Dataset.from_file(filename=lowerCamelCase , info=datasets.DatasetInfo(features=lowerCamelCase ) ) return dataset
175
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') a_ = parser.parse_args() if args.model_type == "roberta": a_ = RobertaForMaskedLM.from_pretrained(args.model_name) a_ = 'roberta' elif args.model_type == "gpt2": a_ = GPTaLMHeadModel.from_pretrained(args.model_name) a_ = 'transformer' a_ = model.state_dict() a_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a_ = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a_ = F"""{prefix}.embeddings.{w}.weight""" a_ = state_dict[param_name] for w in ["weight", "bias"]: a_ = F"""{prefix}.embeddings.LayerNorm.{w}""" a_ = state_dict[param_name] # Transformer Blocks # a_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] a_ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a_ = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: a_ = state_dict[F"""lm_head.dense.{w}"""] a_ = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a_ = state_dict[F"""{prefix}.ln_f.{w}"""] a_ = state_dict['lm_head.weight'] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
175
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger() @dataclass class __UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = field(default_factory=__snake_case ) UpperCamelCase = field(default_factory=__snake_case ) def __magic_name__ ( self : str, __A : List[str], __A : Tensor, __A : Tensor ): UpperCAmelCase : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_, nn.Convad ) or isinstance(lowerCamelCase_, nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self : Tuple, __A : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def __magic_name__ ( self : List[str] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __A : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class __UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 1 UpperCamelCase = field(default_factory=__snake_case ) UpperCamelCase = field(default_factory=__snake_case ) UpperCamelCase = True def __call__( self : Tuple, __A : Tensor ): UpperCAmelCase : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase : int = list(filter(lambda __A : type(lowerCamelCase_ ) not in self.src_skip, lowerCamelCase_ ) ) UpperCAmelCase : Optional[int] = list(filter(lambda __A : type(lowerCamelCase_ ) not in self.dest_skip, lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_, lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class __UpperCAmelCase ( nn.Module ): def __init__( self : List[str], __A : nn.Module ): super().__init__() UpperCAmelCase : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), F'''Unexpected layer name {k}''' UpperCAmelCase : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def __magic_name__ ( self : Union[str, Any], __A : Tensor ): return get_trunk_forward_outputs( lowerCamelCase_, out_feat_keys=lowerCamelCase_, feature_blocks=self._feature_blocks, ) class __UpperCAmelCase ( __snake_case ): def __magic_name__ ( self : Dict, __A : str ): UpperCAmelCase : str = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Union[str, Any], __A : str ): # default to timm! if x not in self: UpperCAmelCase : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_, pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class __UpperCAmelCase ( __snake_case ): def __getitem__( self : Union[str, Any], __A : str ): if "seer" in x and "in1k" not in x: UpperCAmelCase : Tuple = RegNetModel else: UpperCAmelCase : Union[str, Any] = RegNetForImageClassification return val def a__ ( UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[Tuple[str, str]] ) -> str: for from_key, to_key in keys: UpperCAmelCase : int = from_state_dict[from_key].clone() print(f'''Copied key={from_key} to={to_key}''' ) return to_state_dict def a__ ( UpperCAmelCase : str , UpperCAmelCase : Callable[[], nn.Module] , UpperCAmelCase : Callable[[], nn.Module] , UpperCAmelCase : RegNetConfig , UpperCAmelCase : Path , UpperCAmelCase : bool = True , ) -> Optional[Any]: print(f'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase : Any = from_model_func() UpperCAmelCase : str = our_model_func(_a ).eval() UpperCAmelCase : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase : Optional[int] = from_model(_a ) UpperCAmelCase : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_a , ) UpperCAmelCase : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_a , ) print(f'''Pushed {name}''' ) def a__ ( UpperCAmelCase : Path , UpperCAmelCase : str = None , UpperCAmelCase : bool = True ) -> Any: UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase : List[Any] = 1_000 UpperCAmelCase : Any = (1, num_labels) UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase : Tuple = idalabel UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } UpperCAmelCase : List[Any] = NameToOurModelFuncMap() UpperCAmelCase : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(UpperCAmelCase : str , UpperCAmelCase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location='''cpu''' ) UpperCAmelCase : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase : List[Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase : str = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase : Tuple = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase : Optional[int] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned UpperCAmelCase : Dict = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase : Dict = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase : Any = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase : List[Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase : Optional[int] = parser.parse_args() _lowerCamelCase : str = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
365
import logging import os from .state import PartialState class __UpperCAmelCase ( logging.LoggerAdapter ): @staticmethod def __magic_name__ ( __A : str ): UpperCAmelCase : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __magic_name__ ( self : Union[str, Any], __A : Union[str, Any], __A : Union[str, Any], *__A : Optional[int], **__A : Tuple ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) UpperCAmelCase : List[str] = kwargs.pop('''main_process_only''', __A ) UpperCAmelCase : int = kwargs.pop('''in_order''', __A ) if self.isEnabledFor(__A ): if self._should_log(__A ): UpperCAmelCase , UpperCAmelCase : Dict = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) elif in_order: UpperCAmelCase : Dict = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.process(__A, __A ) self.logger.log(__A, __A, *__A, **__A ) state.wait_for_everyone() def a__ ( UpperCAmelCase : str , UpperCAmelCase : str = None ) -> Dict: if log_level is None: UpperCAmelCase : Union[str, Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , UpperCAmelCase ) UpperCAmelCase : Tuple = logging.getLogger(UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCAmelCase , {} )
99
0
UpperCAmelCase : dict[tuple[int, int, int], int] ={} def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase_ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase_ = _calculate(days - 1 , _lowerCAmelCase , late + 1) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase_ = _calculate(days - 1 , absent + 1 , 0) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase_ = _calculate(days - 1 , _lowerCAmelCase , 0) UpperCamelCase_ = state_late + state_absent + state_ontime UpperCamelCase_ = prizestrings return prizestrings def _lowerCAmelCase (_lowerCAmelCase = 30): return _calculate(_lowerCAmelCase , absent=0 , late=0) if __name__ == "__main__": print(solution())
128
def _lowerCAmelCase (_lowerCAmelCase): if n_term == "": return [] UpperCamelCase_ = [] for temp in range(int(_lowerCAmelCase)): series.append(f"""1/{temp + 1}""" if series else "1") return series if __name__ == "__main__": UpperCAmelCase : Optional[int] =input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
128
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _A : List[str] =None _A : Tuple =logging.get_logger(__name__) _A : List[Any] ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _A : Optional[Any] ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } _A : Any ={ '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off _A : Optional[int] =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _lowercase ( _lowercase ): a = VOCAB_FILES_NAMES a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_VOCAB_FILES_MAP a = ["""input_ids""", """attention_mask"""] a = MBartTokenizer a = [] a = [] def __init__( self: int , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: Tuple=None , UpperCamelCase__: int="<s>" , UpperCamelCase__: Dict="</s>" , UpperCamelCase__: Tuple="</s>" , UpperCamelCase__: Union[str, Any]="<s>" , UpperCamelCase__: Any="<unk>" , UpperCamelCase__: List[Any]="<pad>" , UpperCamelCase__: Union[str, Any]="<mask>" , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: Any=None , UpperCamelCase__: List[str]=None , **UpperCamelCase__: Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( vocab_file=UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : Dict = vocab_file lowerCamelCase__ : Optional[Any] = False if not self.vocab_file else True lowerCamelCase__ : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowerCamelCase__ : Dict = { lang_code: self.convert_tokens_to_ids(UpperCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : Optional[int] = src_lang if src_lang is not None else """en_XX""" lowerCamelCase__ : List[str] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self: Optional[Any] ): return self._src_lang @src_lang.setter def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str ): lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : Tuple = [self.sep_token_id] lowerCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: str , UpperCamelCase__: Optional[str] , UpperCamelCase__: Optional[str] , **UpperCamelCase__: List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCamelCase__ : Any = src_lang lowerCamelCase__ : List[str] = self(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : Dict = self.convert_tokens_to_ids(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = tgt_lang_id return inputs def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: List[str] , UpperCamelCase__: str = "en_XX" , UpperCamelCase__: Optional[List[str]] = None , UpperCamelCase__: str = "ro_RO" , **UpperCamelCase__: Optional[Any] , ): lowerCamelCase__ : Tuple = src_lang lowerCamelCase__ : Any = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self: List[str] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self: str , UpperCamelCase__: Any ): lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(UpperCamelCase__ ) lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str ): lowerCamelCase__ : Optional[int] = self.convert_tokens_to_ids(UpperCamelCase__ ) lowerCamelCase__ : Tuple = [] lowerCamelCase__ : int = [self.eos_token_id, self.cur_lang_code] lowerCamelCase__ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCamelCase__ : int = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
129
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[Any]: if "cls_token" in name: lowerCamelCase__ : Any = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCamelCase__ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase__ : str = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[int] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase__ : Any = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCamelCase__ : Dict = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowerCamelCase__ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase__ : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ : str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowerCamelCase__ : Tuple = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCamelCase__ : Optional[int] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCamelCase__ : int = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase__ : Union[str, Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase__ : Dict = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: lowerCamelCase__ : List[Any] = key.split(""".""" ) lowerCamelCase__ : Optional[int] = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase__ : str = config.decoder_hidden_size lowerCamelCase__ : List[Any] = """decoder.decoder_layers.""" if "weight" in key: lowerCamelCase__ : int = val[:dim, :] lowerCamelCase__ : int = val[dim : dim * 2, :] lowerCamelCase__ : Tuple = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : Tuple = val[:dim] lowerCamelCase__ : Optional[int] = val[dim : dim * 2] lowerCamelCase__ : List[Any] = val[-dim:] else: lowerCamelCase__ : List[Any] = config.hidden_size lowerCamelCase__ : Optional[int] = """vit.encoder.layer.""" if "weight" in key: lowerCamelCase__ : str = val[:dim, :] lowerCamelCase__ : List[Any] = val[dim : dim * 2, :] lowerCamelCase__ : Optional[int] = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : int = val[:dim] lowerCamelCase__ : List[Any] = val[dim : dim * 2] lowerCamelCase__ : Optional[int] = val[-dim:] else: lowerCamelCase__ : int = val return orig_state_dict def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : Any = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase__ : Any = 1024 lowerCamelCase__ : Optional[Any] = 4096 lowerCamelCase__ : List[str] = 24 lowerCamelCase__ : Union[str, Any] = 16 elif "huge" in checkpoint_url: lowerCamelCase__ : List[str] = 14 lowerCamelCase__ : Dict = 1280 lowerCamelCase__ : Tuple = 5120 lowerCamelCase__ : List[str] = 32 lowerCamelCase__ : Union[str, Any] = 16 lowerCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCamelCase ) lowerCamelCase__ : str = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : List[str] = convert_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCamelCase__ : List[Any] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) lowerCamelCase__ : str = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : Any = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCamelCase__ : Optional[Any] = model(**UpperCamelCase ) lowerCamelCase__ : Optional[Any] = outputs.logits if "large" in checkpoint_url: lowerCamelCase__ : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowerCamelCase__ : Optional[Any] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowerCamelCase__ : int = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , UpperCamelCase , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A : Tuple =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
129
1
def __A ( __lowerCAmelCase , __lowerCAmelCase )-> float: """simple docstring""" return base * power(__lowerCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') _a = int(input('''Enter the base: ''').strip()) _a = int(input('''Enter the exponent: ''').strip()) _a = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
39
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Union[str, Any]: '''simple docstring''' if isinstance(_lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class __UpperCamelCase : def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: pass def __a ( self ) -> List[Any]: pass def __a ( self ) -> str: pass def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : Dict = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict: a : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[str] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[Any]: a, a : Optional[int] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = {"vision_model": vision_model, "text_model": text_model} a : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[str, Any]: a, a : Dict = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = {"vision_model": vision_model, "text_model": text_model} a : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : List[str] = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) a : str = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : Dict = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : List[Any] = after_output[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[Any]: a, a : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[Any] = {"vision_model": vision_model, "text_model": text_model} a : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) a : Tuple = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) a : int = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = to_atuple(vision_model.config.image_size ) a : Tuple = to_atuple(vision_model.config.patch_size ) a : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) a : str = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs a : List[Any] = inputs_dict a : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): a : int = pt_model(**lowerCAmelCase__ ).to_tuple() a : Union[str, Any] = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) a : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) a : Optional[int] = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): a : int = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4E-2 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) a : List[str] = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = VisionTextDualEncoderModel(lowerCAmelCase__ ) a : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) a : int = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def __a ( self ) -> Dict: a : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : int = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def __a ( self ) -> Any: a : List[Any] = self.prepare_config_and_inputs() a : Tuple = config_inputs_dict.pop("vision_config" ) a : int = config_inputs_dict.pop("text_config" ) a : List[str] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __a ( self ) -> List[Any]: a, a : Optional[int] = self.get_pretrained_model_and_inputs() a : Optional[int] = model_a(**lowerCAmelCase__ ) a : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) a : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) a : str = model_a(**lowerCAmelCase__ ) a : Dict = after_outputs[0] a : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1E-5 ) @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Any = 13 a : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Optional[Any] = random_attention_mask([batch_size, 4] ) a : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Dict = FlaxViTModel(lowerCAmelCase__ ) a : Dict = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> str: a : Union[str, Any] = FlaxViTModelTester(self ) a : Dict = FlaxBertModelTester(self ) a : str = vit_model_tester.prepare_config_and_inputs() a : Any = bert_model_tester.prepare_config_and_inputs() a, a : Optional[int] = vision_config_and_inputs a, a, a, a : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __UpperCamelCase ( a__ , unittest.TestCase ): def __a ( self ) -> List[Any]: a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) a : Tuple = 13 a : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) a : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) a : Tuple = random_attention_mask([batch_size, 4] ) a : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : List[Any] = FlaxCLIPVisionModel(lowerCAmelCase__ ) a : Tuple = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def __a ( self ) -> List[Any]: a : Tuple = FlaxCLIPVisionModelTester(self ) a : Union[str, Any] = FlaxBertModelTester(self ) a : Dict = clip_model_tester.prepare_config_and_inputs() a : Optional[int] = bert_model_tester.prepare_config_and_inputs() a, a : Dict = vision_config_and_inputs a, a, a, a : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> Dict: a : str = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) a : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) a : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) a : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ) a : Optional[Any] = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a : List[str] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1E-3 ) )
79
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a : Dict = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a : List[str] = 10 a : Optional[int] = 256 def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Optional[MinHash]: '''simple docstring''' if len(_lowercase ) < MIN_NUM_TOKENS: return None a : Any = MinHash(num_perm=_lowercase ) for token in set(_lowercase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_lowercase ) if len(t.strip() ) > 0} class __UpperCamelCase : def __init__( self , *, lowerCAmelCase__ = 0.85 , ) -> Any: a : Any = duplication_jaccard_threshold a : Dict = NUM_PERM a : Dict = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) a : List[str] = defaultdict(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: a : Any = self._index.query(lowerCAmelCase__ ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__ ) def __a ( self ) -> List[List[Dict]]: a : Any = [] for base, duplicates in self._duplicate_clusters.items(): a : Any = [base] + list(lowerCAmelCase__ ) # reformat the cluster to be a list of dict a : Optional[int] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__ ) return duplicate_clusters def __a ( self , lowerCAmelCase__ ) -> None: a : Optional[int] = self.get_duplicate_clusters() with open(lowerCAmelCase__ , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Optional[Any]: '''simple docstring''' a, a : Optional[Any] = element a : Any = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] ) ->Optional[int]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_lowercase , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] , _lowercase : float ) ->Dict: '''simple docstring''' a : Optional[int] = DuplicationIndex(duplication_jaccard_threshold=_lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowercase ) ) , max_queue_size=100 ) ): di.add(_lowercase , _lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->float: '''simple docstring''' a : Any = get_tokens(_lowercase ) a : List[str] = get_tokens(_lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a : Dict = None def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : Dict ) ->Tuple: '''simple docstring''' a : Union[str, Any] = [] for elementa in cluster: a : List[Any] = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: a : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_lowercase , _lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: a : Optional[Any] = 1 extremes.append(_lowercase ) return extremes def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : Any , _lowercase : Optional[Any] ) ->Any: '''simple docstring''' global _shared_dataset a : Tuple = dataset a : List[Any] = [] a : int = partial(_find_cluster_extremes_shared , jaccard_threshold=_lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowercase , _lowercase , ) , total=len(_lowercase ) , ): extremes_list.append(_lowercase ) return extremes_list def _SCREAMING_SNAKE_CASE ( _lowercase : Type[Dataset] , _lowercase : float = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' a : str = make_duplicate_clusters(_lowercase , _lowercase ) a : List[Any] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} a : List[Any] = {} a : str = find_extremes(_lowercase , _lowercase , _lowercase ) for extremes in extremes_clusters: for element in extremes: a : Optional[Any] = element a : Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) a : Union[str, Any] = dataset.filter(lambda _lowercase , _lowercase : idx not in remove_indices , with_indices=_lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: a : Union[str, Any] = element["base_index"] in extreme_dict if element["is_extreme"]: a : Optional[int] = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(_lowercase )}""" ) print(F"""Number of duplicate clusters: {len(_lowercase )}""" ) print(F"""Files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Unique files in duplicate cluster: {len(_lowercase )}""" ) print(F"""Filtered dataset size: {len(_lowercase )}""" ) return ds_filter, duplicate_clusters
79
1
_UpperCAmelCase : Tuple = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase__ ( lowerCamelCase ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase ) ) def UpperCAmelCase__ ( ): return sum( number for number in range(1000, 1000000 ) if number == digits_fifth_powers_sum(lowerCamelCase ) ) if __name__ == "__main__": print(solution())
236
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self: int ): torch.manual_seed(0 ) lowercase :str = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def SCREAMING_SNAKE_CASE ( self: Any ): torch.manual_seed(0 ) lowercase :Dict = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): torch.manual_seed(0 ) lowercase :List[str] = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase :List[str] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase :Optional[int] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase :List[str] = DDPMScheduler() lowercase :Tuple = AudioDiffusionPipeline(vqvae=_lowerCAmelCase , unet=self.dummy_unet , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) lowercase :Dict = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Tuple = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Optional[int] = pipe(generator=_lowerCAmelCase , steps=4 ) lowercase :List[str] = output.audios[0] lowercase :List[str] = output.images[0] lowercase :List[str] = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Optional[int] = pipe(generator=_lowerCAmelCase , steps=4 , return_dict=_lowerCAmelCase ) lowercase :int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase :Any = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :Dict = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase :List[Any] = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase :Optional[Any] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase :List[str] = DDIMScheduler() lowercase :Tuple = self.dummy_vqvae_and_unet lowercase :str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) lowercase :Union[str, Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) lowercase :Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase :List[Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Dict = pipe(raw_audio=_lowerCAmelCase , generator=_lowerCAmelCase , start_step=5 , steps=10 ) lowercase :str = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase :Optional[Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :List[str] = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase :Optional[Any] = self.dummy_unet_condition lowercase :Optional[int] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_lowerCAmelCase , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) lowercase :int = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) lowercase :List[str] = torch.rand((1, 1, 10) ) lowercase :Union[str, Any] = pipe(generator=_lowerCAmelCase , encoding=_lowerCAmelCase ) lowercase :Tuple = output.images[0] lowercase :Optional[Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :Any = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Tuple = torch_device lowercase :List[Any] = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase :Dict = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase :Any = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) lowercase :Optional[int] = pipe(generator=_lowerCAmelCase ) lowercase :List[str] = output.audios[0] lowercase :Any = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase :Dict = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase :List[str] = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
236
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __A : Optional[int] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' __A : Optional[int] = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' __A : Tuple = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def lowercase__ ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): lowerCAmelCase : Union[str, Any] = 0.0 for i, j in zip(UpperCAmelCase_ , UpperCAmelCase_ ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCAmelCase_ , UpperCAmelCase_ ) else 0.0 lowerCAmelCase : Tuple = n_correct / len(UpperCAmelCase_ ) return { "accuracy": accuracy, }
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) __lowerCAmelCase = DetaConfig( backbone_config=_UpperCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_UpperCamelCase , with_box_refine=_UpperCamelCase , two_stage=_UpperCamelCase , ) # set labels __lowerCAmelCase = "huggingface/label-files" if "o365" in model_name: __lowerCAmelCase = 366 __lowerCAmelCase = "object365-id2label.json" else: __lowerCAmelCase = 91 __lowerCAmelCase = "coco-detection-id2label.json" __lowerCAmelCase = num_labels __lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = dct.pop(_UpperCamelCase ) __lowerCAmelCase = val def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) __lowerCAmelCase = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __lowerCAmelCase = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __lowerCAmelCase = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:hidden_size, :] __lowerCAmelCase = in_proj_bias[:hidden_size] __lowerCAmelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size:, :] __lowerCAmelCase = in_proj_bias[-hidden_size:] def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = get_deta_config(_UpperCamelCase ) # load original state dict if model_name == "deta-swin-large": __lowerCAmelCase = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": __lowerCAmelCase = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(f"Model name {model_name} not supported" ) __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(_UpperCamelCase , param.shape ) # rename keys __lowerCAmelCase = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_swin_q_k_v(_UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCamelCase , _UpperCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __lowerCAmelCase = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase = val if "input_proj" in key: __lowerCAmelCase = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __lowerCAmelCase = state_dict.pop(_UpperCamelCase ) __lowerCAmelCase = val # finally, create HuggingFace model and load state dict __lowerCAmelCase = DetaForObjectDetection(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() __lowerCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" model.to(_UpperCamelCase ) # load image processor __lowerCAmelCase = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=_UpperCamelCase , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] __lowerCAmelCase = model(pixel_values.to(_UpperCamelCase ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __lowerCAmelCase = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) __lowerCAmelCase = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": __lowerCAmelCase = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) __lowerCAmelCase = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCamelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCamelCase ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(f"jozhang97/{model_name}" ) processor.push_to_hub(f"jozhang97/{model_name}" ) if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : Tuple = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
57
import math import random def A_ ( A__ , A__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase : Optional[Any] = 0.02 def A_ ( A__ , A__ ) -> float: a__ : int = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(A__ ): # Forward propagation a__ : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? a__ : Optional[Any] = (expected / 100) - layer_a # Error delta a__ : Optional[int] = layer_1_error * sigmoid_function(A__ , A__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowercase : Dict = int(input("""Expected value: """)) lowercase : Dict = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
99
0
import sys a_ : int = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ (_UpperCAmelCase = N): SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(_UpperCAmelCase) - 12): SCREAMING_SNAKE_CASE = 1 for j in range(13): product *= int(n[i + j]) if product > largest_product: SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
327
import baseaa def lowerCamelCase__ (_UpperCAmelCase): return baseaa.aaaencode(string.encode('utf-8')) def lowerCamelCase__ (_UpperCAmelCase): return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8') if __name__ == "__main__": import doctest doctest.testmod()
327
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCAmelCase__ ( lowerCamelCase_ : List[str]): '''simple docstring''' lowerCAmelCase__ : Dict = [] for line in lines: lowerCAmelCase__ : Dict = re.sub(r'''#.*''' ,'''''' ,lowerCamelCase_) # remove comments if line: filtered_lines.append(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = '''\n'''.join(lowerCamelCase_) # Make a hash from all this code lowerCAmelCase__ : Union[str, Any] = full_str.encode('''utf-8''') return shaaaa(lowerCamelCase_).hexdigest() # get importable module names and hash for caching __snake_case : List[Any] ={ 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __snake_case : List[str] ={ '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __snake_case : Any ={'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name __snake_case : Dict[str, List[str]] ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
129
from jiwer import compute_measures import datasets __snake_case : Dict ='\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __snake_case : Optional[Any] ='\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __snake_case : Any ='\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/jitsi/jiwer/'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] ,) def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=False ) -> Any: """simple docstring""" if concatenate_texts: return compute_measures(__lowerCamelCase ,__lowerCamelCase )["wer"] else: lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = 0 for prediction, reference in zip(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Dict = compute_measures(__lowerCamelCase ,__lowerCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
129
1
import unittest import numpy as np def __lowerCamelCase ( __a :np.ndarray , __a :np.ndarray , __a :np.ndarray , __a :np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" A__ = np.shape(__a ) A__ = np.shape(__a ) A__ = np.shape(__a ) if shape_a[0] != shape_b[0]: A__ = ( """Expected the same number of rows for A and B. """ F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__a ) if shape_b[1] != shape_c[1]: A__ = ( """Expected the same number of columns for B and C. """ F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__a ) A__ = pseudo_inv if a_inv is None: try: A__ = np.linalg.inv(__a ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) A__ = schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = np.block([[a, b], [b.T, c]] ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) A__ = np.linalg.det(__lowerCAmelCase ) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s ) def a_ ( self : str ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : List[str] ) -> None: """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
360
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( __a :List[str] ) -> Tuple: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( __a :int ) -> Optional[int]: """simple docstring""" A__ = create_tensor(__a ) A__ = gather(__a ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCamelCase ( __a :Any ) -> Any: """simple docstring""" A__ = [state.process_index] A__ = gather_object(__a ) assert len(__a ) == state.num_processes, F'{gathered_obj}, {len(__a )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( __a :List[str] ) -> List[str]: """simple docstring""" A__ = create_tensor(__a ) A__ = broadcast(__a ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCamelCase ( __a :Any ) -> Any: """simple docstring""" if state.is_main_process: A__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: A__ = torch.arange(state.num_processes ).to(state.device ) A__ = pad_across_processes(__a ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCamelCase ( __a :Union[str, Any] ) -> str: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """sum""" ) A__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :List[Any] ) -> List[str]: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """mean""" ) A__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :str ) -> Optional[int]: """simple docstring""" main() def __lowerCamelCase ( ) -> str: """simple docstring""" A__ = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(__a ) state.print("""testing gather_object""" ) test_gather_object(__a ) state.print("""testing broadcast""" ) test_broadcast(__a ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__a ) state.print("""testing reduce_sum""" ) test_reduce_sum(__a ) state.print("""testing reduce_mean""" ) test_reduce_mean(__a ) if __name__ == "__main__": main()
276
0
'''simple docstring''' def __lowercase ( __lowercase ) -> list[list[int]]: '''simple docstring''' _A = [] if len(__lowercase ) == 1: return [nums.copy()] for _ in range(len(__lowercase ) ): _A = nums.pop(0 ) _A = permute(__lowercase ) for perm in permutations: perm.append(__lowercase ) result.extend(__lowercase ) nums.append(__lowercase ) return result def __lowercase ( __lowercase ) -> Any: '''simple docstring''' def backtrack(__lowercase ): if start == len(__lowercase ) - 1: output.append(nums[:] ) else: for i in range(__lowercase , len(__lowercase ) ): _A , _A = nums[i], nums[start] backtrack(start + 1 ) _A , _A = nums[i], nums[start] # backtrack _A = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCamelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
79
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 0 snake_case = False snake_case = 3.0 class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=__UpperCAmelCase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def lowerCAmelCase ( self : int ): '''simple docstring''' _A = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _A = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _A = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , __UpperCAmelCase ) @require_multi_gpu def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCamelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase_ = torch.nn.Linear(1_00, 2_00) lowerCamelCase_ = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase_ = '''''' lowerCamelCase_ = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
79
1
"""simple docstring""" from __future__ import annotations _a : Union[str, Any] = [] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]] ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> bool: for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case ,-1 ,-1 ) ,range(__snake_case ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case ,-1 ,-1 ) ,range(__snake_case ,len(__snake_case ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]] ,_lowerCamelCase : int ) -> bool: if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case ,__snake_case ,__snake_case ): _lowerCAmelCase : Any = 1 solve(__snake_case ,row + 1 ) _lowerCAmelCase : Tuple = 0 return False def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[list[int]] ) -> None: for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print("""Q""" ,end=""" """ ) else: print(""".""" ,end=""" """ ) print() # n=int(input("The no. of queens")) _a : List[str] = 8 _a : Tuple = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
356
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _a : Tuple = None _a : str = logging.get_logger(__name__) _a : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } _a : int = { 'facebook/nllb-large-en-ro': 1_024, 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off _a : Union[str, Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = ["input_ids", "attention_mask"] _UpperCamelCase : Tuple = NllbTokenizer _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=None , a__=None , a__=None , a__=False , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : int = legacy_behaviour super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , legacy_behaviour=a__ , **a__ , ) _lowerCAmelCase : List[Any] = vocab_file _lowerCAmelCase : List[str] = False if not self.vocab_file else True _lowerCAmelCase : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase : Tuple = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[str] = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase : int = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , a__ ): _lowerCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ , a__ , a__ , **a__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : str = src_lang _lowerCAmelCase : List[Any] = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) _lowerCAmelCase : Dict = self.convert_tokens_to_ids(a__ ) _lowerCAmelCase : Dict = tgt_lang_id return inputs def __A ( self , a__ , a__ = "eng_Latn" , a__ = None , a__ = "fra_Latn" , **a__ , ): _lowerCAmelCase : List[Any] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : str = [self.cur_lang_code] _lowerCAmelCase : List[Any] = [self.eos_token_id] _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ ): _lowerCAmelCase : Any = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : Optional[int] = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return _lowerCAmelCase : Optional[Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
126
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) SCREAMING_SNAKE_CASE : str = { """input_ids""": tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ )["""last_hidden_state"""] SCREAMING_SNAKE_CASE : Optional[Any] = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , lowerCamelCase_ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
323
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block SCREAMING_SNAKE_CASE : int = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = output_channel SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i] SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU() SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Tuple = False def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = x SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[Any] ): def custom_forward(*lowerCamelCase_ : List[str] ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ ) # post-process SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = layers_per_block SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None # mid SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : List[Any] = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : Dict = nn.SiLU() SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Dict = False def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = z SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[str] ): def custom_forward(*lowerCamelCase_ : str ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Tuple = n_e SCREAMING_SNAKE_CASE : int = vq_embed_dim SCREAMING_SNAKE_CASE : Tuple = beta SCREAMING_SNAKE_CASE : Union[str, Any] = legacy SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE : Optional[Any] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0] SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed SCREAMING_SNAKE_CASE : Any = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: SCREAMING_SNAKE_CASE : Optional[int] = n_e SCREAMING_SNAKE_CASE : Any = sane_index_shape def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 ) SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE : Any = self.unknown_index return new.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : List[str] = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.remap is not None: SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ ) if shape is not None: SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parameters SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE : Dict = deterministic SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample return x def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self.mean
323
1
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = 0 while b > 0: if b & 1: UpperCAmelCase_ : List[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
356
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __a = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = state_dict.pop(_lowercase ) UpperCAmelCase_ : Optional[int] = val def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : List[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCAmelCase_ : Optional[Any] = value else: UpperCAmelCase_ : Union[str, Any] = value return new_state_dict def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : Dict = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Any = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:256, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:256] UpperCAmelCase_ : Tuple = in_proj_weight[256:512, :] UpperCAmelCase_ : List[Any] = in_proj_bias[256:512] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[-256:, :] UpperCAmelCase_ : str = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Any = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:256, :] UpperCAmelCase_ : List[str] = in_proj_bias[:256] UpperCAmelCase_ : Optional[int] = in_proj_weight[256:512, :] UpperCAmelCase_ : str = in_proj_bias[256:512] UpperCAmelCase_ : Optional[Any] = in_proj_weight[-256:, :] UpperCAmelCase_ : Union[str, Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : List[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[:256] UpperCAmelCase_ : int = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ : Tuple = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : List[Any] = image.size UpperCAmelCase_ : List[Any] = max(_lowercase , _lowercase ) UpperCAmelCase_ : Dict = 800 if '''detection''' in checkpoint_url else 1000 UpperCAmelCase_ : Any = target_max_size / current_max_size UpperCAmelCase_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = F.to_tensor(_lowercase ) UpperCAmelCase_ : Optional[Any] = F.normalize(_lowercase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict UpperCAmelCase_ : Any = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase_ : Optional[int] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : int = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ : int = state_dict.pop(_lowercase ) UpperCAmelCase_ : Dict = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = 15 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Union[str, Any] = {0: '''table''', 1: '''table rotated'''} UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Optional[Any] = 125 UpperCAmelCase_ : Optional[Any] = 6 UpperCAmelCase_ : Dict = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCAmelCase_ : Optional[Any] = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCAmelCase_ : Union[str, Any] = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion UpperCAmelCase_ : str = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCAmelCase_ : Dict = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=_lowercase ) UpperCAmelCase_ : Dict = Image.open(_lowercase ).convert('''RGB''' ) UpperCAmelCase_ : Any = normalize(resize(_lowercase , _lowercase ) ).unsqueeze(0 ) UpperCAmelCase_ : Dict = model(_lowercase ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCAmelCase_ : Any = (1, 125, 7) UpperCAmelCase_ : Any = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCAmelCase_ : str = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCAmelCase_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
235
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _SCREAMING_SNAKE_CASE = pytest.mark.integration _SCREAMING_SNAKE_CASE = {"""comet"""} _SCREAMING_SNAKE_CASE = importlib.util.find_spec("""fairseq""") is not None _SCREAMING_SNAKE_CASE = {"""code_eval"""} _SCREAMING_SNAKE_CASE = os.name == """nt""" _SCREAMING_SNAKE_CASE = {"""bertscore""", """frugalscore""", """perplexity"""} _SCREAMING_SNAKE_CASE = importlib.util.find_spec("""transformers""") is not None def SCREAMING_SNAKE_CASE__ ( __a ): @wraps(__a ) def wrapper(self , __a ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , __a ) return wrapper def SCREAMING_SNAKE_CASE__ ( __a ): @wraps(__a ) def wrapper(self , __a ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , __a ) return wrapper def SCREAMING_SNAKE_CASE__ ( __a ): @wraps(__a ) def wrapper(self , __a ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , __a ) return wrapper def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case_ , snake_case_ , snake_case_ ) @local class SCREAMING_SNAKE_CASE_ ( parameterized.TestCase ): __magic_name__: Union[str, Any] = {} __magic_name__: Optional[Any] = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def UpperCAmelCase_ ( self : Any , _A : Dict ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = '[...]' snake_case_ : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _A ) ).module_path ) snake_case_ : Dict = datasets.load.import_main_class(metric_module.__name__ , dataset=_A ) # check parameters snake_case_ : Optional[Any] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_A , metric_module.__name__ ): with self.use_local_metrics(): try: snake_case_ : Tuple = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase_ ( self : Union[str, Any] , _A : str ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = '[...]' snake_case_ : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _A ) ).module_path ) # run doctest with self.use_local_metrics(): snake_case_ : Union[str, Any] = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase_ ( self : int , _A : str , _A : Any ) -> List[Any]: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_A ): yield else: yield @contextmanager def UpperCAmelCase_ ( self : int ) -> Tuple: """simple docstring""" def load_local_metric(_A : str , *_A : str , **_A : int ): return load_metric(os.path.join('metrics' , _A ) , *_A , **_A ) with patch('datasets.load_metric' ) as mock_load_metric: snake_case_ : List[Any] = load_local_metric yield @classmethod def UpperCAmelCase_ ( cls : str , _A : List[str] ) -> List[str]: """simple docstring""" def wrapper(_A : Dict ): snake_case_ : str = contextmanager(_A ) snake_case_ : Any = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def SCREAMING_SNAKE_CASE__ ( __a ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : Any , _A : Optional[Any] ) -> List[Any]: """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: snake_case_ : Optional[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def SCREAMING_SNAKE_CASE__ ( __a ): import torch def bert_cos_score_idf(__a , __a , *__a , **__a ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__a ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: snake_case_ : Union[str, Any] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def SCREAMING_SNAKE_CASE__ ( __a ): def load_from_checkpoint(__a ): class SCREAMING_SNAKE_CASE_ : def UpperCAmelCase_ ( self : Optional[Any] , _A : Tuple , *_A : Union[str, Any] , **_A : List[str] ) -> str: """simple docstring""" assert len(_A ) == 2 snake_case_ : List[Any] = [0.1_9, 0.9_2] return scores, sum(_A ) / len(_A ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: snake_case_ : Optional[Any] = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: snake_case_ : Optional[int] = load_from_checkpoint yield def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = load_metric(os.path.join('metrics' , 'seqeval' ) ) snake_case_ : Optional[Any] = 'ERROR' snake_case_ : List[str] = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(__a , match=re.escape(__a ) ): metric.compute(predictions=[] , references=[] , scheme=__a )
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
1
import math _lowerCamelCase : int = 10 _lowerCamelCase : Dict = 7 _lowerCamelCase : int = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCamelCase (UpperCAmelCase__ : int = 2_0 ): SCREAMING_SNAKE_CASE = math.comb(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
206
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : int = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _lowerCamelCase : List[Any] = { '''allenai/led-base-16384''': 1_63_84, } class lowercase ( a ): lowercase__ : Tuple = VOCAB_FILES_NAMES lowercase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[Any] = LEDTokenizer lowercase__ : str = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , _UpperCamelCase : Tuple=None , _UpperCamelCase : str=None , _UpperCamelCase : Tuple=None , _UpperCamelCase : List[str]="replace" , _UpperCamelCase : str="<s>" , _UpperCamelCase : List[Any]="</s>" , _UpperCamelCase : List[Any]="</s>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="<unk>" , _UpperCamelCase : List[Any]="<pad>" , _UpperCamelCase : Tuple="<mask>" , _UpperCamelCase : List[str]=False , _UpperCamelCase : List[Any]=True , **_UpperCamelCase : Optional[Any] , ) -> Tuple: '''simple docstring''' super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _UpperCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = "post_processor" SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , _UpperCamelCase , _UpperCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state["sep"] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state["cls"] ) SCREAMING_SNAKE_CASE = False if state.get("add_prefix_space" , _UpperCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get("trim_offsets" , _UpperCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , state.pop("type" ) ) SCREAMING_SNAKE_CASE = component_class(**_UpperCamelCase ) setattr(self.backend_tokenizer , _UpperCamelCase , _UpperCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __snake_case( self : int ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __snake_case( self : Optional[int] , _UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else value SCREAMING_SNAKE_CASE = value def __snake_case( self : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) -> BatchEncoding: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("is_split_into_words" , _UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , *_UpperCamelCase : Dict , **_UpperCamelCase : Tuple ) -> BatchEncoding: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("is_split_into_words" , _UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def __snake_case( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int=None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __snake_case( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case( self : Optional[Any] , _UpperCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=_UpperCamelCase , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs["global_attention_mask"] ) != len(_UpperCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
206
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[str] = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_UpperCAmelCase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Dict ) -> Optional[Any]: _a : Tuple =_distribute_shards(**_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ) -> List[str]: _a : List[str] =_split_gen_kwargs(_UpperCAmelCase ,_UpperCAmelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ) -> Union[str, Any]: if expected is RuntimeError: with pytest.raises(_UpperCAmelCase ): _number_of_shards_in_gen_kwargs(_UpperCAmelCase ) else: _a : Dict =_number_of_shards_in_gen_kwargs(_UpperCAmelCase ) assert out == expected
276
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[int] = ["keras_nlp"] def __init__( self , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["keras_nlp"] )
92
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE : Tuple = get_logger(__name__) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : int , snake_case : List[Any]=0 ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' snake_case_ = os.path.join(snake_case , snake_case ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Saving model to {output_model_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(snake_case , f'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case , exist_ok=snake_case ) logger.info(f'Saving model to {ckpt_dir}' ) snake_case_ = {"model": state_dict} dist_cp.save_state_dict( state_dict=snake_case , storage_writer=dist_cp.FileSystemWriter(snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : int , snake_case : Union[str, Any] , snake_case : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return snake_case_ = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading model from {input_model_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading model from {input_model_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(snake_case , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) snake_case_ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case , storage_reader=dist_cp.FileSystemReader(snake_case ) , planner=DefaultLoadPlanner() , ) snake_case_ = state_dict["model"] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case ) def UpperCamelCase_( snake_case : str , snake_case : List[str] , snake_case : Any , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple=0 ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(snake_case , snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: snake_case_ = os.path.join(snake_case , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case , exist_ok=snake_case ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : int , snake_case : Optional[int] , snake_case : Union[str, Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: snake_case_ = ( os.path.join(snake_case , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(snake_case ) , ) snake_case_ = optim_state["optimizer"] logger.info(f'Optimizer loaded from {ckpt_dir}' ) snake_case_ = FSDP.optim_state_dict_to_load(snake_case , snake_case , snake_case ) optimizer.load_state_dict(snake_case )
92
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Any = filter(lambda snake_case__ : p.requires_grad , model.parameters() ) A : Union[str, Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase : List[Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if metric == "rouge2": A : List[Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": A : Union[str, Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": A : Any = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) A : str = ModelCheckpoint( dirpath=snake_case__ , filename=snake_case__ , monitor=F'val_{metric}' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return EarlyStopping( monitor=F'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=snake_case__ , verbose=snake_case__ , ) class A ( pl.Callback ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : int = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE ) @rank_zero_only def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> None: """simple docstring""" logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results A : int = Path(pl_module.hparams.output_dir ) if type_path == "test": A : str = od / '''test_results.txt''' A : int = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A : Any = od / F'{type_path}_results/{trainer.global_step:05d}.txt' A : Optional[int] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''a+''' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue A : str = metrics[key] if isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): A : str = val.item() A : str = F'{key}: {val:.6f}\n' writer.write(SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: A : Union[str, Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(SCREAMING_SNAKE_CASE ) @rank_zero_only def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" try: A : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: A : List[Any] = pl_module.model.num_parameters() A : int = count_trainable_parameters(SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
3
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCAmelCase_ ( ) ->Tuple: lowerCamelCase__ : Dict =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase__ : int =get_sagemaker_input() else: lowerCamelCase__ : List[str] =get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : List[Any]=None ) ->List[str]: if subparsers is not None: lowerCamelCase__ : Union[str, Any] =subparsers.add_parser('config' , description=snake_case_ ) else: lowerCamelCase__ : Tuple =argparse.ArgumentParser('Accelerate config command' , description=snake_case_ ) parser.add_argument( '--config_file' , default=snake_case_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Optional[int] =get_user_input() if args.config_file is not None: lowerCamelCase__ : Dict =args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) lowerCamelCase__ : Optional[Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) ->Optional[Any]: lowerCamelCase__ : Tuple =config_command_parser() lowerCamelCase__ : Tuple =parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
126
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SpeechTaTokenizer _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True def A ( self : List[str] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = SpeechTaTokenizer(UpperCamelCase__ ) UpperCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) UpperCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = 'this is a test' UpperCamelCase = 'this is a test' return input_text, output_text def A ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[Any]=2_0 , UpperCamelCase__ : Any=5 ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.get_input_output_texts(UpperCamelCase__ ) UpperCamelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) UpperCamelCase = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return text, ids def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = '<pad>' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(UpperCamelCase__ ) , 8_1 ) def A ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCamelCase = tokenizer.add_tokens(UpperCamelCase__ ) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , 0 ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , len(UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , all_size + len(UpperCamelCase__ ) ) UpperCamelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=UpperCamelCase__ ) self.assertGreaterEqual(len(UpperCamelCase__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCamelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCamelCase = tokenizer.add_special_tokens(UpperCamelCase__ ) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , 0 ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , len(UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , all_size_a + len(UpperCamelCase__ ) ) UpperCamelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=UpperCamelCase__ ) self.assertGreaterEqual(len(UpperCamelCase__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def A ( self : Optional[int] ): """simple docstring""" pass def A ( self : int ): """simple docstring""" pass def A ( self : str ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(UpperCamelCase__ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase__ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) UpperCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) # fmt: off self.assertListEqual(UpperCamelCase__ , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on UpperCamelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def A ( self : List[str] ): """simple docstring""" UpperCamelCase = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off UpperCamelCase = { 'input_ids': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=UpperCamelCase__ , )
358
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): """simple docstring""" warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
249
0
import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase : Union[str, Any] = datasets.logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' __lowerCAmelCase : Any = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' __lowerCAmelCase : List[str] = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : Any ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def _lowercase ( self : int , UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" if self.config_name == "default": __magic_name__ = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: __magic_name__ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def _lowercase ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : Tuple=False ) -> int: """simple docstring""" if gpus is None: __magic_name__ = 1 if torch.cuda.is_available() else 0 __magic_name__ = {"""src""": sources, """mt""": predictions, """ref""": references} __magic_name__ = [dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) for t in zip(*data.values() )] __magic_name__ , __magic_name__ = self.scorer.predict(UpperCamelCase__ , gpus=UpperCamelCase__ , progress_bar=UpperCamelCase__ ) return {"mean_score": mean_score, "scores": scores}
88
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase_ : """simple docstring""" pass
235
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''facebook/bart-large-mnli''' lowerCamelCase_ : List[Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) lowerCamelCase_ : Dict = '''text_classifier''' lowerCamelCase_ : List[str] = AutoTokenizer lowerCamelCase_ : Optional[int] = AutoModelForSequenceClassification lowerCamelCase_ : int = ['''text''', ['''text''']] lowerCamelCase_ : Union[str, Any] = ['''text'''] def lowerCamelCase (self ) -> Tuple: '''simple docstring''' super().setup() snake_case_ : int = self.model.config snake_case_ : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): snake_case_ : Dict = int(__magic_name__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' snake_case_ : Tuple = labels return self.pre_processor( [text] * len(__magic_name__ ) , [F'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : int = outputs.logits snake_case_ : List[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
279
from math import isclose, sqrt def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, float, float]: """simple docstring""" snake_case_ : Dict = point_y / 4 / point_x snake_case_ : List[str] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case_ : Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case_ : Tuple = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case_ : Union[str, Any] = outgoing_gradient**2 + 4 snake_case_ : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case_ : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case_ : Dict = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case_ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case_ : Any = x_minus if isclose(_UpperCamelCase , _UpperCamelCase ) else x_plus snake_case_ : int = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase_ ( _UpperCamelCase = 1.4 , _UpperCamelCase = -9.6 ) -> int: """simple docstring""" snake_case_ : int = 0 snake_case_ : float = first_x_coord snake_case_ : float = first_y_coord snake_case_ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case_ , snake_case_ , snake_case_ : str = next_point(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
279
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _lowerCAmelCase : def __init__(self , lowercase ): A_ : Tuple = value A_ : Node | None = None A_ : Node | None = None class _lowerCAmelCase : def __init__(self , lowercase ): A_ : List[Any] = tree def _a (self , lowercase ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__(self ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
206
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , **lowercase , ): super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) A_ : Any = field A_ : Optional[int] = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} A_ : str = Json( cache_dir=lowercase , data_files=lowercase , features=lowercase , field=lowercase , **lowercase , ) def _a (self ): # Build iterable dataset if self.streaming: A_ : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : Optional[Any] = None A_ : Optional[Any] = None A_ : Tuple = None A_ : Optional[int] = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) A_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__(self , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A_ : Union[str, Any] = dataset A_ : Optional[int] = path_or_buf A_ : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : List[str] = num_proc A_ : Union[str, Any] = """utf-8""" A_ : Dict = to_json_kwargs def _a (self ): A_ : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowercase ) A_ : Tuple = self.to_json_kwargs.pop("""orient""" , """records""" ) A_ : Union[str, Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) A_ : str = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) A_ : Dict = self.to_json_kwargs.pop("""compression""" , lowercase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase ) as buffer: A_ : List[str] = self._write(file_obj=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) A_ : List[Any] = self._write( file_obj=self.path_or_buf , orient=lowercase , lines=lowercase , index=lowercase , **self.to_json_kwargs ) return written def _a (self , lowercase ): A_, A_, A_, A_, A_ : Dict = args A_ : Any = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : Union[str, Any] = batch.to_pandas().to_json( path_or_buf=lowercase , orient=lowercase , lines=lowercase , index=lowercase , **lowercase ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def _a (self , lowercase , lowercase , lowercase , lowercase , **lowercase , ): A_ : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): A_ : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase ) else: A_, A_ : List[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowercase ) return written
206
1
import warnings from .generation import TFGenerationMixin class _A ( _lowerCamelCase ): # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , _lowerCamelCase , )
116
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]: '''simple docstring''' if token is None: lowercase : int = HfFolder.get_token() if organization is None: lowercase : List[str] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Optional[Any] = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : int = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : Dict = str(Path(__magic_name__ ).as_posix() ) lowercase : Any = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : str = Path(__magic_name__ ).expanduser() lowercase : Dict = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : List[str] = weights_name.split('''.''' ) lowercase : Any = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : str = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : int = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : Dict = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
116
1